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Abstract

The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission,
which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the
current study we set out to unravel the strong association between this mosquito species and human beings, as it is
determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the
production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of
attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that
individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria
on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of
attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and
attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for
protection against vectors of malaria and other infectious diseases.
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Introduction

Host location by female mosquitoes is mediated by host-derived

physical and chemical cues. Physical cues include heat, moisture

and visual cues, and play a role during orientation and landing

[1,2,3]. Chemical cues are considered most important for

orientation and landing, especially for nocturnal mosquitoes

[4,5] and humans can be ranked for attractiveness to mosquitoes

by testing the emanations released from their skin [6,7,8,9]. The

mosquito Anopheles gambiae Giles sensu stricto (hereafter An. gambiae), a

nocturnal, highly anthropophilic species, is one of the most

important malaria vectors in Africa [5]. Volatiles released from

human skin provide essential cues that guide this mosquito species

to its host [4,5].

Skin bacteria play an important role in the production of

human body odour and without bacteria, human sweat is

odourless to the human nose [10]. Skin bacteria convert non-

volatile compounds into volatile compounds having characteristic

smells. The body odour of individual human beings correlates with

the presence of specific microorganisms [11,12,13] and with

detailed skin microbial profiles, as assessed using denaturing

gradient gel electrophoresis (DGGE) analysis [14]. The interac-

tions between skin microbes and the human host, however, are still

poorly understood [15] and the effect of the skin microbial

composition on disease vectors remains largely unknown [16].

Human eccrine sweat is more attractive to An. gambiae after

incubation with skin bacteria for one or two days [17], and

washing the feet with a bactericidal soap significantly alters the

selection of biting sites by An. gambiae [18]. Recently, it was shown

that volatiles produced by human skin bacteria, grown in vitro, are

attractive to female An. gambiae when tested in an olfactometer or

with mosquito traps [19,20].

Here, we examined in vivo how the composition of skin

microbiota affects an individual’s attractiveness to mosquitoes by

assessing the attractiveness of 48 human males to An. gambiae and

analysing their skin bacterial communities. We subsequently

PLoS ONE | www.plosone.org 1 December 2011 | Volume 6 | Issue 12 | e28991



correlated the observed effects with microbial abundance and

composition.

Methods

Mosquitoes
The Anopheles gambiae Giles sensu stricto colony originated from

Suakoko, Liberia. Mosquitoes were reared according to the

methods described previously [9].

Volunteers
The attractiveness of 48 adult males aged between 20 and 64

years to An. gambiae was examined. Forty-six men were of

Caucasian origin, one man was of Asian and one of Hispanic

origin. The Dutch Medical Ethical Review committee (METC,

Project number ABR NL16928.081.07 amended in 2007)

approved the study, and written informed consent was acquired

from all subjects prior to participation. Volunteers were requested

to refrain from drinking alcohol [21], eating garlic, onions or spicy

food, taking a shower, using perfumed cosmetics and were asked to

wear nylon socks provided by the research team for the twenty-

four hours before the sampling event. Volunteers were free from

chronic illnesses and not using any medication on a regular basis.

The socks provided by the research team (100% polyamide, 40

denier, Hans Textiel, The Netherlands) were washed twice with

70% ethanol and dried in a ventilated oven at 80uC before use.

Volunteers were instructed not to use soap the last time they

showered before the experiment.

Olfactometer bioassay
Skin emanations from each individual were collected twice on

three different days by rubbing six glass beads [9] (15 mm in

diameter, contained in a Teflon holder, Figure S1) for 10 min.

against the underside of the left foot. Feet produce volatiles that

are attractive to An. gambiae and there is evidence that this body

part produces volatiles that influence the selection of biting sites by

this mosquito species [18]. Beads with skin emanations were tested

for attractiveness to female An. gambiae in a dual-choice

olfactometer (1.6060.6660.43 m) against a standard ammonia

concentration of 136 ppm for six times in total: two consecutive

assays on each of three mornings [9]. Release of test stimuli was

alternated between left and right ports of the trapping devices of

the olfactometer to rule out any positional effects. Air speed at the

ports was 0.2160.01 m/s. The experimental room was main-

tained at a temperature of 27.960.7uC and a relative humidity of

62.365.8%. The temperature inside the flight chamber was

27.961.7uC and the humidity 69.064.6%. The humidity of the

air led into the trapping devices was maintained above 80% and its

temperature was 28.061.5uC.After use, the trapping devices were

washed in a dishwasher at 45uC with biological soap (Sonnett tabs,

Sonnet OHG, Germany). The glass beads were cleaned by rinsing

in a solution of 10% HelmanexH II cleaning concentrate (Hellma

GmbG & Co KG, Germany) in water, subsequently in distilled

water, and finally in ethanol (99.8% purity; Merck, Germany).

