
The Kmer Analysis Toolkit - Supplementary Information

Daniel Mapleson, Gonzalo Garcia Accinelli, George Kettleborough,
Jonathan Wright, and Bernardo J. Clavijo.

October 6, 2016

1 Tools

Table 1 lists the tools currently contained in KAT as of V2.1. We go on to describe those tools later
in this section, however for a more up-to-date and detailed description of the tools please refer to
the online manual: http://kat.readthedocs.io/en/latest/

hist Creates a k-mer spectrum from a sequence set
gcp Compares a k-mer coverage spectrum with k-mer GC spectrum
comp Compares two k-mer spectra
sect Marks k-mer frequencies from a separate dataset along a list of sequences
filter Isolation of k-mers and sequences based on k-mer coverage and GC content

Table 1: A list of tools within KAT v2.1.0

1.1 K-mer spectrum histogram

The KAT hist tool creates a k-mer spectrum from a sequence set represented as a histogram showing
the number of k-mers observed at each frequency. The tool outputs both a flat text file containing
the k-mer spectrum, as well as a plot. This tool is similar to the jellyfish histo tool, and can be used
to estimate of k-mers deriving from errors, assess sequencing bias, gauge completeness of genome
sequencing, identify genomic properties, such as levels of heterozygosity, homozygosity, karyotype
and repeat content. The tool can also help to identify contamination detection through highlighting
deviation from expected frequencies.

1.2 GC vs Coverage

The KAT gcp tool also produces a k-mer spectrum and a GC count per distinct k-mer for a sin-
gle input set. Therefore instead of a histogram, a heatmap is generated, with k-mer GC count
on one dimension and k-mer frequency in the other, and the number of distinct k-mers are repre-
sented by intensity of colour. By incorporating GC information users are better able to identify
unexpected content, such as sequencing biases or contamination, than through the standard k-mer
spectrum alone. See the KAT online documentation for a more complete discussion of the gcp
tool: http://kat.readthedocs.io/en/latest/using.html#gcp. Also see how the gcp tool can be
used to help identify contaminants here: http://kat.readthedocs.io/en/latest/walkthrough.

html#contamination-detection-and-extraction.

1

http://kat.readthedocs.io/en/latest/
http://kat.readthedocs.io/en/latest/using.html#gcp
http://kat.readthedocs.io/en/latest/walkthrough.html#contamination-detection-and-extraction
http://kat.readthedocs.io/en/latest/walkthrough.html#contamination-detection-and-extraction


1.3 K-mer spectra comparison

The KAT comp tool creates and compares spectra from two datasets, recording the intersection of
distinct k-mer frequencies between each set, producing a 2D matrix, with frequencies along each
dimension and distinct k-mer counts in the cells. The matrix can be used in several ways. The
first way is to visualise the matrix as a heatmap, showing the intersection of spectra highlighting
similarities and differences between the datasets, or as a set of histograms, highlighting exclusive and
shared content. Also, if the first input is a WGS dataset and the second a genome assembly of that
data, then a stacked histogram maybe produced, which has proven useful for assembly validation
(see main paper Section 2.1 and SI Section 5 for more details).

1.4 Sequence coverage profiler

The KAT sect tool, marks the k-mer frequency, and optionally GC counts, against a list of se-
quences, producing summary statistics and FastA style output files detailing k-mer frequencies and
GC content across each target sequence. This tool is useful for contamination detection at a whole
file and per sequence level, it can identify and separate distinct and repetitive regions within a
genome assembly. See the KAT online documentation for a more complete section of the sect tool:
http://kat.readthedocs.io/en/latest/using.html#sect.

