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ABSTRACT The additive relationship matrix plays an important role in mixed model prediction of breeding
values. For genotype matrix X (loci in columns), the product XX9 is widely used as a realized relationship
matrix, but the scaling of this matrix is ambiguous. Our first objective was to derive a proper scaling such
that the mean diagonal element equals 1+f, where f is the inbreeding coefficient of the current population.
The result is a formula involving the covariance matrix for sampling genomic loci, which must be esti-
mated with markers. Our second objective was to investigate whether shrinkage estimation of this co-
variance matrix can improve the accuracy of breeding value (GEBV) predictions with low-density markers.
Using an analytical formula for shrinkage intensity that is optimal with respect to mean-squared error,
simulations revealed that shrinkage can significantly increase GEBV accuracy in unstructured populations,
but only for phenotyped lines; there was no benefit for unphenotyped lines. The accuracy gain from
shrinkage increased with heritability, but at high heritability (. 0.6) this benefit was irrelevant because
phenotypic accuracy was comparable. These trends were confirmed in a commercial pig population with
progeny-test-estimated breeding values. For an anonymous trait where phenotypic accuracy was 0.58,
shrinkage increased the average GEBV accuracy from 0.56 to 0.62 (SE , 0.00) when using random sets of
384 markers from a 60K array. We conclude that when moderate-accuracy phenotypes and low-density
markers are available for the candidates of genomic selection, shrinkage estimation of the relationship
matrix can improve genetic gain.
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Mixed models play an important role in the prediction of breeding
values for plants and animals. Under the assumption that the breeding
values are multivariate normal with genetic covariance G, best linear
unbiased prediction (BLUP) can be used to calculate the breeding
values from phenotypic data (Henderson 1984; Bernardo 2010). In
the absence of molecular markers, genetic covariance can be estimated
via the approximation

Ĝ ¼ As2
A (1)

where each element of the numerator relationship matrix A is
twice the coefficient of coancestry and depends on the probability of
identity-by-descent (IBD) from a base population with additive ge-
netic variance s2

A (Kempthorne 1957; Lynch and Walsh 1998). We
regard Equation 1 as an approximation because it depends on a num-
ber of population genetic assumptions that rarely hold in breeding
populations, particularly in plant breeding (Goddard 1986; Lynch and
Walsh 1998; Piepho et al. 2008).

When molecular markers are available, it is often assumed that the
goal is to estimate the probability of IBD, but in fact, the goal is to
estimate the genetic covariance, which depends on the genotypes of
the causal loci and is fundamentally a state property. It follows that for
a complex trait for which the infinitesimal model is a suitable ap-
proximation,G depends on the probability that the alleles at a random
locus are identical in state, or IBS (Yang et al. 2010; Powell et al. 2010).
Our first objective was to develop a theoretical framework for esti-
mating the (realized) relationship matrix that is suitable for inbred
lines and consistent with the IBS approach (i.e.without invoking a base
population).

As the number of markers increases, the probability of IBS at a
random marker approaches the probability of IBS at random genomic
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loci. This limiting behavior is the basis for estimators of the form
(Habier et al. 2007)

Ĝ ¼ uXX9 (2)

where X is the n·m genotype matrix for m markers and n lines,
and the proportionality constant u is fit by maximum likelihood (or
REML). To see this connection more explicitly, note that when m bi-
allelic markers are coded as {21,0,1}, the n·n matrix of IBS coeffi-
cients (for the markers) is 1

2ðm21XX9þ JÞ, where J is a matrix of ones
(Piepho 2009).

Although Equation 2 is sufficient for breeding value prediction, to
define a realized relationship matrix, a convention is needed concern-
ing the scaling of the matrix. By analogy with the numerator relation-
ship matrix, we propose that the mean of the diagonal elements equals
1+f, where f is the inbreeding coefficient of the current population

hAiii ¼ 1þ f (3)

(Beginning with Equation 3, the symbol A denotes the IBS re-
lationship matrix, and the angular brackets denote the average with
respect to an index, in this case, i.) Equation 3 requires a concept for
inbreeding that is consistent with the IBS framework. Following
Powell et al. (2010), we define the inbreeding coefficient for a single
locus as the intra-individual gametic correlation, but our extension to
the multi-locus case is different and emerges as an algebraic necessity
during the derivation.

The strategy embodied in Equation 2, in which the IBS properties
of the markers are used as a proxy for the IBS properties of any two
genomic loci, requires the number of markers to be much larger than
the number of lines (m.. n). However, to minimize genotyping costs
in breeding programs, it is common to use low-density (e.g. 384) SNP
arrays, in which case the number of lines may exceed the number of
markers. To develop a suitable estimator for this situation, we express
the realized relationship matrix in terms of the n·n variance-covari-
ance matrix (S) for genomic loci (i.e. when sampling columns of the
genotype matrix). Equation 2 is equivalent to estimating S with the
sample covariance S, which in the large m limit is asymptotically
optimal with respect to mean-squared error (MSE) (Casella and
Berger 2002).

