CSM-lig: a web server for assessing and comparing protein-small
molecule affinities

Douglas E. V. Pires*, David B. Ascher*

Supplementary Material

1 Figures
2007 2013 2014
— (=4 — —
| 2 ] —
S . = — S
1Y § | | | . __
> o > > 9
g g g e
[} o @ o 8 4
= =] 3 ™
o o | o o o
o 2 L S 4 2 o
e w « w g1
8 1 S - S
o - o -~ o -~
I T T T T T T 1 r T T T T 1 I T T T T 1
0 2 4 6 8 10 12 14 2 4 6 8 10 12 2 4 6 8 10 12
log(affinity) log(affinity) log(affinity)
Blind test 2007 Blind test 2013 Blind test 2014
o _ o _ I I o _ — —
(3o}
- | ﬁ - || I - || I
g &1 g &1 5 87
c c c
$ o S o g o
o o o
o 0 o
L 24 w o4 w o4
w0 - w0 - n -
o - o - o 4
I T T T T T T 1 r T T T T 1 T T T T T 1
0 2 4 6 8 10 12 14 2 4 6 8 10 12 2 4 6 8 10 12
log(affinity) log(affinity) log(affinity)

Figure 1: Distribution of experimental affinities for protein-ligand complexes in different PDBbind releases. The
distribution of affinities for the blind tests (core sets) are also shown.).
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Figure 2: CSM-Lig job submission interface. Users have the option to perform CSM-Lig predictions on a single
uploaded structure or in multiple structures uploaded in a compressed file.

Figure 3: Example of visualization of protein-small molecule interactions generated by Arpeggio (Jubb H and
Blundell TL, Unpublished Data) and made available on CSM-Lig. Hydrogen bonds are shown as red dashes and
carbon-pi interactions as grey dashes. PDB ID: 1W4P was used.
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Figure 4: Regression plot between experimental and predicted affinities by CSM-lig on the PDBbind 2007 and
2013 releases. The graph on the top depicts the performance of CSM-lig over 10-fold cross validation, achieving a
Pearsons correlation of 0.82 on release 2007 and 0.86 on release 2013. The performance in blind tests for these the
2007 and 2013 releases was 0.75 and 0.80, respectively.
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Figure 5: Regression plot between absolute errors of predictions and small-moluce properties on the PDBbind

2007 blind test. No significant correlation has been identified.



2 Tables

Table 1: List of molecular properties of the small molecule included in the CSM-Lig signatures. Properties were
calculated with the Python RDKit library.

Property Numerical type
Molecular weight Real
Heavy atoms Integer
LogP [1] Real
#Acceptors Integer
#Donors Integer
#Heteroatoms Integer
#Rotatable bonds Integer
#Rings Integer
Labute’s Approximate Surface Area Real
Topological Polar Surface Area Real

Table 2: List of methods used in comparative experiments.
Method/Scoring Function Reference

RF-Score::Elem-v2 2]
RF-Score::Elem-v1 [3]
X-Score::HMScore [4]
DrugScore®>P [5]
SYBYK::ChemScore [6]
DS::PLP1 [7]
GOLD::ASP 8]
SYBYL::G-Score [9]
DS:LUDI3 [10]
DS::LigScore2 11
GlideScore-XP 12
DS::PMF 13
GOLD::ChemScore 14
SYBYL::D-Score [9]
IMP::RankScore [15]
DS::Jain [16]
GOLD::GoldScore [17]
SYBYL::PMF-Score 9]
SYBYL::F-Score [9]




3 CSM-lig Approach

CSM-lig is an efficient machine learning approach for assessing and comparing protein-small molecule affinities
from solved structures. The method calculates structural features using the CSM algorithm [18] (called signatures)
that together with experimental data are used as evidence to train and test predictive models.

A series of graph-based signatures can be achieved by modelling proteins/small molecule recognition as atomic
graphs. The CSM algorithm will then extract distance patterns between its components as described in Algorithm
1.

Algorithm 1  Cutoff Scanning Matrix (CSM) calculation
1: function CSM;;4(LigandSet, AtomClass, Dyrin, Dyax, DsTtep)

2 for all Ligand 4 € (LigandSet) do

3 LigandPocket = extractLigandPocket(Ligand)

4 i=0

5: distMatrizInter < calculateAtomicPairwiseDistInter(LigandPocket)
6: for dist < Dprrn; to Dyrax; step DsTtep do

7 for all Class € (AtomClass) do

8 CSMyigli)[j] < getFrequency(distMatrizInter, dist, class)

9 i++

10: distM atrizIntra < calculateAtomicPairwiseDistIntra(LigandPocket)
11: for diSt(—D[u[N;tO DN[Ax;Step DSTEP do

12: for all Class € (AtomClass) do

13: CSMyigli][j] < getFrequency(distMatrizIntra, dist, class)
14: i++

15: addLigandProperties(C'SMy;4[i])

16: return CSM;;q

end

The Algorithm receives a set of protein-ligand complexes, a set of atom classes and distance cutoffs (minimum,
maximum and a cutoff step). The ligand pockets are extracted and a cummulative distribution of atoms within
each distance (based on the cutoff parameters) is calculated per atom class. The distances are calculated separately
in two components: intra-pocket distances, which aim to model pocket geometry and physicochemical properties
and inter-complex distances, which aim to account for protein-ligand interactions. After this process, a set of ligand
properties (Table 1 of Supplementary Material) are calculated and appended to the signatures.
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