The rinsed beads were dried in an oven at 200uC for at least one h.

Between experiments, the Teflon holder was cleaned with 70%

ethanol and quick-dried with a heat gun (Ferm B.V., The

Netherlands).

Skin bacterial diversity
The skin bacterial composition on the feet of the individuals was

determined by selective and non-selective plate counts and 16S

rRNA gene sequencing. Connecting the selective and non-

selective plate counts to the relative attractiveness of the skin

volatiles provided a first indication of whether the skin microbiota

affects the attractiveness of human skin emanations to An. gambiae.

The 16S rRNA genes contain hypervariable regions, the

sequences of which can provide a detailed signature of the

microbiota on the human foot.

Sample collection. On each experimental day a bacterial

sample was taken from the sole of the left foot of each individual

after assessing that individual’s attractiveness to mosquitoes during

two successive olfactometer experiments. Bacterial samples were

taken by using a sampling ring and washing buffer as described

before [12,19]. Seven hundred mL of the sample was added to

300 mL glycerol (87%, Merck, Germany) and stored at 280uC for

later identification by 16S rRNA sequencing. The remainder of

the sample was used for plate counts on selective and non-selective

media.

Selective and non-selective plate counts. Within three

hours after the bacterial sample collection, 100 mL of each sample

was decimally diluted, spread on Colombia (sheep) blood agar

plates (Tritium, The Netherlands) and incubated at skin

temperature (34uC) to determine bacterial densities by counting

colony-forming units (CFU). A range of selective media was used

to determine the diversity of the human skin microbiota samples

according to the method described before [8] (Table S1). Media

were either selective for staphylococci, aerobic corynebacteria,

micrococci or Propionibacteria (Tritium, The Netherlands).

Bacterial 16S rRNA genes. In total 144 bacterial samples

were collected; three samples from each volunteer on different

mornings. Microbial DNA was extracted from 41 bacterial

samples using a FastPrepDNA soil kit (MP Biomedicals, USA).

Of these, 13 samples did not yield enough DNA and were

therefore excluded from further analysis. The remaining 116

samples were extracted using the Mo-Bio Power Soil kit (MO BIO

Laboratories, Inc., USA). Results of the two extraction methods

were not different and the data were combined for the final

analysis.

PCR amplification of the V2 region of bacterial 16S rRNA

genes, amplicon quantification, pooling, and pyrosequencing were

performed as previously described [22]. Sequences were submitted

to the MG-RAST database (http://metagenomics.anl.gov/) under

the study number qiime:814.

Post-processing of the pyrosequencing output was performed

with the QIIME software package [23]. First appropriate

denoising of the 454 pyrosequencing output was performed using

the PyroNoise algorithm [24]. Then the UCLUST software

(http://www.drive5.com/usearch/usearch.pdf) was used to pick

clusters of operational taxonomic units (OTUs) at the 97%

similarity level. The Ribosomal Database Project (RDP) classifier

software [25], with the default training taxonomy, assigned

taxonomic labels to the resulting OTUs. Finally, the OTUs were

placed in a de novo phylogenetic tree with FastTree 2 [26].

Statistical Analysis
Olfactometer data. A GLM (Generalized Linear Model;

binomial, logit link function, dispersion estimated, Genstat version

13.2) was used to investigate differences in relative attractiveness

between individuals, expressed as the fraction of mosquitoes

caught in the trapping device baited with the glass beads releasing

odour of the individual being tested divided by the total number of

mosquitoes trapped in the two trapping devices together [9]. The

GLM was followed by a t-test to calculate pairwise differences

between means. Individuals were classified as highly attractive

(HA) when their mean relative attractiveness was significantly

higher than the mean relative attractiveness of each individual in

the group classified as poorly attractive (PA) which means the

Skin Bacteria Affect Attractiveness to Mosquitoes
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standard error of the GLM parameter estimate did not overlap.

Effects were considered to be significant at p,0.05 [9].

