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Abstract

MSC function and fate.

The mesenchymal stroma harbors an important population of cells that possess stem cell-like characteristics
including self renewal and differentiation capacities and can be derived from a variety of different sources. These
multipotent mesenchymal stem cells (MSC) can be found in nearly all tissues and are mostly located in perivascular
niches. MSC have migratory abilities and can secrete protective factors and act as a primary matrix for tissue
regeneration during inflammation, tissue injuries and certain cancers.

These functions underlie the important physiological roles of MSC and underscore a significant potential for the
clinical use of distinct populations from the various tissues. MSC derived from different adult (adipose tissue,
peripheral blood, bone marrow) and neonatal tissues (particular parts of the placenta and umbilical cord) are
therefore compared in this mini-review with respect to their cell biological properties, surface marker expression
and proliferative capacities. In addition, several MSC functions including in vitro and in vivo differentiation capacities
within a variety of lineages and immune-modulatory properties are highlighted. Differences in the extracellular
milieu such as the presence of interacting neighbouring cell populations, exposure to proteases or a hypoxic
microenvironment contribute to functional developments within MSC populations originating from different
tissues, and intracellular conditions such as the expression levels of certain micro RNAs can additionally balance

Adult MSC: sources, isolation and culture

During the last few years isolations of adult mesenchy-
mal stem cells from different sources have been
reported. Bone marrow derived stem cells first described
by Friedenstein et al. are still the most frequently inves-
tigated cell type and often designated as the gold stan-
dard [1]. Mesenchymal stem cells derived from adipose
tissue [2], peripheral blood [3], the lung [4] or the heart
[5] however have also shown promising potential for
proliferation and differentiation into different cell types.
In this section we focus on the comparison of adult
mesenchymal stem cells derived from bone marrow
(BM), adipose tissue (AT) and peripheral blood (PB)
(Figure 1).
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BM-MSC are isolated from bone marrow aspirate.
This invasive procedure is painful for the patient and is
accompanied by a risk of infection. The commonly
applied preparation method for the generation of MSC
from bone marrow is density gradient centrifugation [6].
The collected fraction containing mononuclear cells
(MNC) is washed and the cells are seeded on a plastic
dish for proliferation. Instead of density gradient centri-
fugation many groups are using adherence for isolation
of MSC from BM.

AT-MSC also termed as adipose-derived stem cells
(ASC) are usually isolated from the biological material
generated during liposuction, lipoplasty, or lipectomy
procedures by enzymatic digestion with collagenase fol-
lowed by centrifugation and washing [7].

PB-MSC can be obtained from the lymphocyte separa-
tion fluid fraction of mononuclear cells after a density
gradient centrifugation [3]. Another method is described
by Kassis et al. in which PB-MSC are isolated from the
mononuclear fraction by loading PB-MSC on fibrin
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Figure 1 Major sources of human mesenchymal stem cells (MSC) . The sources can be distinguished between adult tissues, preferably bone
marrow (BM), peripheral blood (PB) and adipose tissue (AT) and neonatal birth-associated tissues including placenta (PL), umbilical cord (UC) and
cord blood (CB). Besides cord blood-derived mesenchymal stem cells (CB-MSC) other stem/progenitor cell populations from cord blood also
include hematopoietic stem cells CB-HSC and two endothelial populations such as endothelial progenitor cells (EPC) and endothelial colony-

microbeads followed by separation of the cell loaded
beads [8].

The amounts of mesenchymal stem cells which can be
obtained by these isolations vary enormously. Pittenger
et al. isolated MSC from BM by density gradient centri-
fugation to eliminate unwanted cell types and only 0.001
to 0.01% of the cells isolated from the density interface
were mesenchymal stem cells [6]. From 1g of adipose
tissue 5 x 10° stem cells can be isolated, which is
500 times more cells than from an equivalent amount of
bone marrow [2,9]. PB-MSC exhibit a colony forming
efficiency (CFE) ranging from 1.2 to 13 per million
mononuclear cells [10].

Suggested minimal criteria to define human MSC
were published in 2006 by Dominici et al.. These sug-
gested criteria included positive expression of CD105
(SH2), CD73 (SH3), CD44 and CD90 and negative
expression of CD45, CD34, CD14 or CD11b, CD79 or
CD19 and HLA-DR surface molecules. Furthermore,

mesenchymal stem cells exhibit plastic-adherence under
standard culture conditions and are competent for
in vitro differentiation into osteoblasts, chondroblasts
and adipocytes [11].