1.5 Filtering tools

KAT contains two tools for filtering content based on k-mers. The first allows a user to produce a
subset of a k-mer hash by limiting GC and frequency values, the second performs sequence filtering
based on the presence or absence of a k-mer in the sequence. These tools are particularly useful for
isolating contaminants or organelles from larger NGS datasets. See the KAT online documentation
for a more complete section of the filter tools: http://kat.readthedocs.io/en/latest/using.

html#filtering-tools. Also see how the filter tools can be used to extract contaminants here:
http://kat.readthedocs.io/en/latest/walkthrough.html#contamination-detection-and-extraction.

2 Choosing a k value for analysis

The choice of k can affect KAT analyses. Larger values of k allow of a larger set of different k-mers.
In the context of Whole Genome Sequencing (WGS), this translates to each k-mer representing
a progressively more distinct region of the genome as k increases, which increases the number of
elements in the first and more informative components of the spectrum. However, analyses with
large k are more sensitive to sequencing errors (there is an increased likelihood that each k-mer will
contain an error), generate fewer k-mers overall (each read generates length+ 1− k kmers) and will
require additional system memory (see Supplementary Figure 4).

The trade off in the choice of k is illustrated in Supplementary Figure 1 within the context of
assembly analysis and validation (see SI Section 5 for an explanation of how to interpret the stacked
histogram plots). The plot shows results for varying k in the assemblies from the Main Text’s Figure
1a and an A. thaliana assembly. As k grows, more content is contained in the homozygous and
heterozygous distributions but their centres get closer, eventually making it difficult to distinguish
between them. Also, as k grows, more k-mers are affected by small differences in between haplotypes
(arguably mostly SNPs) and that alters the relative abundance of elements between the heterozygous
and homozygous distributions.

2

http://kat.readthedocs.io/en/latest/using.html#sect
http://kat.readthedocs.io/en/latest/using.html#filtering-tools
http://kat.readthedocs.io/en/latest/using.html#filtering-tools
http://kat.readthedocs.io/en/latest/walkthrough.html#contamination-detection-and-extraction


In general, we find smaller and less repetitive genomes can be analysed using lower k values, but
larger and more repetitive genomes benefit from larger k values, given sufficient sequencing coverage
and system memory. In practice, we find a k value between 17 and 63 provides enough definition to
be informative. By default, KAT uses a k value of 27, which is a reasonable starting point for most
cases, including typical mammalian genomes and does not require excessive memory.

3 Comparison with other reference-free k-mer analysis soft-
ware

SGA PreQC(Simpson, 2014) calculates metrics about the quality of the reads such as per-base error
rates, paired-end fragment-size distributions and coverage in the absence of a reference genome. Ad-
ditionally, the software estimates genome characteristics, such as repeat content and heterozygosity
that are key determinants of assembly difficulty. However, the tool is not designed for pairwise
comparison of k-mer spectra, which is one of the strengths of KAT.

kPAL (Anvar et al., 2014) also facilitates alignment-free quality assessment of sequence data. In
addition, it supports pairwise comparisons of k-mer spectra enabling detection of high-duplication
rates, library chimeras, contamination and differences between sequencing protocols. kPAL is how-
ever limited in that it does not scale well to large datasets. Memory usage and runtimes are high
compared to KAT. In addition it is limited to exploring relatively small k values, as shown in section
4.2.

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) is a popular tool
for QC of NGS datasets that also has a k-mer analysis component embedded within it. However,
FastQC uses small k-mers to detect overrepresented sequences within datasets, which is primarily
used for detection of adaptors or other sequences which are not biological in nature and likely to
stem from sequencing problems. FastQC also does not create k-mer spectra and has no functionality
for comparing datasets.

4 Runtime performance

All tests in this section were performed using KAT V2.1.0. Unless otherwise noted the Arabidopsis
thaliana WGS dataset ERR409722 was used as input. This dataset contains 29,888,822 100 bp
paired end reads, making up a total of approximately 6 Gbp (giga base pairs) and 15GB (gigabytes)
of data. Unless otherwise specified, all tests were performed on a machine with 128GB and 4 AMD
Opteron(tm) 6134 Processors, connected to an Isilon scale-out NAS.

