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Confounding Underlies the Apparent
Month of Birth Effect in Multiple Sclerosis
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Objective: Several groups have reported apparent association between month of birth and multiple sclerosis. We
sought to test the extent to which such studies might be confounded by extraneous variables such as year and place
of birth.
Methods: Using national birth statistics from 2 continents, we assessed the evidence for seasonal variations in birth rate
and tested the extent to which these are subject to regional and temporal variation. We then established the age and re-
gional origin distribution for a typical multiple sclerosis case collection and determined the false-positive rate expected
when comparing such a collection with birth rates estimated by averaging population-specific national statistics.
Results: We confirm that seasonality in birth rate is ubiquitous and subject to highly significant regional and temporal
variations. In the context of this variation we show that birth rates observed in typical case collections are highly
likely to deviate significantly from those obtained by the simple unweighted averaging of national statistics. The sig-
nificant correlations between birth rates and both place (latitude) and time (year of birth) that characterize the gen-
eral population indicate that the apparent seasonal patterns for month of birth suggested to be specific for multiple
sclerosis (increased in the spring and reduced in the winter) are expected by chance alone.
Interpretation: In the absence of adequate control for confounding factors, such as year and place of birth, our analyses
indicate that the previous claims for association of multiple sclerosis with month of birth are probably false positives.
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Case–control studies are frequently employed as a

means of testing for association between a disease of

interest and candidate etiological risk factors. However,

despite the apparent simplicity of this approach, spurious

results are not uncommon1 and may easily arise if study

design fails to avoid bias in the selection of study sub-

jects.2 Because practical considerations mean that it is

rarely possible to recruit cases and controls in an identi-

cal manner, it is usual to select study subjects from

within a well-defined population, where exposure to the

risk factor of interest is assumed to be distributed homo-

genously. However, bias may arise if the assumption of

homogeneity is invalid, and subgroups that differ in the

frequency of the candidate risk factor are concealed

within the population from which cases and controls are

drawn. In this situation, differences in ascertainment

may result in biased representation of the relevant sub-

groups among the samples of cases and controls, thereby

creating an apparent difference in exposure and a false-

positive association. Furthermore, even if cases and con-

trols are randomly selected from the whole population,

false-positive associations may still occur if the fre-

quency of the disease and of the candidate risk factor

correlate across these subgroups (see the example from

genetics below).3,4 Counterintuitively, such false-positive

associations become increasingly more likely as sample

size increases5; but do not occur (irrespective of sample

size) if the study population is homogeneous with

respect either to the frequency of the disease or to the

candidate risk factor.4
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In the analysis of month of birth, researchers have

invariably assumed homogeneity within individual coun-

tries and have therefore felt justified in using averaged

population statistics as controls. Here, we review the evi-

dence that month of birth varies significantly with geo-

graphical location6–8 and over time8–11 in the normal

population and consider the implication of this variation

for case–control studies considering month of birth as a

risk factor for the development of multiple sclerosis.

Subjects and Methods

Using publically available national statistics, we established

year-specific month of birth data sets (the number of births per

month over a calendar year) for multiple years from 17 coun-

tries (Austria, Belgium, Canada, Denmark, Finland, France,

Germany, Greece, Ireland, Italy, the Netherlands, Norway, Por-

tugal, Spain, Sweden, Switzerland, and the United Kingdom),

51 North American regions (50 states and the District of

Columbia), and 10 UK Government Office Regions (Supple-

mentary Information). Data sets were tested for evidence of sea-

sonality by comparison with the expected distribution of births

in each month under the assumption of a uniform birth rate

using a chi-square test (11 df ). The chi-square test was also

used to compare data sets within and between countries. In

comparisons between consecutive years from the same country,

the number of births in February was reduced by 1=29 for leap

years, so that all such comparisons were based on data for 365

days. In these chi-square tests, we took p < 0.05 as evidence

for a statistically significant difference, unless otherwise stated.

To explore these complex data more formally, we used a multi-

nomial logit model,12 which is a generalization of a logistic

regression model that allows for >2 discrete outcomes (see Sup-

plementary Information). We use this method to model how

the probability of an individual being born in each month

depends on different covariates, including latitude and the year

of birth.