Cell surface marker expression

Several publications demonstrate the reproducible
expression of important stem cell markers such as
CD44, CD73 (SH3), CD90, CD105 (SH2) and CD166
and the absence of the hematopoietic markers CD14,
CD34 and CD45 in BM-MSC and in Wharton’s Jelly-
derived MSC [6,12]. Schaffler et al. defined the surface
marker set for AT-MSC (ASC) as positive CD9, CD29,
CD44, CD54, CD73 (SH3), CD90, CD105 (SH2), CD106,
CD146, CD166 and HLA I expression and negative
CD14, CD31, CD34, CD45, CD133, CD144, HLA-DR,
STRO-1 and HLA II expression [13]. De Ugarte et al.
performed flow cytometry analyses of BM-MSC and
AT-MSC (ASC) and found that both cell types express
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CD13, CD29, CD44, CD90, CD105 (SH2), CD73 (SH3),
and STRO-1. But they found differences in the expres-
sion of CD49d, CD54, CD34 and CD106 between the
two cell types [14]. Zuk et al. also compared the marker
profiles of BM-MSC and AT-MSC (ASC) and found
similar expression of CD29, CD44, CD71, CD90, CD105
(SH2) and differences in the expression of CD49d and
CD106. AT-MSC (ASC) express CD49d, in contrast to
BM-MSC; BM-MSC however, express CD106, which
could not be detected in AT-MSC (ASC) [15]. The dis-
crepancies in the expression of STROH-1 and CD34 of
BM-MSC and AT-MSC in the different studies may be
caused by different isolation methods or different media
compositions used which can result in a different
expression of surface molecules.

PB-MSC express CD44, CD54, CD105 (SH2) and
CD166, but not CD14, CD34, CD45, or CD31 [3]. Kassis
et al. isolated PB-MSC which are positive for the expres-
sion of CD90 and CD105 (SH2) and negative for CD45
and CD34 [7]. Tondreau et al. performed flow cyto-
metric analyses of BM-MSC and PB-MSC and revealed
similar expression patterns, namely the presence of
CD44, CD105 (SH2), and CD73 (SH3) and the absence
of CD14, CD34, CD45 and HLA-II [16].

The described findings of cell surface marker expres-
sion analyses are summarized in table 1.

MSC derived from birth-associated tissues

In addition to distinct adult tissues (adipose tissue, bone
marrow, peripheral blood), MSC can be obtained from
several birth-associated tissues including placenta,
amnion, umbilical cord (UC) and cord blood (CB)
(Figure 1). A significant advantage of these neonatal tis-
sues is their ready availability, thus avoiding invasive
procedures and ethical problems. Moreover, birth-asso-
ciated tissues harbor a variety of embryonic or prema-
ture cell populations including MSC, endothelial stem/
progenitor cells (EPC, ECFC) and hematopoietic stem
cells (CD34", CD133"). It is also suggested that MSC
from these neo-natal tissues may have additional capaci-
ties in comparison to MSC derived from adult sources.
Indeed, several studies have reported superior cell biolo-
gical properties such as improved proliferative capacity,
life span and differentiation potential of MSC from
birth-associated tissues over BM-MSC.
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For example, MSC from the human placenta (PL-
MSC) have been reported to have a higher expansion
and engraftment capacity than BM-MSC [17-19]. In this
context, it is important to note that placental tissue can
be fetal or maternal in origin requiring the two types of
tissue to be individually characterized with respect to
MSC function. According to the first international
workshop on placenta-derived stem cells, four regions of
fetal placenta can be discriminated: amniotic epithelial,
amniotic mesenchymal, chorionic mesenchymal, and
chorionic trophoblastic tissue. Consequently, at least
four different cell populations with stem or progenitor
properties can be distinguished: human amniotic epithe-
lial cells (hAEC), human amniotic mesenchymal stromal
cells (hRAMSC), human chorionic mesenchymal stromal
cells (hCMSC), and human chorionic trophoblastic cells
(hCTC) [20]. Placenta-derived MSC from fetal tissue,
including amnion membrane ((AM-MSC) (or HAM;
human amniotic membrane)) [21-24], chorion mem-
brane (CM-MSC) [25,26] and chorionic villi (CV-MSC)
[27-29] have been have been described as having a more
limited life span than MSC populations obtained from
the maternal part of the extraembryonic membranes or
decidua (D-MSC) [25,26,30] (Figure 1). Moreover, clonal
subpopulations of D-MSC have been attributed with the
potential to differentiate into tissues from all three germ
layers [31]. A similarly high cellular plasticity for differ-
entiation into the three germ layers has also been
described for MSC derived from amniotic fluid (AF-
MSC) [32], amniotic epithelial cells [22] and endome-
trial regenerative cells [33].

A certain heterogeneity within the stromal or stem
cell population displaying mesenchymal-like characteris-
tics such as surface marker expression, plastic adher-
ence, self renewal and differentiation capacity has also
been identified in MSC derived from the umbilical cord
(UC-MSC). Separation of UC-MSC by counterflow cen-
trifugal elutriation resulted in differentially sized subpo-
pulations displaying altered proliferation potentials
which were associated with significantly different
amounts of senescent cells [34].

