Supplementary Information

Simple knockout by electroporation of engineered endonucleases into intact rat embryos

Takehito Kaneko, Tetsushi Sakuma, Takashi Yamamoto, Tomoji Mashimo

Supplementary Table S1. Germ-line transmission in offspring that were derived from embryos with $\it Il2rg$ -targeted ZFN mRNA.

		Offspring with an			
		Offspring		edited ta	arget gene
Fathers	Mothers	Males	Females	Males	Females
G0 Δ13/Y	+/+	8	5	0	5
$G0 \Delta 7/Y$	+/+	7	5	0	5
G0 Δ5/Y	+/+	6	4	0	2
+/Y	F1 Δ13/+	5	6	3	3
+/Y	F1 Δ13/+	9	1	5	1

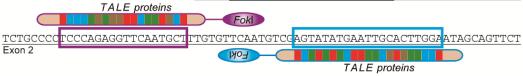
Supplementary Figure Legends

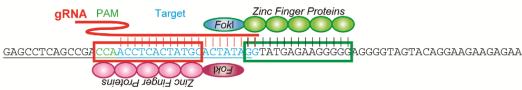
Supplementary Figure S1. ZFN and TALEN pairs and gRNA designed to target the *Il2rg* locus and primer sequences used for the PCR analysis of the *Il2rg* gene. Each exon is underlined. The start codon is indicated by a red box. The two primer sets (small and large) for the PCR analysis of *Il2rg* are shown by boxes.

Supplementary Figure S2. Validation of ZFN and TALEN activity in rat fibroblasts (Rat-1). (a) ZFN or TALEN expression vectors, and the GFP expression vector as a negative control, were electroporated into Rat-1 fibroblast cells using the Super Electroporator NEPA 21. The electroporation conditions are as follows: (A) pulse voltage, 275 V; pulse interval, 50 ms; pulse width, 2.5 ms; and pulse number, 2; or (B) pulse voltage, 275 V; pulse interval, 50 ms; pulse width, 1.0 ms; and pulse number, 3. The Surveyor (Cel-I) nuclease assay was performed to detect mutations in the Il2rg locus. (b) The Surveyor assay indicated the activity of ZFN and TALEN in Rat-1 cells. Data are expressed as means \pm SEM (n = 4).

Supplementary Figure S3. Sequencing assay for ZFN- and TALEN-induced mutations in the *Il2rg*-targeted locus in rat fibroblasts (Rat-1). Multiple deletions or insertions, which are depicted using yellow dashes or letters, respectively, are aligned along the wildtype sequence

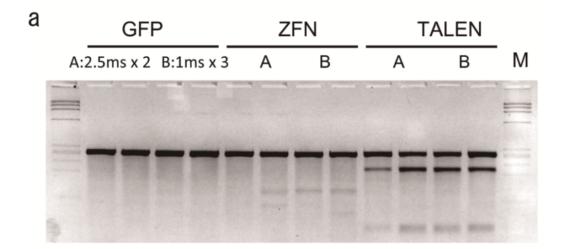
that is shown on the top line.

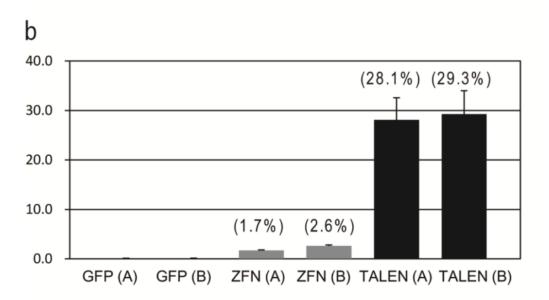

Supplementary Figure S4. Sequencing assay for ZFN-induced mutations in the *Ill2rg*-targeted locus in the edited offspring. Multiple deletions or insertions, which are depicted using yellow dashes or letters, respectively, are aligned along the wildtype sequence that is shown on the top line. MI, microinjection; EP, electroporation.


Supplementary Figure S5. Sequencing assay for TALEN-induced mutations in the *Il2rg*-targeted locus in the edited offspring. Multiple deletions, which are depicted using yellow dashes, are aligned along the wildtype sequence that is shown on the top line. MI, microinjection; EP, electroporation.