4.1 K-mer counting compared to Jellyfish2

KAT leverages a modified version of the Jellyfish2 library to perform k-mer counting. The changes
implemented means KAT avoids filtering and dumping k-mer hashes to storage (unless requested to
by the user). To show the effects the modifications have on wall-clock runtime, two plots are produced
showing effect of thread count on two different types of storage system. Using Isilon scale-out NAS
(Supplementary Figure 2) little improvement is gained due to the capacity of the storage system to
handle multiple parallel IO operations, however on more conventional SSD storage (Supplementary
Figure 3) runtimes are approximately 20% faster on average for KAT for this environment. The
Isilon system is able to hide the time required to write the 1.9GB of ERR409722 k-27 hash, by
performing the operations in parallel with reading and counting. Because the data structures used

3

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


(a) A. thaliana, k=13 (b) Assembly A, k=17

(c) A. thaliana, k=31 (d) Assembly A, k=51

(e) A. thaliana, k=71 (f) Assembly A, k=101

Figure 1: Effect of k on a spectra-cn plot generated with KAT comp. The A. thaliana example shows
too small (a), correct (c) and too large (e) k values for the SRR519624 dataset. The F. excelsior
example shows three different k values in the correct range for this dataset (i.e. the range at which
the distributions are easy to appreciate, with enough coverage and not collapsing into one another)
and how they affect the relative abundance of elements in the distributions and their frequencies.
Axis limits on this last example have been kept equal to showcase relative changes for different k.

4



Figure 2: Comparison of k-mer counting runtimes from jellyfish V2.2.1 to KAT V2.1.0 at varying
thread counts using Isilon scale out NAS. Command lines used: KAT - ”kat hist -m 27 -H 500000000
-t <threads> -C -o kat-<threads>.hist ERR409722 ?.fastq”; Jellyfish - ”jellyfish count -m 27 -s
500000000 -t <threads> -C -o jellyfish-< threads>.jf27 ERR409722 ?.fastq”.

are identical between Jellyfish and KAT maximum memory usage in both cases is approximately
2.7GB. Also for both cases, the runtime speed up is almost linear when thread count is low. As
thread count increases less performance per thread is achieved, due to IO bandwidth and other
overheads within the code eventually become a limiting factor.

4.2 K-mer counting compared to kPAL

In Supplementary Figure 4, we compare k-mer counting runtimes from kPal V2.2.1 to KAT V2.0.6
varying k-values. Because kPAL does not support multi-threading we set KAT to use only a single
thread and larger k values. Despite this KAT outperforms kPAL in the kmer counting runtime,
especially when considering the speed-up gained from multi-threading. In addition, Supplementary
Figure 5 shows that kPAL requires more memory than KAT for equivalent k values, indicating that
Jellyfish can store k-mers more compactly than kPAL. In addition, the primary reason kPAL cannot
support larger k values is due to rapidly escalating memory usage as k increases. However, kPAL
can process k-mers with very low k (lower than 12), where KAT fails.

4.3 Tool runtimes

Table 2 highlights the proportion of time spent during k-mer counting relative to k-mer processing
in each KAT tool. Here we have chosen k -27 and 8 threads, and for sect we used an SPADES
V3.5.0 (Bankevich et al., 2012) assembly of ERR409722 as the target reference, which contained 724
scaffolds. Supplementary Figure 6 shows how KAT tools scale with the number of threads. The

5



Figure 3: Comparison of k-mer counting runtimes from jellyfish V2.2.1 to KAT V2.0.6 at varying
thread counts using SSD storage. For these tests a machine with an Intel i7 930 CPU with 12GB
RAM was used, executing the same command lines as Supplementary Figure 2.