With respect to MSC isolation from umbilical cord,
the different parts of this tissue should also be consid-
ered individually [35,36]. MSC can be isolated from
whole umbilical cord [37], from Wharton’s jelly (W]-

Table 1
BM-MSC AT-MSC PB-MSC

positive CD13, CD44, CD73 (SH3), CD90, CD105  CD9, CD13, CD29, CD44, CD54, CD73 (SH3), CD90, CD105 (SH2), (D44, CD54, CD90, CD105
(SH2), CD166, STRO-1 CD106, CD146, CD166, HLA |, STRO-1 (SH2), CD166

negative  CD14, CD34, CD45 CD11b, CD14, CD19, CD31, CD34, CD45, CD79%, CD133, CD144, CD14, CD34, CD45, CD31
HLA-DR
Reference [6,14] [13,15] [3,7,16]
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MSC) [38-40] or from umbilical cord blood (CB-MSC),
[41,42] which also harbors hematopoietic stem cells,
endothelial precursor cells and endothelial colony-form-
ing cells (Figure 1). Proteome analysis of WJ]-MSC
revealed differences in the protein expression pattern
during in vitro self-renewal [43] and other work has
demonstrated that UC-MSC represent a preferred popu-
lation for musculoskeletal tissue engineering [44]. Like
PL-MSC and other neonatal birth-associated MSC, the
UC-MSC exhibit certain cell biological properties which
are different from MSC originating from adult sources
(AT-MSC (ASC), BM-MSC, PB-MSC).

Comparison of the proliferation capacity between
AT-MSC (ASC) and UC-MSC

The proliferation capacity and senescence of these cells
have been analyzed by many scientists over the last few
years. The proliferation capacity of cells is important
with regard to their application in cell therapy and tis-
sue engineering. Baksh et al compared umbilical cord
perivascular cells (UCPVC) to BM-MSC and determined
that the UCPVCs also have a higher proliferation capa-
city than the BM-MSC [45]. Moreover, various papers
have been published demonstrating that UC-MSC exhi-
bit a higher proliferation capacity than BM-MSC
[46-49]. Lu et al. performed proliferation studies with
BM-MSC and UC-MSC which revealed that BM-MSC
showed significantly slower population doubling times.
The mean doubling time of the UC-MSC in passage 1
(P1) was about 24h and remained almost constant up to
P10. In contrast the mean doubling time of BM-MSC
was 40h and increased considerably after P6 [49]. They
determined the population doublings over 20 days and
observed that after three days both cell types showed
similar population doubling times, but that from day
seven on the population doubling time of the UCPVCs
was significantly increased [46]. Additionally, they found
that the UCPVCs continued to grow by multi-layering,
in contrast to the proliferation of BM-MSC that was
inhibited due to contact inhibition. AT-MSC (ASC)
have also been shown to have higher proliferation capa-
cities than BM-MSC [50]. Peng et al. described popula-
tion doubling times of 45.2 h for AT-MSC (ASC) and
61.2 h for BM-MSC. Moreover, they revealed that the
BM-MSC were morphologically larger as compared to
AT-MSC (ASC) [51]. It should however be noted that
differences in the doubling times of AT-MSC (ASC) ori-
ginating from different regions of the body have been
reported [52,53]. Van Harmelen et al. published that
AT-MSC (ASC) from the subcutaneous adipose tissue
region proliferated faster (doubling time, 4 +/- 1 days)
than those from the omental region (doubling time,
5 +/- 1 days) [54]. In addition to the origin of the
cells, the cultivation conditions and various medium
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supplements may have an effect on doubling times of
the AT-MSC (ASC). Own experiments revealed shorter
doubling times for AT-MSC (ASC) cultured in human
serum instead of fetal calf serum (unpublished data).

Besides the higher proliferative activity of UC-MSC the
cells show no sign of senescence over several passages
[55,56]. Conconi et al. cultured UC-MSC over 16 serial
passages and found no variation in cell morphology or
senescence [57]. Mitchell et al. cultured porcine UC-MSC
for more than 80 doubling times with no decrease of
proliferative capacity [58]. Kern et al. investigated the
senescence ratio of AT-MSC (ASC) in comparison to
BM-MSC. AT-MSC (ASC) could be cultivated up to pas-
sage number 8 without any sign of senescence whereas in
BM-MSC senescence was demonstrated already in cells
from passage number 7 [50].

Differentiation capacity and plasticity of AT-MSC
(ASC) and UC-MSC

The differentiation of UC-MSC and AT-MSC (ASC)
along the adipogenic, chondrogenic and osteogenic
lineages has been investigated by many working groups.
Furthermore, in vitro differentiation into cardiomyocytes
[40,59], endothelial cells [48,60] or neuronal cells [61,62]
has been reported.

Adipogenic differentiation

Adipogenic differentiation is usually defined by the
appearance of cells containing intracellular lipid dro-
plets. Both AT-MSC (ASC) and UC-MSC have been
successfully differentiated into adipocytes [7,63]. For
preadipocyte differentiation of AT-MSC (ASC) a high
cellular density and a subsequent growth arrest at the
GO0/G1 boundary are important [64,65]. Furthermore
FGF2, thiazolidinediones like troglitazone, pioglitazone,
rosiglitazone and 17-B estradiol have been shown to
induce adipogenic differentiation of AT-MSC (ASC)
[66-68]. Hu et al successfully differentiated UC-MSC
into adiopocytes by medium supplementation using dex-
amethasone and insulin [69]. Oil red staining is com-
monly applied to verify adipogenic differentiation.

