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1 Figures

Figure 1: Distribution of experimental affinities for protein-ligand complexes in different PDBbind releases. The
distribution of affinities for the blind tests (core sets) are also shown.).
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Figure 2: CSM-Lig job submission interface. Users have the option to perform CSM-Lig predictions on a single
uploaded structure or in multiple structures uploaded in a compressed file.

Figure 3: Example of visualization of protein-small molecule interactions generated by Arpeggio (Jubb H and
Blundell TL, Unpublished Data) and made available on CSM-Lig. Hydrogen bonds are shown as red dashes and
carbon-pi interactions as grey dashes. PDB ID: 1W4P was used.
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Figure 4: Regression plot between experimental and predicted affinities by CSM-lig on the PDBbind 2007 and
2013 releases. The graph on the top depicts the performance of CSM-lig over 10-fold cross validation, achieving a
Pearsons correlation of 0.82 on release 2007 and 0.86 on release 2013. The performance in blind tests for these the
2007 and 2013 releases was 0.75 and 0.80, respectively.
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Figure 5: Regression plot between absolute errors of predictions and small-moluce properties on the PDBbind
2007 blind test. No significant correlation has been identified.
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2 Tables

Table 1: List of molecular properties of the small molecule included in the CSM-Lig signatures. Properties were
calculated with the Python RDKit library.
Property Numerical type

Molecular weight Real
Heavy atoms Integer
LogP [1] Real
#Acceptors Integer
#Donors Integer
#Heteroatoms Integer
#Rotatable bonds Integer
#Rings Integer
Labute’s Approximate Surface Area Real
Topological Polar Surface Area Real

Table 2: List of methods used in comparative experiments.
Method/Scoring Function Reference

RF-Score::Elem-v2 [2]
RF-Score::Elem-v1 [3]
X-Score::HMScore [4]
DrugScoreCSD [5]
SYBYK::ChemScore [6]
DS::PLP1 [7]
GOLD::ASP [8]
SYBYL::G-Score [9]
DS::LUDI3 [10]
DS::LigScore2 [11]
GlideScore-XP [12]
DS::PMF [13]
GOLD::ChemScore [14]
SYBYL::D-Score [9]
IMP::RankScore [15]
DS::Jain [16]
GOLD::GoldScore [17]
SYBYL::PMF-Score [9]
SYBYL::F-Score [9]
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3 CSM-lig Approach

CSM-lig is an efficient machine learning approach for assessing and comparing protein-small molecule affinities
from solved structures. The method calculates structural features using the CSM algorithm [18] (called signatures)
that together with experimental data are used as evidence to train and test predictive models.

A series of graph-based signatures can be achieved by modelling proteins/small molecule recognition as atomic
graphs. The CSM algorithm will then extract distance patterns between its components as described in Algorithm
1.

Algorithm 1 Cutoff Scanning Matrix (CSM) calculation
1: function CSMlig(LigandSet, AtomClass,DMIN , DMAX , DSTEP )
2: for all Ligand i ∈ (LigandSet) do
3: LigandPocket = extractLigandPocket(Ligand)
4: j = 0
5: distMatrixInter ← calculateAtomicPairwiseDistInter(LigandPocket)
6: for dist← DMIN ; to DMAX ; step DSTEP do
7: for all Class ∈ (AtomClass) do
8: CSMlig[i][j]← getFrequency(distMatrixInter, dist, class)
9: j + +

10: distMatrixIntra← calculateAtomicPairwiseDistIntra(LigandPocket)
11: for dist← DMIN ; to DMAX ; step DSTEP do
12: for all Class ∈ (AtomClass) do
13: CSMlig[i][j]← getFrequency(distMatrixIntra, dist, class)
14: j + +

15: addLigandProperties(CSMlig[i])

16: return CSMlig

end

The Algorithm receives a set of protein-ligand complexes, a set of atom classes and distance cutoffs (minimum,
maximum and a cutoff step). The ligand pockets are extracted and a cummulative distribution of atoms within
each distance (based on the cutoff parameters) is calculated per atom class. The distances are calculated separately
in two components: intra-pocket distances, which aim to model pocket geometry and physicochemical properties
and inter-complex distances, which aim to account for protein-ligand interactions. After this process, a set of ligand
properties (Table 1 of Supplementary Material) are calculated and appended to the signatures.
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