Supplementary Figure S6. Sequencing assay for CRISPR/Cas-induced mutations in the *Ill2rg*-targeted locus in the edited offspring. Multiple mutations, which are depicted using yellow, are aligned along the wildtype sequence that is shown on the top line. MI, microinjection; EP, electroporation.

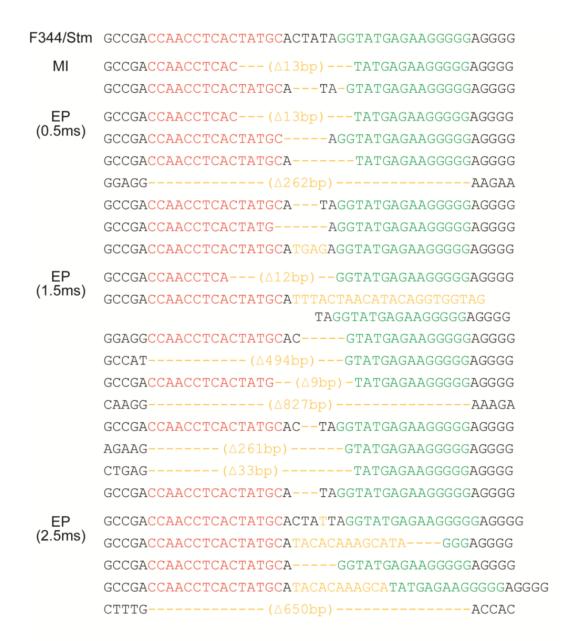
AAATCAGGCAGAGGCAAAGAGCAGCTGGCTGGTTCCTACCTTTGTTTACCTGTGTTTTTGGAGAATCTCCACAT ATGATGTCTTATTTGTCTTATGTTCTCAGAACATAAGCACTGTACCCAGCACATATTAAAGACTCAATAAATG ${\tt TTGGCTGGATAAACAATTTCAGTAAATGGCTTCTCCAATCAACCCTGTGCTCTGAGGGAAGGTAAATCTAGCC}$ A CAGAATGAAGAATGGACGGGAGAGCCAGGCCCTTGAGAAAGGGGACCAGTTTGTGGGTTACGGGAATAATCATAAGGAGCCTGAAGTTAGTACTGTTGTCCCTCCATCTTAGACGCCAGCTCTCACCAGGGACAACAGGGACCA AACTCAGGCAGCAGTTGGGGGTGGTTATTCTAGTTTGATTAGGTCAGAGGAAAGACAGCTGTGTGTCTACCCG ${\tt CATGAATCAAGTCAGTATTTTCCATCTATCCTTCCTAGACTGTACAACTTTGACAGAGGGTTTAAGATAGCCTA}$ $\tt GAGGGAAAAGGTGGTTGGGAATGAAGGTGTGTGGTGGGGGTGTGTTCAGCAGAGTCTTTCTGGACCTAGGT$ $\tt GGCCTGAAGAGCCTTAATTCTGTGACACTGTTGTTGATCAAGTATTAATCTTGACAGAACATCACCTTAGAGC$ GGTTCAGGGTTCTGACACAGACTACACCCAGAGAAAGAAGAGCAAGCGCCATGTTGAAACCATTATTGCCATC Exon 1


ACTGTTTCATTTTCTTCCCAAACTTAGATCTCTTGCTGACTTCTATGGACCTTAAACATCTCAGTGTTCCTAC



AGATTCTCCCTGCCTAGTGTGGATGAACAGAAGCTGTACACATTTCGGGTTCGGAGCCGCTTTAACCCGATCT
GTGGAAGTACTCAACAGTGGAGTAAATGGAGCCAACCAATCCACTGGGGGAGCCATACTGCAGAGGGTAAAGT
GACCCAAATGCATCATCACCTAAATCATTCACCCATACCCTTAGCACTATGGAACACACTGTCACTACCATTTGCT
TTATCTCTCTAGCCCTAAGTCTCAGCCCCCTTACTGTTTAGCCTCAATCACTATGAAGTAGGGTTTTTTCTAT
GTAGGGATGAGAAGGGGTG