Chondrogenic differentiation

The chondrogenic differentiation capacity of MSC is evi-
denced by the formation of shiny cell-spheres expressing
type II collagen in pellet cultures. Chondrogenic differ-
entiation of AT-MSC (ASC) and UC-MSC has been
described by many groups using medium supplements
such as transforming growth factor f1, ascorbate-2-
phosphate, and dexamethasone [69,70]. Feng et al. pro-
moted chondrogenic differentiation of AT-MSC (ASC)
by the addition of growth and differentiation factor-5
(GDF5) [71] and stimulation by FGF-2 or BMP-6 has
also been reported [72,73]. Successful chondrogenic
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differentiation is indicated by the detection of the extra-
cellular matrix component glycosaminoglycan (GAG),
by immunohistological staining e.g. of collagen II and
aggrecan or by verification of the expression of typical
genes of the chondrogenic lineage via PCR.

Osteogenic differentiation

Enhanced alkaline phosphatase expression and minerali-
zation assayed by von Kossa or alizarin red staining
indicates the occurrence of osteogenic differentiation.
Different groups reported differentiation protocols for
AT-MSC (ASC) by using dexamethasone, 3-glyceropho-
sphate and ascorbic acid as medium supplements
[50,74,75]. The identical medium composition was used
for the successful osteogenic differentiation of UC-MSC
[69]. Medium supplementation by 1,25-dihydroxyvita-
min D3 [76,77] or BMPs [69,78,79] has also been
reported to enhance osteogenic differentiation.

Effects of oxidative stress and hypoxia in MSC
Differences in cell functions between MSC populations
derived from adult or neonatal tissues are also influ-
enced by the microenvironment. Within the appropriate
tissues in vivo, stem cells like MSC are usually present
in stem cell niches under hypoxic conditions. Therefore,
in vitro primary culture in a normoxic atmosphere (21%
O,) can be considered as an exposure to enhanced oxi-
dative stress and promotes the generation of metabolic
radicals or reactive oxygen species (ROS). The intracel-
lular accumulation of ROS can cause protein and DNA
damage if these compounds are insufficiently metabo-
lized by an appropriate anti-oxidative defense system.
Consequently, ROS accumulation at high oxygen levels
induces elevated apoptosis and premature aging by
STASIS (stress or aberrant signaling-inducing senes-
cence) [80]. Indeed, MSC cultured under normoxic con-
ditions exhibit premature senescence and a reduction in
population doublings in comparison to cells cultured
under hypoxia [81,82] and may also show restricted cell
division due to telomere shortening and replicative
senescence [80,83]. The migratory capability of MSC
cultured under hypoxic conditions is also enhanced in
contrast to that seen in normoxia [84]. Hypoxic condi-
tions therefore influence proliferation and cell fate com-
mitment, meaning that gradients of oxygen tensions
influence the prolonged maintenance of a stem cell phe-
notype and pluripotency [85]. Moreover, serum starva-
tion and deprivation of growth factors can promote
premature aging in MSC (Figure 2) and studies of MSC
in a hypoxic environment show that serum starvation
can be associated with massive cell death [86].

Previous work has demonstrated that the culture of
MSC under hypoxic conditions is accompanied by
increased Oct4 expression and telomerase activity [81]
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Figure 2 Senescence-associated B-galactosidase (SA-B-gal)-
positive cells in the UC-derived mesenchymal stem cell culture
under low (2%) serum concentration . Nuclei of senescent cells
are surrounded by cyan dye. Moreover, serum deprivation is
accompanied by a decrease of the proliferative potential in the cells
and a significant increase in cell size.

which are involved in the maintenance of stemness.
Other studies have identified changes in the transcrip-
tome of hypoxic stem cells that seem to indicated that
hypoxic conditions rather reflect a physiologically nor-
moxic environment for the cells [87].

Hypoxic conditions induce the transcription factor
hypoxia-inducing factor-a which can promote certain
differentiation phenotypes in MSC. Thus, chondrogenic
differentiation of AT-MSC (ASC) has been observed at
enhanced levels under hypoxic conditions where osteo-
genesis is inhibited. In contrast, enhanced osteogenic
differentiation of AT-MSC (ASC) can be induced under
normoxia [88,89]. Moreover, other MSC populations
including UC-MSC exhibit differences in energy turn-
over and the expression of energy metabolism-associated
genes at different hypoxic conditions [90]. Functional
changes of MSC under hypoxia also include increased
secretory activity, i.e. of vascular endothelial growth fac-
tor and interleukin-6 as well as mobilization and hom-
ing by the induction of stromal cell-derived factor-1
expression and the corresponding receptor CXCR4 [91].
In this context, MSC subpopulations displaying a high
aldehyde-dehydrogenase activity have been reported
with increased responsiveness to hypoxia, including an
upregulation of Flt-1, CXCR4 and angiopoietin-2 [92].