We generated a multiple sclerosis month of birth data set

using records from the database we previously established

through our UK nationwide effort to recruit patients for genetic

studies. This database includes 15,765 affected index cases, of

whom information on year and month of birth are available for

12,198 (see Supplementary Information).

To investigate the type I error rate of a typical month of

birth analysis, we estimated the expected month of birth distri-

bution in cases and controls using the UK Government Office

Region data. For the cases, the distribution was weighted

according to the regional prevalence of multiple sclerosis (see

Structure and Risk Factors) and the observed year of birth,

whereas the simple unweighted average was used for the con-

trols. Because this analysis assumes homogeneity within each

region, it is expected to underestimate the type I error rate.

Two types of analyses were considered. First, we mirrored a dis-

covery study, consisting of twelve 2 3 2 contingency tables,

each comparing the number of case and control births in 1

month with the number in the other 11, and with significance

declared if the Pearson chi-square test was significant after Bon-

ferroni correction (p < 0.05=12 5 0.0042). Using the expected

month of birth distribution in cases and controls, we deter-

mined the noncentrality parameter for each of these tests,12 and

thereby calculated the probability of declaring evidence for a

significant effect by chance alone—the type I error rate. The

second analysis mirrored attempts to replicate the pattern previ-

ously suggested for multiple sclerosis,13–16 that is, finding a

nominally significant (p < 0.05) excess of births in March,

April, or May and=or a nominally significant (p < 0.05) deficit

in November, December, or January. In all analyses, the num-

bers of cases and controls were equal.

Results

Given the large number of cultural and biological factors

that influence the timing of birth,6,7 it is perhaps not

surprising that 98% of these 1,344 year- and population-

specific month of birth data sets (824 from Europe and

520 from North America) show statistically significant

evidence for seasonality (variation in birth rate through

the year), the majority (>90%) at extreme levels of sig-

nificance (p < 1026). Considering the variation in birth

rates seen for individual months and applying a Bonfer-

roni correction (so that p < 0.0042 is considered signifi-

cant), we found statistically significant evidence for

seasonality, with excess births in either March, April, or

May and=or reduced births in November, December, or

January, mirroring the pattern described for multiple

sclerosis,13–15 in 97% of European and 48% of North

American data sets (see Supplementary Information).

This apparent difference between continents primarily

results from lower annual birth rates in many of the US

states, which therefore lack the power to demonstrate

observed differences as significant. In continent-specific

pairwise comparisons, month of birth data sets showed

significant differences both within and between popula-

tions (see Supplementary Information and Fig 1); again,

the greatest differences were observed in the spring

(March, April, and May) and winter (November, Decem-

ber, and January). As anticipated, our data confirm the

expected correlations between seasonal birth rates and lat-

itude6,7 and show that these correlations have diminished

over time (see Supplementary Information).8–11 Given

the known latitudinal gradient in the prevalence of mul-

tiple sclerosis, the positive correlation between prevalence

and the probability of being born in the spring and the

negative correlation with the probability of being born in

winter are not unexpected (Fig 2).

To assess correlations within the month of birth

data sets more rigorously, we used a multinomial logit

model, including country as a factor, together with year

of birth and whether that year was a leap year as covari-

ates. Although this model explained only a small
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proportion of the variance in month of birth, the param-

eters representing the effect for each country were all

highly significant, confirming that the distribution of

month of birth differs significantly between countries.

Fitting a second model that included latitude as an addi-

tional factor confirmed that the relationship between

month of birth and latitude is statistically highly

significant.

To test for the presence of regional heterogeneity in

birth rates within individual populations, we considered

440 UK Government Office Region month of birth data

sets (see Supplementary Information). More than 99%

showed statistically significant evidence for seasonality,

with 66% reproducing the pattern described for multiple

sclerosis (statistically significant after Bonferroni correc-

tion); the most marked differences were seen in March

and October. Comparing each Government Office

Region month of birth data set with the set of UK con-

trols employed in 1 influential study13 (n 5 11,502)

confirmed that 61% of these records include at least 1

month in which there is statistically significant evidence

for a difference mimicking the pattern considered charac-

teristic of multiple sclerosis. Even after scaling the Gov-

ernment Office Regions month of birth data sets to an

equivalent size (n 5 11,502), 33% continued to show at

least 1 month with nominally significant evidence.