When the number of lines exceeds the number of markers, the
MSE of the sample covariance matrix is no longer optimal because
there are too many parameters to estimate (n2/2) relative to the num-
ber of marker data points (nm). This type of phenomenon is well
known in the statistics literature under the name Stein’s paradox
(Stein 1956; Efron 1975), and it was James and Stein (1961) who first
proposed shrinkage to reduce the MSE. Yang et al. (2010) have pro-
posed a shrinkage estimator for the realized relationship matrix, but it
does not preserve Equation 3. We propose an alternative estimator
that does not shrink the inbreeding coefficient, and we investigate its
impact on the accuracy of breeding value prediction in rice, barley,
maize, and pig populations.

THEORY

Derivation of A in terms of causal loci
Initially we work with causal loci, using an overscript tilde for
variables. Eventually we will work with a marker matrix and use the
same symbols without the tilde. Consider a trait with ~m causal bi-
allelic loci, where ~Xik 2 f0;1;2g is the allele content at locus k in line i

(the assignment of alleles is arbitrary). For an additive trait, the genetic
value of line i can be written as

ai ¼
X
k¼1

~m

ð~Xik 2 2~pkÞuk[
X
k

~Wikuk (4)

where the random genetic effects uk are taken to be physiolog-
ical parameters of the causal loci, and ~W is the centered geno-
type matrix. By centering the allele content of each locus
(~pk ¼ ð2nÞ21P

i
~Xik are the allele frequencies), the genetic values

are expressed relative to the population mean ðPi ai ¼ 0Þ. Fur-
thermore, as proved in Appendix 1, the additive genetic value in
Equation 4 equals the breeding value, that is, twice the mean prog-
eny value when the current population (regardless of its structure)
is randomly mated.

As in the introduction, we denote the variance-covariance matrix
for the breeding values by G

G ¼ varu½a� ¼ varu½ ~Wu� ¼ ~W var½u� ~W9 ¼ s2
u ~m

21 ~W ~W9 (5)

The subscript u on the variance operator indicates that it is with
respect to the random genetic effects and not the genotypes—the
latter are simply given and not assumed to follow any distribution.
For the last step in Equation 5, we have assumed the uk are i.i.d. with
constant variance s2

u=~m, which is appropriate for a complex trait with
many causal loci of comparable effect (i.e. well described by the in-
finitesimal model). The variance per locus is scaled by ~m so that s2

u is
an intensive property that does not depend on the number of causal
loci.

We are now in a position to decompose G as As2, where A is the
(IBS) relationship matrix satisfying Equation 3. This convention for
the scaling of A implies that

trðGÞ ¼ s2trðAÞ ¼ s2nð1þ f Þ (6)

where the trace operator, tr(• ), sums the diagonal elements of
a matrix. Genetic formulas for both the population inbreeding co-
efficient f and the variance parameter s2 emerge upon applying the
trace operator to Equation 5

trðGÞ ¼ s2
u ~m

21
X
k¼1

~m Xn
i¼1

ð~Xik22~pkÞ
2

(7)

¼ s2
u ~m

21
X
k¼1

~m Xn
i¼1

½ð~xik12~pkÞ þ ð~xik22~pkÞ�
2

(8)

¼ 2s2
un~m

21
X
k¼1

~m

ð~pk~qk þ ~pk~qkfkÞ (9)

Equation 7 follows from the identity trðZZ9Þ ¼ P
ikZ

2
ik, which

holds for any matrix Z (Searle 1971). Equation 8 follows by writing
the diploid genotype as the sum of its two gametes: ~Xik ¼ ~xik1 þ ~xik2,
where ~xik1 and ~xik2 are binary variables. Equation 9, which follows
from several algebraic manipulations, introduces the notation q = 1–p
as well as the intra-individual gametic correlation fk at a single locus
(Powell et al. 2010)
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fk ¼
n21P

ið~xik1 2 ~pkÞð~xik2 2 ~pkÞ
~pk~qk

(10)

In Appendix 2, we show that fk is also the deviation from Hardy-
Weinberg proportions and thus interpretable as the inbreeding co-
efficient for the population.