Method Counting (s) Processing (s) % time processing

hist 226 6 2.6
gcp 259 19 6.8
comp 297 53 15.1
sect 205 57 21.8

Table 2: Comparison of KAT counting vs k-mer processing, using 8 threads.

actual runtimes are dependent on the actual settings, files and environment used for each tool so
the figure is purely meant to demonstrate scalability and not that one tool is faster or slower than
another. hist and gcp tools scale linearly at least up to 32 threads, and should scale well beyond this.
comp scales linearly until around 8 threads after which overheads attributed to merging results from
each thread come start to become a significant factor. For the sect tool we do not experience linear
speedup proportionate to the number of threads, although gains are experienced until 16 threads,
at which time the process becomes IO bound on our isilon storage system. While these results are
derived from one dataset, one k -mer setting and are specific to our hardware, we expect the overall
trends to hold across datasets and environments.

5 Assembly analysis and validation using k-mer spectra

The assembly spectra copy number plot, produced by the comp tool, provides information to analyse
how much and what type of k-mer content from the reads makes it into the assembly. It decomposes

6



Figure 4: Walltime comparison of k-mer counting from KAT V2.1.0 to kPAL V2.2.1 at varying k
values.

7



Figure 5: Maximum memory usage comparison of k-mer counting from KAT V2.1.0 to kPAL V2.2.1
at varying k values.

8



Figure 6: Scalability of KAT tools with number of threads (k-mer counting excluded from runtime).

9



a)

c)

b)

d)

Figure 7: K-mer spectra copy number plots. Colour on the stacked bars represents copy number
on the assembly, frequency counts (spectral distribution) are computed on the reads. a) Reference
assembly for A.thaliana Columbia-0 versus a real sequencing run (SRR519624). b) ABySS(Simpson
et al., 2009) assembly at k=25 c) ABySS assembly at k=41 d) ABySS assembly at k=71

the k-mer spectrum of a read dataset by the frequency in which the k-mers are encountered in
the assembly. Put another way, we represent how many elements of each frequency in the reads
spectrum ended up included only once in the assembly, how many twice, etc. In addition, we record
how many k-mers do not appear in the assembly. If an assembler is performing well, sequencing
errors are generally absent from the assembly, the genuine unique content is there exactly once (for
haploid genomes), and repeated content at higher levels of duplication with distributions centred
around multiples of the sampling frequency for unique content.

Across different datasets and species, we generally observe different degrees of reconstruction for
the different components of the spectrum. Supplementary Figure 7 shows the analysis for different
assemblies over the same A. thaliana dataset (SRR519624). The histograms corresponding to absent
k-mers (black) indicate the assembly performed by DeBruijn Graph at k = 41 (7c) includes more
content from the dataset than those with k = 25 (7b) and k = 71 (7d), but still falls short of
including all content present in the reference assembly (7a). This analysis highlights the level of
assembly completeness: a lower number of distinct k-mers absent in the reference at the frequency
of average sampling depth indicates a more complete assembly.

The spectra-cn plot also shows expected contractions of heterozygous content and the effects

10



(a) Single haplotype (b) Separated haplotypes

Figure 8: Perfect heterozygous assemblies

of polyploidy where the decomposed distributions generated using the assembly frequencies are
inconsistent with the read spectrum. Heterozygous genomes produce more interesting and complex
plots, since their k-mer spectra clearly shows different distributions for both the heterozygous and
the homozygous content. Supplementary Figure 8 shows what a good diploid assembly looks like.
In 8a we have a single haplotype mosaic, where the bubbles are collapsed, which is what we typically
expect as correct from most illumina-based assemblers, although it is worth noting that alternate
alleles are lost when we do this. In 8b haplotypes are separated producing the duplication of content
in the homozygous regions, allowing the full representation of heterozygous content. Normally,
we dont aim for the second scenario when assembling genomes. Interestingly though, in practice,
assemblers of real heterozygous samples tend to retain duplications and include extra variation where
it is not possible to assemble through heterozygous regions, as shown in Supplementary Figure 9.

A more detailed explanation about how the extra duplications appear on heterozygous assemblies
such as the one on Figure 1 of the Main text, can be seen in the example loci shown for them.
Supplementary Figure 10 show the full set of 3 copies for assembly A and 2 copies for assembly B.