Conversely, stratifying month of birth data sets into

gender-specific components showed no difference in

birth rates between males and females. This indicates

that mismatching of gender between case collections and

controls is unlikely to confound results, no matter how

extreme the mismatch and irrespective of sample size.

Comparing our sample of 12,198 UK multiple

sclerosis cases with the expected numbers of births per

month (calculated on the basis of a simple unweighted

average across the 67 year-specific UK month of birth

data sets obtained from the UK Office of National Statis-

tics) showed that the greatest excess in births was seen in

March (p 5 0.06) and the greatest deficit in December

(p 5 0.03; see Supplementary Fig S13). Combining

these data with those from northern hemisphere-based

studies purporting to show a month of birth effect in

multiple sclerosis13–15,17 generated a data set comprising

132,241 cases (after excluding duplicates). Comparing

these cases with averaged population-specific month of

birth data reproduces the putative multiple sclerosis pat-

tern if an excess in June (p 5 0.006) and a less

FIGURE 1: Seasonality seen in 3 typical month of birth data
sets. The y-axis shows the average normalized daily birth
rate, and the x-axis shows the months of the year (coded by
their first letter). UK data for 3 years are shown; 1950 (solid
line), 1960 (thick dashed line), and 1970 (thin dashed line).
The rates were calculated allowing for the length of each
month and for leap years, but for simplicity are plotted
assuming the length of each month is equal (1960 was a
leap year, whereas 1950 and 1970 were not). Although our
analysis does not depend upon identifying the systematic
effects underlying the observed seasonality, one might
speculate that, for example, the tendency for a higher than
expected birth rate in September might be related in some
way to the Christmas and New Year holiday season, that is,
it might be primarily a cultural effect.

FIGURE 2: Correlation between the month-specific percent-
age excess in the average normalized daily birth rate (x-
axis) and the prevalence of multiple sclerosis per 100,000
(y-axis) in 16 European countries (Austria, Belgium, Den-
mark, Finland, France, Germany, Greece, Ireland, Italy, the
Netherlands, Norway, Portugal, Spain, Sweden, Switzerland,
and the United Kingdom). (A) Data for April; (B) data for
November. The birth rate estimates were calculated using
the month of birth data sets for the decade 1991–2000.
See the Supplementary Information for more details and for
corresponding figures for other months.
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significant deficit in November (p 5 0.02: Fig 3) are

taken as evidence for consistency. As would be antici-

pated, these results are similar to those reported in the

recent meta-analysis of multiple sclerosis month of birth

studies, which in total considered birth data from

>150,000 cases.16 However, based on the type I error

rates (Fig 4) we calculated using the UK Government

Office Region data (see Subjects and Methods), there is a

high probability that each of these modest residual sig-

nals of apparent association are false positive. Essentially,

because all of the published studies employed simple

unweighted averages of national statistics, none has

adequately matched cases and controls for regional origin

or year of birth, and thus all are likely to demonstrate an

apparent association in keeping with the putative multi-

ple sclerosis pattern by chance alone. The apparent latitu-

dinal gradient in this effect noted in the meta-analysis16

is entirely expected as a reflection of the well-established,

but under-recognized, gradient in seasonality of birth

rates present in the general population.6–8

Discussion

The analyses of genome-wide association studies

(GWASs) have reminded researchers that seemingly ho-

mogeneous populations often turn out to be structured,

and have also shown just how easily such effects are able

to generate false-positive associations even in population-

specific case–control studies (see the example from genet-

ics below). Testing and making compensation for struc-

ture has become an indispensable part of complex

genetics but seems to have been largely ignored in efforts

to explore the possible role of environmental factors in

complex traits. In our analysis of publicly available birth

records, we confirm that birth rate is heterogeneous in

the general population, where it is characterized by sub-

stantial and significant differences both between and

within populations. It follows that birth rates calculated

by the unweighted averaging of available population sta-

tistics are unlikely to provide appropriate controls for

studies of specific diseases, where case collections are

invariably heterogeneous with respect to year of birth

and regional origin. Although it seems logical to average

over many observations to generate more reliable control

estimates, the mean birth rates obtained by such a pro-

cess are a weighted average of the seasonality present in

the population and not an estimate of some fundamental

underlying rate. This weighted mean can only safely be

compared with cases that have the same structure. Self-

evidently, spurious differences will arise if birth rates are

calculated for cases having a different distribution across

subgroups that make up the normal population. Three

groups13,17,18 have considered unaffected siblings as con-

trols in an attempt to avoid such problems. However,

although these related controls are inevitably much better

matched for regional influences, they are necessarily

unmatched for year of birth and are invariably limited in

size and therefore underpowered (see Supplementary

Information and Fig 4).