Upon comparing Equation 6 with Equation 9, we see that the
coefficient of the A matrix is

s2 ¼ 2s2
u ~m

21
X

k
~pk~qk ¼ 2s2

uh~pk~qki (11)

and the inbreeding coefficient f is a weighted average across loci

f ¼ P
k
bkfk

bk ¼
~pk~qkP
j
~pj~qj

(12)

Dividing G (Equation 5) by s2 (Equation 11) yields the following
formula for the relationship matrix

A ¼
~W ~W9

2
P

j ~pj~qj
¼ ~m21P

k
~W•k ~W9•k

2~m21P
j
~pj~qj

¼ h ~W•k ~W9•ki
2h~pj~qji

(13)

As expected, the parameter s2
u cancels out and does not appear in

the formula for A. The second step in Equation 13 is an identity from
matrix algebra, in which ~W ~W9 has been written as a sum over ~m
matrices with dimension n·n, formed from the outer product of the
columns of ~W (denoted by ~W •k). In the limit of the infinitesimal
model, the averages in Equation 13 converge to the corresponding
expected values under random sampling of genomic loci. Letting the
random variables w and p denote the centered genotype and allele
frequency, respectively, the result is

A ¼ E½ww9�
2E½pq� ¼

var½w� þ E½w�E½w9�
2E½pq� (14)

Estimating A from markers
The n·m-centered genotype matrix for the markers W (without
a tilde) represents m realizations of the random variable w and can
be used to estimate the parameters in Equation 14, the most important
being the genome-wide covariance matrix S = var[w]. If the markers
are an unbiased sample of genomic loci, then the sample covariance
matrix S ¼ m21WW92 hW •kihW9•ki is an unbiased estimator of the
genomic parameter S. Moreover, when the number of markers is
large compared to the number of lines (m � n), S is optimal with
respect to mean-squared error (Casella and Berger 2002). This leads to
the following estimator for A

Â ¼ WW9

2
P

kpkqk
(15)

As the number of markers decreases, the sample covariance is no
longer an optimal estimator for the genome-wide covariance matrix.

By shrinking the estimate, although this introduces bias, the esti-
mation error can be decreased. One type of shrinkage estimator is the
weighted average

Ŝ ¼ dTþ ð12 dÞS (16)

where the shrinkage intensity d ranges from 0 to 1. When d = 0,
there is no shrinkage and the estimator equals the sample covariance
S. When d = 1, the estimate is completely shrunk to a target T. The
target represents a low-dimensional model that can be estimated with
greater precision than S because it has fewer parameters (Schäfer and
Strimmer 2005).

A common target is T = hSiiiI where hSiii is the mean of the
diagonal elements of S (Ledoit and Wolf 2004). Substituting this for-
mula into Equation 16, one can verify that the total variance is estimated
without bias: E½trðŜÞ� ¼ trðSÞ. Shrinkage is not needed for estimating
the total variance because it is a single parameter. Similarly, even with as
few asm = 96 markers, the row means of the marker matrix hW •ki will
be a near-optimal estimator for the genome-wide parameter E[w] be-
cause there are only n parameters to estimate from nm data points. Our
shrinkage estimator (denoted with an asterisk) is thus

Â
� ¼ dhSiiiIþ ð12 dÞSþ hW•kihW9•ki

2hpjqji (17)

To select the shrinkage intensity, we make use of results from
Ledoit and Wolf (2004), who derived an analytical formula for the
shrinkage intensity that minimizes the expected MSE for the covari-
ance matrix

d ¼ argmin E½kŜ2Sk2� (18)

(The squared Frobenius norm k�k2 is the sum of the squared
elements of a matrix.) In Methods, we give the asymptotic solution
to Equation 18. From this solution, a useful heuristic can be derived
for when shrinkage is expected to be negligible (Ledoit and Wolf
2004)

d e n=m

ðCVÞ2 (19)

where CV is the coefficient of variation of the eigenvalues of S.
Equation 19 indicates that when the ratio of lines to markers is small
compared with the dispersion of eigenvalues (n/m� CV2), there is no
need for shrinkage. This formula is revisited in Results.

METHODS

Data sets
Genotypes for several publicly available populations were used in this
study:

(1) Maize diversity panel (Cook et al. 2012) (available at http://www.
panzea.org/dynamic/derivative_data/Cook_etal_2012_SNP50K_
maize282_AGPv1-111202.zip)

(2) Rice diversity panel (Zhao et al. 2011) (available at ftp://ftp.
gramene.org/pub/gramene/CURRENT_RELEASE/data/diversity/
data_download/hapmap_plink_files/div_rice34.RiceDiversity44K.
hapmap.tar.gz)
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(3) Commercial pig population (Cleveland et al. 2012) (available at
http://www.g3journal.org/content/suppl/2012/04/06/2.4.429.DC1/
FileS1.zip)

(4) Advanced breeding lines from the North Dakota State Univer-
sity 2006–2009 two-row and six-row barley breeding programs
(available by querying the database at http://hordeumtoolbox.
org)

For the pig population, we also used phenotypes and progeny-test-
estimated breeding values (pEBV) for three anonymous traits, down-
loaded from the same source. Genotypes were curated by eliminating
markers with more than 10% missing data and lines with more than
15% missing data. The number of lines and markers after curation are
shown in Table 1. Missing marker scores were imputed with the
population mean for each marker.