Together, these findings further substantiate that oxy-
gen tensions contribute to the regulation of MSC func-
tion and fate. Whereas MSC can display and maintain a
hypoxic microenvironment within the appropriate tis-
sues in vivo, these conditions may also contribute to the
control of other important cellular functions of MSC
including their immune-modulatory properties.
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MSC immune function

Two outstanding features of MSC are relevant to immu-
nity: 1) immunosuppression and 2) the so called immu-
noprivilege. What do these terms mean? MSC-mediated
immunosuppression describes the fact that MSC are
able to suppress several functions exerted by diverse
immunocytes such as T-, B-, and NK cells. The affected
functions comprise proliferation, production of soluble
factors (e.g. cytokines), and cellular cytotoxicity (Fig-
ure 3). Immunoprivilege means that MSC themselves
are somehow protected from immunological defence
mechanisms. Undoubtedly, there is much truth in the
reports of MSC-mediated immune effects. Nevertheless,
there also seems to be some conflicting data. The incon-
sistencies between some reports may, however, be due
to the population diversity of the primary cultures and
to the tissue- and species-origin of the MSC tested. As
mentioned above, MSC are currently characterized
using a minimum of surface markers, which might not
be sufficient for their precise definition. A further cause
for conflicting data could be the source (adipose tissue,
blood, bone marrow, umbilical cord, umbilical cord
blood) for isolation of the MSC. In order to review the
immunological findings in MSC research we screened
the literature and compared the data on immunological
interactions between MSC and immune cells.

[Galectin-1] [IDO | PGE2 | HGF [ sHLA-GS |

Figure 3 MSC mediate immunosuppression of T and NK cells
via different mechanisms . Soluble factors secreted by MSC such
as iINOS, IDO, PGE2, sHLA-G5 can suppress T- and NK cell functions,
whereas galectin-1 inhibits T cells but not NK cells. In addition, MSC
can indirectly mediate immunosuppression by inhibiting dendritic
cells and inducing the expansion of regulatory T cells (Tregs).
Furthermore, MSC can directly interact with T and NK cells via cell
to cell contact. However, receptors and ligands involved in the cell
contact-dependent interaction mechanisms are still largely
unknown.
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Species-related variations of MSC-mediated immune
modulation

Immunosuppressive effects of MSC have been reported
for all species tested so far. In mice, Interferon (IFN)-y
activation of MSC was shown to be effective in treat-
ment and prevention of graft versus host disease
(GvHD) [93]. The infusion of MSC in combination with
rapamycin reduced alloimmune responses and promoted
tolerance in a cardiac allograft mouse model [94]. Pre-
transplant infusion of MSC in mice prolonged graft sur-
vival in semiallogeneic heart transplantation [95]. In
rats, long term acceptance of solid organ allografts has
been observed in animals treated with MSC in combina-
tion with low-dose mycophenolate [96]. Baboon MSC
suppressed lymphocyte proliferation in vitro and pro-
longed skin graft survival in vivo [97]. Le Blanc et al
demonstrated that human MSC can inhibit proliferation
of lymphocytes, APCs and NK cells in mixed lympho-
cyte reactions (MLR) [98]. In a recent phase II study,
GVvHD in humans could be ameliorated upon hemato-
poietic stem cell transplantation (HSCT) [99] and it was
found that MSC expand in vivo irrespective of the
donor as MSC from HLA-identical sibling donors, hap-
loidentical donors, and third-party HLA-mismatched
donors were equally effective. Although most of the stu-
dies revealed MSC to be immunosuppressive, Nauta et
al found in mice that donor-derived MSC are immuno-
genic in an allogeneic host and stimulate donor graft
rejection in a nonmyeloablative setting [100]. Indolea-
mine 2,3-dioxygenase (IDO) and inducible nitric oxide
synthase (iNOS) are substances involved in MSC
mediated immunosuppression. However, when MSC
were examined after stimulation with their respective
inflammatory cytokines in human and mouse, human
MSC were found to express extremely high levels of
IDO, and very low levels of iNOS, whereas mouse MSC
expressed abundant iNOS and very little IDO, further
underscoring the observed species variations in MSC-
mediated immunosuppression [101].