FIGURE 3: Odds ratio for each month as seen in the original
report from Willer et al13 and in the combined analysis of
published data,13–15,17 together with our own previously
unpublished data (132,241 cases and controls). The
expected (control) counts were as originally reported for
the published data sets and unweighted (ie, crude) for the
new UK data. These odds ratio estimates make no correc-
tion for the temporal and geographical structure in month
of birth that is present in the general population. Months
are coded by their first letters.

FIGURE 4: Lower limit of type I error rates (a) for typical
population-specific multiple sclerosis month of birth studies
of varying size (number of cases 5 number of controls 5 N).
The lower curve indicates a for a discovery study, that is,
the probability of seeing at least 1 month showing a signifi-
cant association after Bonferroni correction (p < 0.05=12 5

0.0042), whereas the upper curve indicates a for a replica-
tion study, that is, the probability of at least 1 spring month
showing a nominally significant (p < 0.05) excess in cases or
at least 1 early winter month showing a nominally significant
(p < 0.05) deficit in cases. These error rates are likely to be
even greater in studies employing cases from >1 country,
especially when these are high-risk (northern) countries such
as Canada, Denmark, and Sweden, but would be reduced in
countries where prevalence is more uniform. See the
Supplementary Information for methodological details.
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The confounding effects described here are a conse-

quence of the substantial geographical and temporal variation

in birth rate that is present in the general population; they are

not specific to multiple sclerosis and have the potential to gen-

erate false-positive association with month of birth in any

study where cases are inadequately matched, regardless of the

phenotype. To date there are >500 reports relating month of

birth to the etiology of a complex trait. The list includes vari-

ous autoimmune diseases (celiac disease,19 diabetes,20 Graves

disease,21 Hashimoto disease,21 inflammatory bowel dis-

ease,22 rheumatoid arthritis,22 and systemic lupus erythema-

tous22), mental health disorders (schizophrenia23 and

suicide24), and health-related traits (birth weight25). Because

almost all of these studies are based on traits that are known to

vary in frequency geographically and they have invariably

used averaged national statistics as their source of controls, it

is likely that many of these apparent associations resulted

from confounding rather than any true biological effect.

The extent of variation in the seasonality of birth

rates and correlation of this phenomenon with latitude

and year of birth are surprising, underappreciated, and dif-

ficult to compensate for fully in the design and analysis of

individual studies. Our observations serve as a reminder

that risk factors that are easy to determine and seemingly

homogenous, such as date of birth, may yet be heteroge-

neous within the general population and therefore generate

false-positive signals if cases and controls are not

adequately matched for the relevant extraneous variables.

Efforts to identify and correct for confounding should be

no less rigorous in the study of environmental risk factors

than are now routine in the field of complex genetics.

Key Points
National birth statistics show that within the general

population: (1) birth rate is subject to highly significant

variation with respect to place and time; and (2) the

probability of being born in the spring (March, April,

and May) is positively correlated with latitude, whereas

the probability of being born in the winter (November,

December, and January) is negatively correlated.

Because typical multiple sclerosis case collections

are unlikely to be uniform with respect to region of ori-

gin or year of birth: (1) studies using national statistics

as controls are predisposed to generate false-positive asso-

ciations with month of birth; and (2) the associations

generated by such studies are inherently biased in favor

of showing a false-positive apparent excess of births in

spring and=or reduced births in winter.