Shrinkage intensity
Let the n·m matrix Z constitute m independent observations of an n-
variate random variable z with mean 0, for which the sample covari-
ance matrix is S = m21ZZ9. Ledoit and Wolf (2004) proved that the
following shrinkage intensity produces an estimator that is asymptot-
ically optimal with respect to MSE (Equation 18)

d ¼
m22 Pm

k¼1
kZ•kZ9•k2Sk2

kS2hSiiiIk2
(20)

For convenience, we rewrite the numerator in Equation 20 as

X
k

kZ•kZ9•k2Sk2 ¼
X
k

tr½ðZ•kZ9•k2SÞ2� (21)

¼
X
k

trðZ•kZ9•kZ•kZ9•kÞ2m  tr
�
S2
�

(22)

¼
X
k

X
ij

Z2
ikZ

2
jk 2m  tr

�
S2
�

(23)

¼ m
X
ij

ðGij 2 S2ijÞ (24)

Equations 22 and 23 follow from cyclic permutation properties of
the trace and the definition of S. Equation 24 introduces the matrix

G ¼ m21½Zik2 �½Zik2 �9 (25)

where ½Z2
ik� is the matrix formed by squaring the elements of Z. In

practice, the shrinkage intensity is confined to the interval [0,1] when
Equation 20 yields a value outside this range (Ledoit and Wolf 2004).
When applying these formulas to the genomic data, for Z we used the
centered genotype matrix W adjusted to have zero row means:
Zik ¼ Wik2m21P

kWik.
This shrinkage algorithm has been implemented as part of the

rrBLUP package for R, version 4.0 (Endelman 2011; R Development
Core Team 2011).

Simulation and analysis
Simulated traits were constructed by first generating additive genetic
values from the multivariate normal distribution, with variance equal

to the full-marker relationship matrix (hence, s2 = 1). Independent
normal deviates with variance s2

e were added to generate phenotypes,
and the s2

e parameter was modulated to simulate traits with different
phenotypic accuracies. Figure 3 was generated with s2

e = 3 for the
plant species and s2

e = 2 for the pigs. Figure 4 is based on 10,000
simulations, with log2s2

e chosen from a uniform(21,7) distribution,
and results were binned by realized phenotypic accuracy in 0.1
increments.

Mixed model prediction of breeding values was conducted with the
model

y ¼ m1þ aþ e (26)

where y is the vector of phenotypes, m is a fixed effect, 1 is a col-
umn vector of ones, a � Nð0; Âs2Þ is the vector of breeding values
with estimated relationship matrix Â, and the residuals are
e � Nð0; Is2

e Þ. Computations were done with R package rrBLUP
(Endelman 2011), which estimates variance components by REML
using the eigenvalue decomposition algorithm of Kang et al. (2008).
With this algorithm, the inverse phenotypic covariance matrix V̂

21
is

readily generated, after which the BLUE and BLUP solutions for the
fixed and random effects, respectively, can be calculated using stan-
dard formulas (Searle et al. 1992)

m̂ ¼
�
19V̂

2 1
1
�21

19V̂
21

y

â ¼ ŝ2ÂV̂
21ðy2 m̂1Þ

Accuracy was defined as the Pearson correlation coefficient
between the genomic estimated breeding values (GEBV = â) and
either the true breeding values (in the simulation) or the progeny-
test-estimated breeding values (pEBV) for the pig traits.

RESULTS
Table 1 lists several attributes of the five populations used in this
study. The population sizes ranged from n = 274 (maize) to n =
3534 (pig). The pig, maize, and rice populations had 30–50K SNPs,
whereas only 2K SNPs were available for the barley populations. The
inbreeding coefficient (f) for each of the four plant populations, cal-
culated from the mean diagonal element of the relationship matrix,
was near 1 as expected for inbred lines (imputing missing markers
with the population mean introduced low levels of heterozygosity).
The pig population was outbred with f = 0.03.

Both structured and unstructured populations were included. The
rice population was a diverse panel of several distinct types (indica,
japonica, Aus, etc.) identifiable with principal component (PC) anal-
ysis (Zhao et al. 2011). The observation that 34% of the total variation

n Table 1 Populations

Population Lines (n) SNPs (m) f a 1st PCb CVc n/CV2d

Pig 3534 52,843 0.03 0.06 4.7 1
Maize 274 44,431 0.97 0.05 1.3 1.01
2-row Barley 383 2398 0.95 0.08 2.6 0.35
2+6-row Barley 763 1884 0.97 0.32 9.0 0.06
Rice 407 31,443 0.96 0.34 7.2 0.05
a
Inbreeding coefficient, estimated from the relationship matrix.

b
Fraction of total variance captured by the first principal component (PC).

c
Coefficient of variation (1 = 100%) for the eigenvalues of the covariance
matrix.

d
Quantities are relative to the pig population (= 1).
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was captured by the first PC indicates its highly structured nature (1st

PC in Table 1). We intentionally grouped the 2-row and 6-row barley
lines, which as separate populations are unstructured (1st PC , 10%)
and derived from different breeding programs, into one population to
create a second structured population for analysis (32% explained by
1st PC). The pig and maize populations were relatively unstructured
(1st PC , 10%).