Primer II2rg_Large_R


Supplementary Figure S2

ZFN-induced mutations: 10/96 colony (10.4%)

Wild-type	GCCGACCAACCTCACTATGCACTATAGGTATGAGAAGGGGGAGGGG
#6	GCCGACCAACCTCACTATGCACTATTATAGGTATGAGAAGGGGGAGGGG
#10	$\tt GCCGACCAACCTCACTATGCACTATCTATAGGTATGAGAAGGGGGAGGGG$
#60	CAGTTAGCTG
#24	GCCGACCAACCTCACTATGCACTATGGGTATGAGAAGGGGGAGGGG

TALEN-induced mutations: 17/86 colony (19.8%)

Wild-type	GCCCCTCCCAGAGGTTCAATGCTTTGTGTTCAATGTCGAGTATATGAATTGCACTTGGAATAGC
#3	GCCCCTCCCAGAGGTTCAATGCTTTGTGTTCAATGTCGAGTAG(\Delta163bp)ACCAG
#5	GCCCCTCCCAGAGGTTCAATGCTTTGTGTTCATCGAGTATATGAATTGCACTTGGAATAGC
#9	GCCCCTCCCAGAGGTTCAATGCTTTGTGTTGTATATGAATTGCACTTGGAATAGC
#12	GCCCCTCCCAGAGGTTCAATGCTTTGTGTCGAGTATATGAATTGCACTTGGAATAGC
#17	GCCCCTCCCAGAGGTTCAATGCTTTTGTCGAGTATATGAATTGCACTTGGAATAGC
#52	GCCCCTCCCAGAGGTTCAATGCTTTGTGTTCAATGTTGAGTATATGAATTGCACTTTGGAATAGC

F344/Stm	GCCCCTCCCAGAGGTTCAATGCTTTGTGTTCAATGTCGAGTATATGAATTGCACTTGGAATAGC
MI	GCCCCTCCCAGAGGTTCAATGCTTTGTGTCGAGTATATGAATTGCACTTGGAATAGC
	AGGAAGAATTGCACTTGGAATAGC
	$\tt GCCCCTCCCAGAGGTTCAATGCTTTGTCGAGTATATGAATTGCACTTGGAATAGC$
EP (1.5ms)	GCCCCTCCCAGAGGTTCAATGCTTTGTGTTC-ATGTCGAGTATATGAATTGCACTTGGAATAGC
EP (2.5ms)	GCCCCTCCCAGAGGTTCAATGCTTTGTGTTC-ATGTCGAGTATATGAATTGCACTTGGAATAGC

F344/Stm	AGCCTCAGCCGACCAACCTCACTATGCACTATAGGTATGAGAA
MI	${\tt AGCCTCAGCCGACCAACCTTTTTAAAAAGCTCTATGCACTATAGGTATGAGAA}$
	AGCCTCAGCCGACCAACCTTCACTATGCACTATAGGTATGAGAA
	AGCCTCAGCCGACCAACCATCACTATGCACTATAGGTATGAGAA
	AGCCTCAGCCGACCAACCGTATGCACTATAGGTATGAGAA
	AGCCTCAGCCGACCAACCTATGCACTATAGGTATGAGAA
	AGCCTCAGCCGACCAACTATGCACTATAGGTATGAGAA
	AGCCTCAGCCGACCTATGCACTATAGGTATGAGAA
	AGCCTCAGCCGACCAATGCACTATAGGTATGAGAA
	AGCCTCAGCCGACCACTATAGGTATGAGAA
	AGCCTCAGTATGCACTATAGGTATGAGAA
	AGCCTCAGCCGACCAACCTAGGT-TGAGAA
	GAATA(\Delta 29bp)ACTATGCACTATAGGTATGAGAA
	CTGAGAGAGA
	AGCCTCAGCCGACCAA (\Delta 87bp)AAAAG
EP	AGCCTCAGCCGACCAACCTTTCACTATGCACTATAGGTATGAGAA
(2.5ms)	AGCCTCAGCCGACCAACCTTATGCACTATAGGTATGAGAA
	AGCCTCAGCCGACCATACTCTATAGTTATGAGAA