Skin bacterial diversity. The effect of average bacterial

densities, expressed as the logarithm of the counts of CFUs on the

selective and non-selective plates, on the relative attractiveness of

the individuals was analysed using a GLM (Binomial, logit link

function, dispersion estimated, Genstat version 13.2).

The 16S rRNA sequence results were used to determine the

diversity of skin bacterial communities of the individuals. A

phylogenetic diversity (PD) test [27], was used to compare the

branch length of the parts of the phylogenetic tree covered by the

samples. To control for sequencing effort, multiple rarefaction

analyses [28] were performed on all samples at various sequencing

depths (1,000 rarefaction samples at each sequencing depth from

500 to 3,000 at intervals of 500). A t-test was used (R programming

environment, http://www.R-project.org) to test for a significant

difference in microbial diversity between the PA and HA group at

different sampling depths. No statistics were performed for the

diversity at sequence depths above 1500 because the samples of

some individuals did not contain more than 1500 sequences.

Based on previous results of in vitro experiments, an ANOVA (R

programming environment) test was performed to determine

whether the observed variance in the relative abundances of five

specific genera [20] was partitioned according to the PA and HA

group. The data were controlled for sequencing effort. A thousand

stochastic rarefactions of the data were used at a simulated

sequencing depth of 1500. An ANOVA was performed on each of

those rarefied OTU-tables and the median P-values determined.

The relative abundances of the genera identified in the skin

bacterial samples of the PA and HA individuals were analysed by

multivariate partial least squares discriminant analysis (PLS-DA;

SIMCA-P 12.0, Umetrics, Sweden) [29,30]. The data were log-

transformed and scaled to unit variance. The number of significant

PLS components was determined by cross-validation and the

model validated by permutation testing [29,31]. To avoid over-

parameterization of the model, genera with a minor contribution

to the discrimination of the two groups in a first PLS-DA were

excluded from the final model (variable influence on projection

value,1 [26,28]).

Results

The relative attractiveness of the individuals to An. gambiae was

significantly different (P,0.001; GLM). Nine out of the 48

individuals were significantly more attractive (Highly Attractive,

HA group, Figure 1) than seven other individuals (Poorly

Attractive, PA group, p,0.05; GLM, Figure 1).

Non-selective plate counts showed that, on average, 5.86105

culturable bacteria were present per cm2 on the sole of a human

foot, as determined by counting colony-forming units (CFUs) on

blood agar plates. The average number of bacteria per cm2 on

the sole of a foot positively correlated with the relative

attractiveness of the individuals to An. gambiae (p = 0.003; GLM;

Figure 2). The abundance of Staphylococcus spp. was also positively

correlated with the relative attractiveness of the individuals to An.

gambiae (p = 0.01; GLM; Figure S2). The number of bacteria per

cm2 as determined by CFU counts on blood agar plates and the

number of colonies per cm2 on plates selective for Staphylococcus

spp. strongly correlated, suggesting that many of the bacterial

colonies found on the blood agar plates were Staphylococcus spp.

The abundance of Corynebacteria spp., Micrococcus spp. and

Propionibacteria spp. did not show a correlation with the relative

attractiveness of the individuals (p = 0.085, p = 0.28 and p = 0.41,

respectively; GLM).

Figure 1. Relative attractiveness to An. gambiae of 48 individuals. Bars show the attractiveness parameter estimate results from the
Generalized Linear Model (GLM) used to investigate the relative attractiveness [9] of each individual to An. gambiae. Individuals were classified as
highly attractive (HA, blue bars) when their mean relative attractiveness was significantly higher than the mean relative attractiveness of each
individual in the group classified as poorly attractive (PA, red bars) (GLM, p,0.05). Error bars represent the standard error of the mean from six
replications.
doi:10.1371/journal.pone.0028991.g001
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The 16S rRNA sequence results showed that the phylogenetic

diversity (PD) scores [27] of the HA individuals and the PA

individuals were significantly different. PD-scores of communities

on the PA individuals were significantly higher than those on the

HA individuals at a simulated depth of 500 and 1000 sequences

and marginally significant at a sequencing depth of 1500

sequences (p = 0.032, P = 0.043 and p = 0.057, respectively; t-test;

Figure 3). At a sequence depth of 1000, the PD-scores of bacterial

communities on the skin of PA individuals were 38% higher than

the PD-scores of bacterial communities on the skin of HA

individuals.