Population structure can also be detected from a histogram of the
realized relationship coefficients. Figure 1 contrasts the unstructured
2-row barley population with the structured 2+6-row population.
Because the relationship coefficients are expressed relative to the cur-
rent population, the mean of the off-diagonal elements (left panel) is
2(1 + f)/n, which is essentially 0 for populations with hundreds of
lines or more. Despite having the same mean, the histogram for the 2-
row population is unimodal, whereas that for the 2+6-row population
is bimodal. The positive peak in the bimodal distribution arises from
relationships between lines with the same row number, while the
negative peak corresponds to relationships between lines with differ-
ent row numbers. The highly structured rice population also has
a diffuse distribution of off-diagonal elements, whereas the pig and
maize distributions are unimodal (supporting information, Figure S1).

The right panel in Figure 1 shows the distribution of diagonal
elements in the realized relationship matrices for the 2-row and 2
+6-row barley populations. Although the mean of the diagonal ele-
ments is 1+f and thus at most 2, the individual coefficients can be
larger than 2, unlike the diagonal elements of the numerator relation-
ship matrix. The interpretation of the diagonal coefficients in terms of
inbreeding is discussed below.

Shrinkage to minimize MSE
For each of the five populations, relationship matrices were estimated
from random subsets of markers, with the shrinkage intensity chosen
to minimize the expected MSE. As shown in Figure 2, for every
population, the shrinkage intensity approached zero as marker num-
ber increased, but there were clear differences in the amount of
shrinkage at low marker density. With 384 markers, the two struc-
tured populations (rice and 2+6-barley) had less than 3% shrinkage
compared with nearly 20% shrinkage for the 2-row barley and over
30% shrinkage for the maize and pig populations.

These trends can be understood in terms of the heuristic in Equa-
tion 19, in which (for a given marker density) the shrinkage intensity
depends on the ratio n/CV2 between population size (n) and the co-
efficient of variation (CV) for the eigenvalues of the n·n covariance
matrix. Because the leading principal components in a structured

population account for a large amount of the total variation, such
populations have high eigenvalue CV. As shown in Table 1, the rice
and 2+6-row barley populations had the highest CV values (7.2 and
9.0, respectively), while the maize population had the lowest at 1.3.
The final column in Table 1 shows the ratio n/CV2 relative to the pig
population (= 1). Although the pig population was nearly 13 times
the size of the maize population, its CV was 3.6 times larger, leading
to nearly identical n/CV2 ratios and shrinkage intensities in Figure 2.
The two structured populations had the smallest n/CV2 ratios and
thus also the least shrinkage in Figure 2. The 2-row barley popula-
tion was intermediate between these extremes.

The shrinkage intensities in Figure 2 were based on minimizing the
expected MSE, as determined from a reduced marker set. Figure 3
(using m = 384 markers) shows that this approach did in
fact minimize the actual MSE between the full-marker relationship
matrix and that based on the reduced marker set (see Figure S2 for 2
+6-row barley). The solid lines show the MSE as a function of the
shrinkage intensity (in 0.05 increments), and in every case, the
minimum was attained near the value indicated in Figure 2. For
the rice and 2+6-row barley populations, the minimum MSE was

Figure 1 Histograms of entries in the realized re-
lationship matrix for the 2-row and 2+6-row barley
populations. The diagonal elements have a mean of
1 + f � 2 for inbred lines, while the off-diagonal
elements have a mean of 2(1 + f)/n � 0. The bi-
modal distribution of the off-diagonal elements
reveals the highly structured nature of the 2+6-row
barley population. The positive peak contains rela-
tionships between lines with the same row number,
while the negative peak is between lines with differ-
ent row numbers.

Figure 2 Shrinkage intensity to minimize the expected MSE. Each
point is the mean from 20 random subsets of markers (SE , 0.01). As
expected, the optimal shrinkage decreased as the number of markers
increased. There was little shrinkage for the structured populations
(rice, 2+6-row barley) because of their high eigenvalue dispersion
(see CV in Table 1).
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attained at 5% shrinkage vs. 2–3% shrinkage based on the expected
MSE. The correspondence was equally good for the unstructured
populations: 2-row barley = 15% actual vs. 19% expected; pig =
35% actual vs. 34% expected; maize = 30% actual vs. 32% expected.