Differences in the immunosuppressive capacity of MSC
from different tissues

MSC characteristics do not only depend on species spe-
cific factors but also on the tissue source from which
they were harvested. MSC can be isolated from many
tissues including bone marrow (BM), adipose tissue
(AT), placenta (PL), umbilical cord (UC, Wharton’s
jelly) or umbilical cord blood (UCB), respectively. Most
experiments in mice, rats and monkeys were performed
using BM-MSC. In the human system, BM-MSC are
used most frequently, but AT, PL and especially UCB
also serve as sources for MSC isolation. In case of UCB-
MSC, the easy and risk-free availability of UCB is nega-
tively counterbalanced by the lower yields of MSC from
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this source [102]. In contrast, the umbilical cord tissue
or Wharton’s jelly is an excellent source for isolating
MSC [103-105]. Source-related features of MSC might
directly contribute to the diversity of opinions regarding
the mechanisms (soluble factors versus cell-to-cell con-
tact) of MSC-mediated immunomodulation. It is still a
matter of debate if the regulatory effects are cell-to-cell
contact-dependent, or if, as postulated by most groups,
soluble factors are sufficient [106]. The contact depen-
dency of MSC-mediated effects has been much less
investigated than the soluble factors effective in immu-
nosuppression. In most of these studies transwell sys-
tems were used, and showed indirectly that cell-to-cell
contact is required as MSC-mediated effects were abol-
ished or diminished when effector and target cells were
separated by a membrane. The molecules involved in
the cross talk however remained largely obscure in most
reports. In our experiments using UC-MSC we found
that NK cell suppression such as decreased proliferative
and cytotoxic capacity strictly requires cell-to-cell con-
tact (unpublished data).

Soluble factors mediating MSC-dependent immune
regulation

What are the mechanisms enabling MSC to regulate
functions of immunocytes? As can be envisaged from
the diversity of the results reported from different
groups there is, as yet, no clear answer. However, several
factors that contribute to the MSC-mediated effects
have been identified. MSC constitutively or upon stimu-
lation secrete large amounts of soluble factors such as
interleukin(IL)-1, IL-6, IL-8, IL-7, IL-8, IL-10, IL-11, IL-
12, IL-14, IL-15, leukemia inhibitory factor (LIF), granu-
locyte colony-stimulating factor (G-CSF), granulocyte
macrophage colony-stimulating factor (GM-CSE), stem
cell factor (SCF), macrophage colony-stimulating factor
(M-CSF) fms-like tyrosine kinase-3 ligand (flk-3L),
CCL2, tissue inhibitor of metalloproteinase (TIMP) 2,
transforming growth factor (TGF) 3, CXCL1, CXCL2,
CXCL6, vascular endothelial growth factor (VEGEF), and
Fibroblast Growth Factor-2 (FGF2) [107-112]. Several
groups have reported that IDO and prostaglandin E2
(PGE2) are key molecules involved in immunosuppres-
sion mediated by MSC [113,114]. IDO is inducible by
IFNy and catalyzes the conversion from tryptophan to
kynurenine. This depletion of tryptophan from the
environment can significantly suppress T cell prolifera-
tion [113]. The synergistic effect of PGE2 is supposed to
work through an increased induction of IDO production
in MSC [115]. Galectin-1 is a protein that is released
into supernatants by cultured MSC. This lectin can
strongly inhibit T cell proliferation but leaves NK cells
unaffected [116]. The soluble isoform of HLA-G5
is secreted by MSC, especially after contact with
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allospecific T cells. The soluble HLA-G5 has been
shown to suppress T cell proliferation, NK cell-mediated
cytotoxicity and IFNy production and to induce expan-
sion of regulatory T cells (Tregs) [117]. Maccario et al
demonstrated that MSC mediate inhibition of alloanti-
gen-induced dendritic cell (DC) 1 differentiation and
preferentially activate Tregs [118]. A specific mechanism
inhibiting cytolytic cells by reduced production and
secretion of granzyme B in the presence of MSC was
observed by Patel et al [110].

Immunosuppressive properties of MSC most probably
also depend on environmental factors. Human and mur-
ine MSC have been shown to express toll-like receptors
(TLRs) and the ligation of TLR3 and TLR4 by their
respective natural ligands, double-stranded RNA and
LPS, prevented the MSC from inhibiting T cell
responses by the down-regulation of Jagged-1 expression
on MSC [119-121].

Cell contact-dependent interactions of MSC and
immunocytes
In addition to the soluble factors, several cell surface
molecules have also been described as contributing to
lymphocyte suppression. A mechanism specifically sup-
pressing NK cell functions has been shown by Spaggiari
et al [115] revealing that downregulation of activating
NK cell receptors NKp30 (CD337), NKp44 (CD336),
and NKG2D (CD314) inhibits NK cell functions. In a
different study they also demonstrated that activated NK
cells can kill MSC. However, activated NK cells also
produce IFNy, which in turn induces up-regulation of
HLA class I on MSC [122]. Binding of HLA molecules
representing the ligands for inhibitory receptors on NK
cells result in suppression of NK cell function.
Immunoglobulin-like transcript (ILT) 2 (CD85j) is an
inhibitory receptor expressed on NK cells. ILT2 is speci-
fic for several HLA-I molecules but binds to HLA-G
with a 3- to 4-fold higher affinity than to classical HLA-
I molecules [123]. HLA-G is expressed by MSC and
binding to ILT2 on NK cells has been shown to inhibit
the polarization of NK-cell lytic granules and proper for-
mation of the immunological synapse, intracellular cal-
cium mobilization and IFN-y polarized production of
NK cells [124].