The Effects of Structure: An Example
from Genetics
Confounding due to structure is a well-recognized prob-

lem in complex genetics. Consider the data shown in the

Table, which indicate the total population in each of the

11 Government Office Regions of the United Kingdom

in mid-2010 (Office of national Statistics: http:==www.

ons.gov.uk), together with corresponding multiple sclero-

sis prevalence estimates and the approximate region-

specific frequency of the C allele of the rs1042712 single

nucleotide polymorphism (SNP) from the lactase gene

(taken from Fig 7 of the supplementary file of the Well-

come Trust Case Control Consortium Genome Wide

Association Study).26 Inspection of the Table shows that

both the prevalence of multiple sclerosis and frequency

of the C_rs1042712 allele vary geographically; prevalence

correlates positively with latitude, whereas allele fre-

quency is negatively correlated. Despite absolute differen-

ces in allele frequency only amounting to a few

percentage points, the resulting structure is sufficient to

confound association studies if ignored, and the UK pop-

ulation is wrongly assumed to be homogenous with

respect to the frequency of this allele.

If controls are randomly selected from across the

United Kingdom (as, for example, they would tend to

be in a birth cohort), the expected allele frequency is

11.6%, less than is seen in London (14.5%) and more

than in Wales (9.5%). If an association study were

performed in London using 10,000 such controls and

2,000 local patients, it would find nominally signifi-

cant evidence (p < 0.05) that C_rs1042712 is a risk

factor for multiple sclerosis, with >99.9% certainty,

and would generate a genome-wide significant result

(p < 5 3 1028) >40% of the time. If the study were

then repeated using a similar design but with 2,000

patients from the East of England Government Office

Region, the apparent association would be replicated

with 1-tailed nominal significance on the majority of

occasions (>90%). Conversely, if replication were

attempted in Wales, researchers would most likely

(>95%) find nominally significant evidence that

C_rs1042712 appears protective. The ease with which

apparently significant results can be generated despite

the relatively modest absolute difference in allele fre-

quency illustrates how sensitive case–control analysis is

to unrecognized, and therefore uncompensated, popu-

lation structure.

Even if everyone in the UK population were geno-

typed for the rs1042712 SNP, enabling all cases to be

compared with all controls, nominally significant evi-

dence that C_rs1042712 is associated (protective) would

be observed on >95% of occasions. This bias arises

because a disproportionate number of the cases will

come from northern (high prevalence) parts of the coun-

try, which generally have a lower than average allele fre-

quency for this particular SNP; as a result the estimated
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allele frequency in cases will tend to be lower (11.3%)

than in the general population (11.6%). This illustrates

why, even if all cases and all controls from a country are

included in an analysis, structure can still generate false-

positive associations unless there is compensation for the

confounding effects of their unequal distribution.

Whether a study that only employs cases and controls

from a single Government Office Region would be free

from bias cannot be judged from the figures provided in

the Table. Given the highly significant difference in both

disease and allele frequency between regions, it seems

probable that structure will also occur within, although

to a lesser extent than between, regions.

Genetic analyses are uniquely well placed with

respect to the assessment and compensation of structure.

First, although the above analysis has considered matters

from a geographical perspective, the primary confound-

ing variable in genetic studies is ancestry, not geography.

The probability that individuals carry a particular allele

of interest primarily depends upon who their ancestors

were and not where they were born or domiciled when

recruited to a study. Because ancestry does not change

over time, and can be accurately inferred using genetic

markers, in principle little if any geographical precision is

necessary to assess and correct for structure in allele fre-

quency distribution within a population. Conversely, for

social and mobility reasons, there is an inevitable correla-

tion between geography and ancestry,27 and this

relationship means that geography often provides a rea-

sonable, and useful, surrogate for ancestry as illustrated

above. Second, because GWASs typically include many

thousands of markers that are not associated with the

particular disease of interest, these additional neutral data

allow researchers both to measure28 and to compensate

for differences in the ancestry of cases and controls.29 By

comparing allele frequency distributions across regions of

the United Kingdom, the Wellcome Trust Case Control

Consortium established that most common variants show

little variation in allele frequency within populations, the

rs1042712 SNP from the lactase gene being 1 of only a

limited number of exceptions to this rule.26 Available evi-

dence suggests that this SNP is part of a haplotype that

has been subject to considerable selection in the recent

past and hence is now highly structured in the popula-

tion.30 However, for the vast majority of common var-

iants studied in GWASs, there is only limited structure

within and between populations, and this can usually be

compensated for using ancestral information from the

thousands of unassociated markers that are inevitably

typed as part of a GWAS.
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