Maximizing accuracy
Minimizing the MSE, although theoretically tractable, is not in itself
particularly useful. A more meaningful criterion is maximizing the
accuracy of breeding value prediction. The dashed curves in Figure 3
show the effect of shrinkage on prediction accuracy, as measured by
the correlation between GEBV (using the shrunken relationship ma-
trix and all phenotypes for training) and true breeding values simu-
lated with the full marker matrix. The results indicate that shrinkage
based on minimizing MSE is somewhat conservative with respect to
maximizing accuracy. This follows from the observation that the
maximum in the accuracy curve occurred at higher shrinkage than
where MSE was minimized. For the maize, rice, and pig populations,
the shrinkage intensity needed to minimize MSE was 0.20–0.25 less
than for maximizing accuracy. This difference was somewhat smaller
for the barley populations, but they only had 2K markers for estimat-
ing the full marker relationship matrix.

Figure 4 compares GEBV accuracy against phenotypic accuracy in
the maize population for a range of simulated heritabilities. The three
curves correspond to (1) using all 44K markers, (2) using a random set
of 384 SNPs with shrinkage, and (3) using 384 SNPs without shrink-
age. For all three methods, the maximum GEBV accuracy relative to
phenotypic accuracy was observed at a phenotypic accuracy of 0.3
(SE, 0.004). Comparing the two lower curves, one sees that shrinkage

improved GEBV accuracy with 384 markers, and the accuracy gain
increased with heritability. At a phenotypic accuracy of 0.9, shrink-
age improved GEBV accuracy by 0.07 on average.

Figure 4 also illustrates that phenotypic accuracy can be superior to
GEBV accuracy for highly heritable phenotypes. When phenotypic
accuracy was above 0.6, it surpassed GEBV accuracy using random
sets of 384 SNPs without shrinkage, and the crossover with shrinkage
occurred at phenotypic accuracy equal to 0.8. This phenomenon arises
because low-density markers sample the genome incompletely, lead-
ing to discrepancy between the true and estimated relationship ma-
trices. If the sampling error is large enough, the accuracy of the
phenotypes is corrupted rather than improved through the mixed
model analysis. The “sweet spot” for shrinkage in this simulation
was at phenotypic accuracies between 0.4 and 0.6. In this range, GEBV
accuracy was substantially improved by shrinkage and was also higher
than phenotypic accuracy.

These trends were confirmed by our analysis of three anonymous
traits in the pig population, for which progeny-test-estimated breeding
values (pEBV) are available to calculate accuracy (Cleveland et al.
2012). Table 2 compares the accuracy of phenotypes, high-density
SNPs (53K), and low-density SNPs (random sets of 384), both with
and without shrinkage. The top row for each trait shows the accuracy
for individuals with measured phenotypes; the bottom row is for
individuals without a measured phenotype. Looking at the last two
columns, one sees a clear benefit to using shrinkage for predicting the
breeding value of phenotyped individuals, and this benefit increased
with heritability. For trait T3 (h2 = 0.38), shrinkage increased 384 SNP
GEBV accuracy from 0.56 to 0.62, a gain of 0.06 (P, 10210 by paired

Figure 3 Maximizing accuracy vs. minimizing
MSE. At shrinkage intensities ranging from 0 to
0.7, with 0.05 increments, the relationship matrix
was calculated for random sets of 384 markers. In
each replicate, the MSE was calculated relative to
the full marker relationship matrix (MSE =
n22kA384 2 Afullk2), and GEBV accuracy was es-
timated using simulated phenotypes. The two
curves (dashed = accuracy, solid = MSE) show
the mean from 40 simulations (SE less than 3%
of the mean).
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t-test). For traits T4 and T5 (h2 � 0.6), the accuracy gain from
shrinkage was 0.09 and 0.10, respectively, but phenotypic accuracy
was still higher. With a phenotypic accuracy of 0.58, trait T3 appears
to be in the sweet spot: GEBV accuracy was improved by shrinkage
and was also higher than phenotypic accuracy.

Table 2 shows that shrinkage did not improve GEBV accuracy for
the unphenotyped pigs, nor have we observed any benefit in simula-
tions. For example, even with as few as 96 markers, where the gains in
GEBV accuracy were 0.1–0.2 in the maize population when training
on all phenotypes, there was no accuracy gain when predicting unphe-
notyped lines.

DISCUSSION
Although we have built upon the work of Powell et al. (2010) and
Yang et al. (2010), our results are different from their unified additive
relationship, or UAR, model. The UAR model assumed a genetic
model with standardized coefficients for the causal loci

ai ¼
P

k
~Zikuk

~Zik ¼
~Xik 2 2~pkffiffiffiffiffiffiffiffiffiffiffi

2~pk~qk
p (27)

Equation 27 has the undesirable property that the genetic values of
lines possessing a rare causal allele tend to infinity as the allele fre-
quency approaches zero. The marker-based estimate of the off-diag-
onal elements in the UAR matrix is

UARij ¼ m21
Xm
k¼1

�
Xik 2 2pk

��
Xjk 2 2pk

�
2pkqk

(28)

which also tends to infinity for lines possessing a rare marker allele
as its frequency approaches zero. Such divergent behavior does not
occur in the estimators we have derived. Our formula for high-density
markers (Equation 15) is identical to the first formula proposed by
VanRaden (2008) for use with an unselected, outbred base population.
Our IBS derivation provides rigorous justification for using this for-
mula in any population when the number of markers is much larger
than the number of lines.