The immunoprivilege of MSC

MSC have been reported to be immunoprivileged, mean-
ing that they do not challenge a response of allogeneic
immune cells [97]. The mechanisms of immunoprivilege
are largely unknown but are most probably due to low
expression of MHC I and MHC 1II as well as the immu-
nosuppressive functions reviewed above, and suggest
active self protection of MSC. Recently, however, it has
been shown that the state of immunoprivilege is not
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stable. In vitro and in vivo data showed that cellular dif-
ferentiation of MSC causes transition from an immuno-
privileged to an immunogenic phenotype inducing
cellular cytotoxicity or immune rejection [125]. IFN-y has
been shown to induce expression of MHC-I and to a
lower extent also MHC-II, increasing the antigen present-
ing capacity and hence immunogenicity of MSC [126].
High-dose IFN-y-treated MSC (500 U/mL) could activate
T-cells and initiate proliferation of allogeneic T cells.
Thus, after activation MSC can lose their immunoprivi-
leged status. On the other hand, Polchert et al demon-
strated in a mouse model that the treatment of MSC
with IFN-y (500 U/mL) improved the immunosuppressive
effect in a GvHD model despite upregulation of MHC
molecules [89]. Furthermore, neonatal and aged MSC
exhibit considerable differences in their functional abil-
ities. Lower immunogenicity and stronger immunosup-
pressive capacity makes neonatal MSC appear to be more
viable for therapeutic approaches [127].

For the clinical use of MSC, B cells seem to be a par-
ticular target. Whereas T and NK cell functions are con-
sistently found to be suppressed by MSC in many
studies, there are some contradictory data on MSC-
mediated effects on B cells. Thus, Deng et al found in
lupus model mouse strain BXSB a reduction of B cell
proliferation induced after LPS stimulation and a
decrease of Ig production when co-cultured with BALB/
¢ BM-MSC [128]. Moreover, in the human system Cor-
cione et al described that B-cell proliferation was inhib-
ited by BM-MSC. In addition, B cell differentiation was
impaired as IgM, IgG, and IgA production was signifi-
cantly reduced. These effects were mediated by MSC
production of soluble factors, as assessed by transwell
experiments [129]. In contrast, Rasmusson et al. demon-
strated an increased proliferation and IgG production of
B cells after co-culturing with BM-MSC. B cell modula-
tion was mediated by soluble factors (e.g. IL-6) secreted
by MSC when PBMC were used as responder cells
[130]. However, purified B cell required cell-cell contact
to get activated by MSC. These findings are corrobo-
rated by another study. Traggiai et al also observed
MSC-mediated activation of defined B cell subsets [131].
They measured increased polyclonal proliferation and
differentiation of naive and transitional B cells into Ig-
producing cells. The promoting effect mediated by MSC
was in this study cell-cell contact dependent as con-
firmed in a transwell system. Comparable results were
obtained when peripheral B cells from SLE patients
were analysed. Proliferation and differentiation of
patients’ B cells as well as IgM and IgG production was
supported by BM-MSC.

The discrepancies of the studies on MSC-mediated B
cell immunomodulation are difficult to explain and may
be due to differences in experimental conditions and
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kinetics. In any case, a potential therapeutic use of MSC
for treating autoimmune diseases such as lupus erythe-
matosus in order to suppress autoantibody producing B
cells has to be strongly reconsidered until definite and
reliably reproducible data on MSC B cell interactions
are available.

Taken together, MSC-mediated immunosuppression is
a multifaceted phenomenon based on several mechan-
isms. MSC differentially regulate immune responses by
inhibiting the differentiation of dendritic cells, increasing
the number of Tregs and suppressing numbers and
functions of effector T cells and NK cells (Figure 3).
This is achieved via iNOS, heme oxygenase-1, PGE2,
IDO and various growth factors, such as IL-10 and
TGEB. Also, up-regulation of HLA class I on MSC and
down-regulation of activating receptors on NK cells
could lead to decreased NK cell cytotoxity and prolifera-
tion. Some of the mechanisms require direct cell-to-cell
contact, whereas others are mediated via soluble factors.
There is a species dependent variation of the mechan-
isms contributing to immunosuppression and finally,
MSC from different sources from the same individual
can differ in the molecular basis of their induced immu-
nosuppression. Upon stimulation MSC might lose the
immunoprivileged status, antagonizing their immuno-
suppressive capabilities. Future directions of immunity-
related MSC research should focus on clarifying the
exact mechanisms underlying MSC-mediated immuno-
suppression and sustained immunoprivileging in order
to make the effective and safe therapeutic use of MSC
more feasible.

Effects of micro RNA in MSC

MSC within a primary culture can also exhibit different
states of activation which can be related to the expres-
sion levels of certain micro RNAs (miR) including
miR335 [132]. miR are small non-coding RNAs of about
20 to 22 nucleotides, which, upon sequence-specific
binding to mRNAs, repress the translation of the corre-
sponding proteins or induce a subsequent degradation
of the miR/mRNA complexes.