The relative abundances of OTUs identified by the pyrose-

quencing procedure and classified within the Staphylococcus and

Pseudomonas genera were significantly different between HA and

PA individuals (p = 0.024 and p = 0.005, respectively; t-test). The

abundance of Staphylococcus spp. was 2.62 times higher in the HA

group than in the PA group and the abundance of Pseudomonas spp.

3.11 times higher in the PA group than in the HA group. The

abundance of Brevibacterium spp. and Corynebacterium spp. was not

significantly different between the PA and HA group (p = 0.52 and

p = 0.26, respectively; t-test). The effect of the abundance of

Bacillus spp. on the attractiveness was not tested because they were

present in only a limited number of samples.

Additional genera that correlated with human attractiveness to

An. gambiae were identified by PLS-DA [29,30,31]. The model

differentiated the PA and HA groups based on the relative

abundances of the bacterial genera (three significant latent

variables, R2Xcum = 0.544, R2Ycum = 0.993, Q2
cum = 0.823). PLS

regression coefficients were determined to identify genera that

were most characteristic for either group (Figure S3). Variovorax

spp. and Pseudomonas spp. were significantly correlated with PA

individuals based on their high PLS regression coefficients (95%

confidence interval, Figure 4 and Figure S3). Leptotrichia spp.,

Delftia spp. and Actinobacteria Gp3 spp. were significantly correlated

with HA individuals (Figure 4 and Figure S3).

Discussion

In this study we demonstrated that the composition and

abundance of the human skin microbiota influences the relative

degree of attractiveness of a human to the malaria mosquito An.

gambiae. Individuals with a higher microbial diversity were less

attractive to the mosquitoes and several bacterial genera were

identified that correlated with HA or PA individuals. Identification

of the volatiles produced by these genera is likely to lead to the

development of new mosquito attractants or repellents [20].

Figure 2. Skin bacterial abundance and relative attractiveness
to An. gambiae. Correlation between the number of bacteria (log),
determined by counts of colony forming units (CFUs) on non-selective
plates and the relative attractiveness of the individuals. The relative
attractiveness is expressed as the number of mosquitoes caught in the
trapping device releasing the odour of the tested individual divided by
the total number of mosquitoes trapped in both trapping devices [9].
The red line indicates the fitted relationship according to the
Generalized Linear Model (GLM).
doi:10.1371/journal.pone.0028991.g002

Figure 3. Rarefaction curves showing average bacterial diversity from poorly attractive (PA,) and highly attractive (HA) individuals.
P-value for the difference in diversity score between PA (dashed red line) and HA (solid blue line) individuals is given at three sampling depths (not
calculated for higher numbers of sequences, because the samples from some individuals did not yield more than 1500 sequences).
doi:10.1371/journal.pone.0028991.g003

Skin Bacteria Affect Attractiveness to Mosquitoes
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Only a small part of the bacteria found on the human skin are

culturable [32] and therefore it was an important confirmative

finding that the results from our in vivo study corroborated previous

in vitro studies in which volatiles released by Staphylococcus epidermidis

were attractive to An. gambiae females [19,20] and volatiles from

Pseudomonas aeruginosa unattractive [20]. The undirected search by

PLS-DA in this study resulted in the identification of several new

genera that are correlated with the relative degree of attractiveness

of human beings to An. gambiae.

The correlation between Pseudomonas spp. and PA individuals is

in accordance with in vitro experiments showing that the blend of

compounds produced by P. aeruginosa is attractive to An. gambiae

(in contrast to the volatiles produced by four other bacterial

species, all commonly found on human skin) [20]. Our results

suggest that Pseudomonas spp. and possibly Variovorax spp. a)

convert some of the attractive compounds produced by other

bacteria, b) signal to other bacteria in ways that prevent them

from emitting these attractive compounds, c) produce compounds

that repel An. gambiae, or d) mask the effect of the attractive

volatiles emanating from the human skin. More heterogeneous

microbiotas may include more bacterial species that produce

volatiles attenuating the attractiveness of PA individuals to

mosquitoes, and may explain the interference effect described

for the yellow fever mosquito Aedes aegypti (L). [7]: higher levels of

specific volatile compounds were found to be responsible for

decreased attractiveness of individuals to Ae. aegypti. We

hypothesize that lower attractiveness to mosquitoes is caused by

a selective group of skin microbiota that emanates compounds

that interfere with the attraction of mosquitoes to their human

hosts and thus function as an in-built defence system [33]. Genes

of the Major Histocompatibility Complex (MHC) have been

shown to influence body odour [34,35,36] and may exert this

influence by changing the skin microbiota composition and hence

the volatiles produced by these bacteria and/or the human host

[16,37].