In the numerator relationship matrix, each diagonal element
equals one plus the probability that the two alleles at a randomly
chosen locus are IBD from the base population. As this probability lies
between 0 and 1, the diagonal elements in the numerator relationship
matrix range from 1 to 2. It was evident from Figure 1 that the
diagonal elements in the realized relationship matrix can fall outside
this range. In the UAR model, the diagonal elements have been mod-
ified to lie in the range 0–2 (Yang et al. 2010; Powell et al. 2010), but
this has the effect of creating an improper covariance matrix for the
breeding values (i.e. it may no longer be positive semidefinite).

From the formula for the realized relationship matrix in Equation
13, the analog to the inbreeding coefficient for an individual is

ui ¼
P

k
ð~Xik22~pkÞ

2

2
P

j
~pj~qj

2 1 (29)

To gain insight into this formula, note that if ~p = 1/2 for all loci,
Equation 29 simplifies to 2c 2 1, where c is the fraction of homo-
zygous loci. In the context of an IBS model, homozygosity is an
appropriate state quantity for measuring the inbreeding of an individ-
ual. The overall inbreeding coefficient f can be written as an average
over individuals or over loci

Figure 4 Prediction accuracy for simulated phenotypes in the maize
population. The three curves show the difference between GEBV
accuracy and phenotypic accuracy as a function of phenotypic
accuracy (SE , 0.004 not shown). GEBV accuracy was highest using
all markers, followed by 384 SNPs with shrinkage. All three prediction
methods peaked when phenotypic accuracy was 0.3, while the accu-
racy gain due to shrinkage increased monotonically with phenotypic
accuracy. Phenotypic accuracies between 0.4 and 0.6 represented
a “sweet spot” for shrinkage: in this range, heritability was high
enough for shrinkage to substantially improve GEBV accuracy but
not so high that phenotypes were more accurate.

n Table 2 Prediction accuracies for pig traits

Trait h2a n Phenotypic Accuracyb
GEBVc Accuracy

53K SNP
GEBV Accuracy

384 SNP + Shrinkage
GEBV Accuracy

384 SNP, No Shrinkage

T3 0.38 3141d 0.580 0.690 0.617 (0.002)e 0.561 (0.002)
393 – 0.465 0.370 (0.007) 0.370 (0.007)

T4 0.58 3152 0.751 0.809 0.718 (0.002) 0.630 (0.002)
382 – 0.569 0.469 (0.004) 0.469 (0.004)

T5 0.62 3184 0.734 0.765 0.678 (0.003) 0.584 (0.003)
350 – 0.520 0.429 (0.012) 0.429 (0.012)

a
Heritability reported by Cleveland et al. (2012).

b
Accuracy = correlation with progeny-test-estimated breeding values.

c
Genomic-estimated breeding values (GEBV) calculated using all phenotyped individuals.

d
Within each trait, the top row is for individuals with a measured phenotype; the bottom row is for individuals without a phenotype.

e
Mean and SE based on 20 random sets of 384 markers.
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Xn
i¼1

n21ui ¼
X
k¼1

~m

bk fk ¼ f (30)

where the weights bk are given in Equation 12.
Because the allele content at each locus is centered by the

population mean, our realized relationship matrix is positive semi-
definite but not strictly positive definite (there is at least one zero
eigenvalue). This means the breeding values follow a singular normal
distribution, but this poses no problem from the perspective of mixed
model theory (Searle et al. 1992).

Heritability
When the genetic covariance is written as proportional to the
numerator relationship matrix, the proportionality constant is the
additive genetic variance in the outbred base population. Because the
IBS-relationship matrix uses the current population as the “base,”
one might expect its proportionality constant, s2 ¼ 2s2

uh~pk~qki
(Equation 11), to equal the genetic variance of the current population,
but this is not true for inbred lines. As originally shown by Fisher
(1941) [see also Kempthorne (1957) and Lynch and Walsh (1998)],
the additive genetic variance for a single locus with no dominance is
s2
A ¼ 2s2

upqð1þ f Þ. Compared with the coefficient of the relationship
matrix, the additive genetic variance is larger by a factor of (1+f).