A variety of different miR play an important role in
regulating differentiation pathways and cell fate in MSC
which recently has been reviewed by Guo et al. [133].
For example, osteogenic differentiation of MSC can be
blocked by miR-125b, miR133, miR135 and miR206
which attenuate the expression of ERBB2, RUNX2,
Smad5 and connexin-43, respectively. Likewise, expres-
sion of further specific miR are involved in the regula-
tion of adipogenic and chondrogenic differentiation and
pathways beyond the mesodermal lineage [133]. More-
over, miR are also involved in the regulation of replica-
tive senescence and wound healing of MSC. Thus, miR
which target distinct DNA-methyl transferases can
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promote senescence of MSC [133]. Although the mole-
cular mechanisms of MSC senescence after a limited
number of cell divisions are still poorly understood, cell
fusion processes which are known for MSC or asym-
metric cell divisions may also contribute to this phe-
nomenon which enables the segregation of daughter
cells committed to either senescence or retaining repro-
ductive capacity in correspondence to the parental cells
[134].

Furthermore, MSC can secrete micro vesicles which
contain certain pre-microRNAs [135]. The released exo-
somes facilitate cell-to-cell communications and thus,
can alter cell activities in target cells.

A proposed MSC model suggested that high miR-335
expression contributes to a potential non-activated
(silenced) MSC auto-maintenance state, in contrast to
low levels of miR-335 which produce an activated state
leading to proliferation, migration and differentiation in
MSC [132]. Of interest, a functional role in the regula-
tion of epithelial-to-mesenchymal transition and a neo-
plastic development in breast tissue has also been
attributed to miR-335 [136]. Moreover, MSC display
some similarities to normal and tumorigenic human
breast epithelial cells with respect to the gene expression
pattern [137] and some surface receptor levels [138,139].
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Whereas the location of MSC in the adipose tissue of
the breast adjacent to mammary epithelial cells enables
interactions by stimulatory cytokines and/or miR-con-
taining micro vesicles, these stimulatory effects suggest a
close functional relationship between these cell types
[140]. Indeed, previous work has demonstrated that
although MSC themselves do not develop teratoma even
when derived from a teratoma-forming human embryo-
nic stem cell line [141], a close vicinity to neoplastic
breast epithelial cells within the tissue microenviron-
ment can stimulate growth and metastasis of breast can-
cer cells by cytokines including CCL5 (Rantes) [142]
and may most probably also influence the exchange of
miR-containing micro vesicles. Thus, synergistic effects
of MSC in cooperation with other cell types, e.g. tumor
cells must be considered and require further elucidation.

Concluding remarks

MSC represent an important stem cell population with
multipotent capabilities which are extremely useful for
clinical applications. Although certain discrepancies
within the MSC literature result in differing descriptions
of the biological properties of MSC, these effects may be
explainable in part by the existence of distinct subpopu-
lations within a tissue-derived primary culture that
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exhibit some variation in function [33,34,92]. Moreover,
different isolation methods of MSC, particularly the use
of proteases to digest the extracellular matrix for an
enrichment of the stem cells, may alter MSC functions
by non-specific degradation e.g. of certain surface recep-
tors, whereas the explant culture of MSC from tissue
pieces avoids such potential artifacts.

In summary, MSC can self renew to a certain extend
and differentiate (Figure 4). Moreover, they can display
a variety of important cell functions in the organism
including migration and transport functions to sites of
local injuries or tissue damage to support appropriate
cell and tissue renewal to replace the damaged areas
(Figure 4). Concomitantly, MSC are non-immunogenic
due to their immune-modulatory capabilities and no ter-
atoma formation of MSC after allogenic human trans-
plantations has been observed to date (Figure 4) which
indicates an enormous potential for the clinical use of
these cells, particularly in regenerative medicine.

Whereas a variety of different tissue sources for MSC
have been described, MSC from birth-associated tissues,
preferably parts of the placenta (i.e. D-MSC) and the
umbilical cord/Wharton’s jelly (UC- and WJ-MSC) may
offer certain advantages. These include their non-inva-
sive and ethically non-problematic availability. More
importantly, MSC from these neonatal tissues possess
increased proliferative capacity in vitro, especially under
hypoxic conditions, in comparison to some MSC popu-
lations obtained from adult tissues. Quiescent stem cells
within their niches of various tissues can be activated if
required, however, even a reprogramming of cells via a
retrodifferentiation program [143] or further processes
to rejuvenate cells to a more juvenile and undifferen-
tiated phenotype [134] are often not sufficient to cope
with tissue requirements after injury or disease-asso-
ciated tissue damage and degeneration. Therefore, in
contrast to the limitations of bone marrow or adipose
tissue, MSC from birth-associated tissues can be
obtained in large quantities, and the required numbers
of these stem cells can be transplanted in therapeutic
approaches for tissue replacement.

Taken together, multifunctional MSC from parts of the
placenta and the umbilical cord may represent a very
promising stem cell population in regenerative medicine.
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