The current study shows that the skin microbiota could play an

important role in this built-in defence system and may, therefore,

affect transmission of malaria parasites [16,38]. Individuals with a

higher microbial diversity and a higher abundance of Pseudomonas

spp. or Variovorax spp. are less attractive to mosquitoes and may

therefore receive fewer bites. Future studies should confirm if

individuals with a specific microbiota composition run a lower risk

of becoming infected with parasites, and consequently have a

higher survival probability.

Compounds that inhibit microbial production of human odour

[13], or manipulation of the composition of the skin microbiota

Figure 4. Multivariate data analysis of the bacterial profiles of poorly attractive (PA) and highly attractive (HA) individuals. Partial
least squares discriminant analysis (PLS-DA) loading plot based on the relative abundance of bacterial genera in the microbiota profiles of poorly
attractive (PA) and highly attractive (HA) individuals. Bacterial genera closer to HA or PA in the plot are more closely correlated to either HA or PA
individuals. PLS 1 (R2X = 0.370, R2Y = 0.682, Q2 = 0.553) and PLS 2 (R2X = 0.102, R2Y = 0.260, Q2 = 0.424) are given. Genera that significantly contribute to
the prediction of the model are indicated in blue (HA individuals) and red (PA individuals) (based on 95% confidence intervals, Figure S3). Some
sequences could only be identified to division (D), class (C), order (O) or family (F).
doi:10.1371/journal.pone.0028991.g004
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may reduce a person’s attractiveness to mosquitoes. Analysis of the

bacterial volatiles attractive to mosquitoes produced by the

Leptotrichia spp., Delftia spp. and Actinobacteria Gp3 spp. bacteria

identified in this study [20] will also contribute to the development

of attractants to be used in traps for monitoring malaria mosquito

populations or lure-and-kill strategies [39].

The results presented in this study contribute to our

fundamental understanding of the behavioural ecology of

mosquitoes. The specialization of An. gambiae s.s. on human

odours mediated by the composition of the human bacterial

community may account for the high degree of anthropophily of

An. gambiae s.s. Interestingly, the two closely-related sibling species

An. quadriannulatus and An. arabiensis, have a wider host range that is

more zoophilic [40,41,42] or opportunistic [43,44], respectively.

Bacterial communities of other vertebrate species are likely to

differ from those on human beings and may play an important role

in determining the host range of mosquitoes [45].

Supporting Information

Figure S1 Skin emanation collection. Teflon holder with six

glass beads for collecting skin emanations from human feet to be

used for mosquito attractiveness tests in the olfactometer.

Distances are given in mm.

(TIF)

Figure S2 Staphylococcus spp.-selective plate counts
and relative attractiveness to An. gambiae. Correlation

between the number of Staphylococcus spp. bacteria (log),

determined by counts of colony forming units (CFUs) on

Staphylococcus spp. selective plates and the mean relative

attractiveness of the individuals. The relative attractiveness is

expressed as the number of mosquitoes caught in the trapping

device releasing the odour of the tested individual divided by the

total number of mosquitoes trapped in both trapping devices.

The red line indicates the fitted relationship according to the

Generalized Linear Model (GLM).

(TIF)

Figure S3 Coefficient plot of the bacterial profiles of
poorly attractive (PA) and highly attractive (HA) indi-
viduals. Partial least squares-discriminant analysis (PLS-DA)

coefficient plot based on the relative abundance of bacterial genera

in the microbiota profiles of PA and HA individuals. Genera with

significantly positive (.0) or negative (,0) PLS regression

coefficients (i.e. no overlap between the 95% confidence interval

indicated and the horizontal axis) contribute significantly to the

prediction of the HA individuals (blue bars) or PA individuals (red

bars), respectively. Coefficients were scaled and centred. Some

sequences could only be identified to division (D), class (C), order

(O) or family (F).

(TIF)

Table S1 Ingredients of selective media used to deter-
mine the diversity of the human skin microbiota
samples.
(DOC)
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