This fact has implications for estimating heritability in the narrow
sense. If the additive genetic values in the mixed model are breeding
values (i.e. twice the mean progeny value; see Appendix 1), heritability
can be defined using parent-offspring regression as

h2 ¼ covi
�
ai; yi

�
vari

�
yi
� ¼ a9ðy2m1Þ

ky2m1k2 (31)

Replacing the breeding values (and phenotypic mean m) in Equa-
tion 31 with their predicted values provides an immediate estimator
for heritability. By taking the expected value of Equation 31, herita-
bility can be related to the variance components of the mixed model
(Equation 26). In File S1, we show that for large populations

E
�
h2
� � s2ð1þ f Þ

s2ð1þ f Þ þ s2
e

(32)

Equation 32 can also be used to estimate h2 by replacing the
variance components with their ML or REML estimates.

Shrinkage
Yang et al. (2010) proposed using the identity matrix as a low-di-
mensional target when shrinking the estimate of the relationship ma-
trix: Â

� ¼ dIþ ð12 dÞÂ. For inbred populations, this estimator is
not ideal because it shrinks the off-diagonal and diagonal elements
with the same intensity. By contrast, our estimator does not shrink the
inbreeding coefficient.

Using both real and simulated phenotypes, we have demonstrated
that shrinkage can substantially increase the accuracy of GEBVs for
phenotyped individuals (or lines), but not for unphenotyped ones.
Although the term “genomic selection” is typically used in the context
of predicting unphenotyped individuals, it is also encompasses the
selection of phenotyped individuals for mating based on GEBV, which
is important in plant and animal breeding. In plant breeding, we also
see potential to use the realized relationship matrix with single-replicate

or unbalanced multi-environment yield trials to more accurately ad-
vance lines for variety or hybrid development, and shrinkage may be
beneficial in these applications.

Conclusion
There were two objectives in this study. The first was to formulate the
realized relationship matrix based on identity-by-state at causal loci
and by requiring the mean diagonal element to equal 1+f for the
current population. For high-density markers, the optimal estimator
of this relationship matrix is equivalent to the first formula of Van-
Raden (2008). The second objective was to explore shrinkage estima-
tion of the relationship matrix at low marker density. In unstructured
populations with more lines than markers, shrinkage estimation can
increase the accuracy of GEBVs for phenotyped lines; there is no
benefit without phenotypes. Particularly when phenotypes have mod-
erate accuracy, e.g. from preliminary yield trials in plant breeding,
shrinkage estimation has the potential to improve the selection of
lines as parents or for variety development.
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Appendix 1
We prove that, for an additive trait in an arbitrary population, the
formula in Equation 4 for the genetic value of line i

ai ¼
X
k¼1

~m

ð~Xik 2 2 ~pkÞ  uk [
X
k

~Wikuk

equals two times the mean genetic value of its progeny under
random mating, expressed relative to the population mean. In other
words, the additive genetic value is the breeding value. By assuming
the genetic effects uk are physiological parameters of the causal loci
(rather than defined in a least-squares sense), we can write the prog-
eny genetic value as gij ¼

P
k
~Zjkuk where ~Zjk is the allele dosage at

locus k in progeny j. The mean progeny value for line i is thus

E½gijj~Xi•� ¼
X

k
E½~Zjkj~Xik�   uk (33)

where the expectation is with respect to the random processes
of gamete segregation and mating. The former contributes 1

2
~Xik and

the latter contributes ~pk for a mean progeny value of
P

kð12~Xik þ ~pkÞuk.
Subtracting the population mean 2

P
k~pkuk and multiplying by two

produces Equation 4. Note that Equation 33 does not require the causal
loci to be in linkage equilibrium (the linearity of the expectation oper-
ator does not require statistical independence).

Appendix 2
We prove that for a single locus, the inbreeding coefficient defined by
Equation 10 (written here without overscript tildes)

fk ¼
n21P

i

�
xik1 2 pk

��
xik2 2 pk

�
pkqk

also quantifies the deviation from Hardy-Weinberg proportions.
For allele content Xi 2 {0,1,2}, the proportion of heterozygotes (H) is

H ¼ n21
Xn
i51

Xið22XiÞ (34)

Upon substituting Xi = xi1 + xi2 into Equation 34, where xi1 and xi2
are binary variables denoting the two gametes in individual i, the
result is

H ¼ n21 Pn
i¼1

ðxi1 þ xi2Þð22 xi1 2 xi2Þ

¼ n21 P
iðxi1 þ xi2 2 2xi1xi2Þ

¼ 2p2 2n21 P
iðxi1 2 pþ pÞðxi2 2 pþ pÞ

¼ 2p2 2p2 2 2pqf

¼ 2pqð12 f Þ

(35)

Similarly, the proportion of Xi = 2 homozygotes is (omitting sev-
eral steps)

P ¼ 1
2n

21 Pn
i¼1

XiðXi 2 1Þ

¼ n21 P
i xi1xi2

¼ pqf þ p2

(36)
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