Assembly B reconstructs 2 loci that include the heterozygous duplicated elements presenting the
peaks. Each one of this two loci is reconstructed once, as shown in (b) and (d) by the Kmer coverage
in the assembly being 1, except for the repeated-duplication peaks. Even locus 2, which contains
heterozygous content (as shown by the read coverage halving after position 400), is assembled only
once, with one of the 2 haplotypes assembled and the other being discarded.

Assembly A, on the other hand, creates a second copy of locus 2. This is a typical behaviour of
assemblers when some heterozygous content create extra paths on the assembly graph to represent
al the content. In this, however, not only a second copy of locus 2 is created, as shown in (c) and
(e) by the main assembly coverage being 2, but also the haplotype information is being incorrectly
represented, given that we end up with 2 copies of the same haplotype, which can be seen on the
coverage for the assembly continuing to be 2 on the region corresponding to the halving of the read
coverage after 400. The whole of locus2 will then contribute on the Main text’s Figure 1 (a) plot
to the duplications seen on the heterozygous and homozygous distributions, and to triplications of
duplicated-frequency (i.e. 200) content.

11



Figure 9: A real assembly of a heterozygous WGS dataset.

12



0 100 200 300 400 500
Base position

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

K
m
e
r 
co

v.
 a
ss
e
m
b
ly

0

50

100

150

200

250

300

350

K
m
e
r 
co

v.
 r
e
a
d
s

(a) Assembly A, locus 1

0 100 200 300 400 500
Base position

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

K
m
e
r 
co

v.
 a
ss
e
m
b
ly

0

50

100

150

200

250

300

350

K
m
e
r 
co

v.
 r
e
a
d
s

(b) Assembly B, locus 1

0 100 200 300 400 500
Base position

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

K
m
e
r 
co

v.
 a
ss
e
m
b
ly

0

50

100

150

200

250

300

350

K
m
e
r 
co

v.
 r
e
a
d
s

(c) Assembly A, locus 2 (expanded, copy #1)

0 100 200 300 400 500
Base position

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

K
m
e
r 
co

v.
 a
ss
e
m
b
ly

0

50

100

150

200

250

300

350

K
m
e
r 
co

v.
 r
e
a
d
s

(d) Assembly B, locus 2 (collapsed)

0 100 200 300 400 500
Base position

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

K
m
e
r 
co

v.
 a
ss
e
m
b
ly

0

50

100

150

200

250

300

350

K
m
e
r 
co

v.
 r
e
a
d
s

(e) Assembly A, locus 2 (expanded, copy #2)

Figure 10: K-mer coverage across all different assembled sequences for the loci mentioned on Figure
1 on the Main Text, showing an extra copy for the heterozygous locus on assembly A (copies on (d)
and (e) ) and correct haplotype collapsing on assembly B (c).

13



References

Anvar, S.Y. et al (2014). Determining the quality and complexity of next-generation sequencing data without a reference

genome. Genome Biol, 15(12), 555.

Bankevich, A. et al (2012). Spades: a new genome assembly algorithm and its applications to single-cell sequencing. J

Comput Biol, 19(5), 455–477.

Simpson, J.T. (2014). Exploring genome characteristics and sequence quality without a reference. Bioinformatics, 30(9),

1228–1235.

Simpson, J.T. et al (2009). Abyss: a parallel assembler for short read sequence data. Genome research, 19(6), 1117–1123.

14


	Tools
	K-mer spectrum histogram
	GC vs Coverage
	K-mer spectra comparison
	Sequence coverage profiler
	Filtering tools

	Choosing a k value for analysis
	Comparison with other reference-free k-mer analysis software
	Runtime performance
	K-mer counting compared to Jellyfish2
	K-mer counting compared to kPAL
	Tool runtimes

	Assembly analysis and validation using k-mer spectra

