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S.1 Basic Reproductive Number

The model equations are given by:
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For computing the Basic Reproductive Number we use the Next Generation Method (NGM)
which account for changes in states where individuals have the virus E, A, I, L we compute the
basic reproductive number as follows, we define the transition rates F and removal rates V .
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We then compute the transition and removal matrix F and V respectively as follows. And evaluate
at the disease free equilibrium S = N .

F =


0 βσ β 0

(1− ζ)(1− α)/Te 0 0 0

(1− ζ)α/Te 0 0 0

ζ/Te 0 0 0

 V =


1/Te 0 0 0

0 1/Tr 0 0

0 0 1/Tr 0

0 0 0 1/Td



FV −1 =


0 βσTr βTr 0

(1− ζ)(1− α) 0 0 0

(1− ζ)α 0 0 0

ζ 0 0 0


Then the basic reproductive number computed as the maximum eigen-value of FV −1.

R = Ru +Rr

Where we define Ru as the expected secondary infection due to under-reported individuals (recall
that this we also believe this contribution is mostly due to asymptomatic infections which by defini-
tion are the individuals less captures by the surveillance system) and Rr as the expected secondary
infection due to reported individuals. This is consistent with the term involved in the proposed
Force of Infection (FOI) in Equation 1, which only assume that unreported and reported individuals
infect susceptible ones. Note that for the reproductive number do to under-reported individuals
Ru the fraction (1− ζ)(1− α) is the expected fraction of population entering the A compartment,
here zeta is the infect fatality risk and alpha the fraction of reported individuals, where σβ is their
transmission or contact rate and Tr is the average time expected in the A compartment. Similar for
the reproductive number do to reported individuals Rr we have (1− ζ)α is the expected number of
individuals entering the I compartment and β is their transmission rate and Tr is the expected time
before acquiring immunity.

Ru = σβTr(1− ζ)(1− α), Rr = βTr(1− ζ)α

As we assume the contact rate is time variable β = β(t) we then compute the effective repro-
ductive number in municipality i as, where Si(t) is the posterior sample of the estimated value of
susceptible individuals at time t and Ni is the population in the municipalite i:

Ri
eff (t) = R(t) · Si(t)

Ni
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We then compute the national effective reproductive number as, for each one of the 71 munici-
palities that have reported more than 71 deaths by the date.

Reff (t) =
1

71

71∑
i=1

Ri
eff (t)

S.2 Report Delay Distributions

We fit a Gamma distribution to the difference in days between symptom onset date and diagnosis
date for addressing the report delay natural of the surveillance system using the scipy package
available in Python [1]. The figure below shows some examples of the fitted Gamma distribution for
the capitals of states/departments in Colombia. Note that using the fitted gamma distribution worth
to model as probably by surveillance system or diagnosis laboratory reports an unusual number of
cases is reported usually at 15 days. Therefore we recall the importance of used a fitted distribution
rather than the empirical measured one. The importance of modeling this report delay have also
been highlighted in current best practices for estimating the time varying effective reproductive
number [2, 3].

Figure S1: Fitted delay distributions for some municipalities. As seen is more frequent that the data
is reported with a specific delay between symptom onset and diagnosis at 15 or 16 days (about 2
weeks) which we believe is due to return of diagnosis by the laboratories. Therefore we recall the
importance of used a fitted distribution rather than the empirical measured one.
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S.3 Facebook Mobility Data

Commuters evolution from Facebook mobility data mobility in four different time periods.
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Figure S2: Facebook Mobility Data between municipalities, black lines represent commuters
between a pair of municipalities and red dots are capitals of states/department of Colombia.
States/Department are color-keyed as gray-scale in the map. Each map represent a specific time
periods selected according to the national non-pharmaceutical interventions (NPIs) imposed in the
country. A Average number of commuters in the strict national lockdown from 01-April-2020 (first
available data) to 31-May-2020 first national reopening. B Average number of commuters from 01-
June-2020 to 31-July-2020, two months after national re-opening. C Average number of commuters
from 01-August-2020 to 31-October-2020, two month period four months after national re-opening.
D Average number of commuters after 31-October-2020.
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S.4 Parameter Inference

For estimating the key local epidemiological parameters and therefore characterizing the disease
spread of COVID19 we use flat uninformed priors as shown in Table S1. For the infect fatality risk
parameter (IFR) ζ we search over all the IFR range reported for different countries and across ages
[4, 5].

Parameter Prior Distribution Reference
β ∼ U(0.75, 1.2) -
α ∼ U(0.01, 1) -
Te ∼ U(2, 5) [6]
Tr ∼ U(2, 5) [7, 6]
θ ∼ U(0.5, 1.25) [7]
Td ∼ U(7, 15)
ζ ∼ U(0.1%, 2%) -

Table S1: Uninformative prior distribution on the estimated parameters for the epidemiological
meta-population model

S.5 Operational Forecasting

For forecasting t > T where T is the last fitted day for all municipalities. We do not attempt to
model or impose assumptions about future change in behavior that might impact the contact rate β

or assume for example that testing is increasing resulting in increased report fraction α. We simply
use the estimated values of the time varying parameters prior to the forecast horizon (we simple
assume parameters will remain constant in the future). However for modeling temporal variation of
behavior and based on the belief that behavioral changes occur smoothly in time we average over
the last 10 days instead of using the last day estimates. We attempt to use more than one week
as estimates might be impacted by report model of the surveillance system as has been showed in
[2]. This approach have been similarly followed in [8]. We then assume for time variable parameters
θ(t) that their value in the forecast horizon tf follows Equation 3. Moreover for embedding this into
the EAKF framework we treat each ensemble separately, therefore conserving parameter estimates
within each ensemble member.

θ(T + i) =
1

10

10∑
i=1

θ(T − j) ∀i ∈ [T, T + tf ] (3)

S.6 Time estimates of the effective reproductive number

Median estimates of the effective reproductive number Reff for the top 5 municipalities with more
reported cumulative death by October.

6



Figure S3: Each subplot show the effective reproductive number Reff computed as the time varying
reproduction number Rt times the estimated susceptibility (fraction of susceptible individuals in
each municipality i (Si/Ni). Black line shows median posterior estimated and gray ribbons show
95% CI. Red line show Reff = 1 where incident cases are expected to maintain constant at the
specified time.

S.7 Medellin vs Colombia report rate

Figure S4: Report rates for Medellin and Colombia. Ribbons shows 95% CI and line shows the
median, each place is indicated in the legend.
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S.8 Spatial Distribution of the effective reproductive number

Spatial distribution of the effective reproductive number Reff
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Figure S5: Effective Reproductive Number Reff computed as time-variable reproductive number
times the susceptible fraction estimated for each municipality Reff = Rt

Si(t)
Ni

. Color key: Red colors
indicate median estimates Reff > 1 while blue colors indicate Reff < 1 magnitude is presented in
colormap. A) Reff for municipalities with reported deaths by March 31, one month since first
reported case. B) Reff for municipalities with reported deaths by Apr 31 2020, two months since
first reported case. C) Reff for municipalities with reported deaths by July 31 2020, five months
since first reported case. D) Reff for municipalities with reported deaths by October 11 2020, 8
months since first reported case.
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S.9 Sensitivity analysis

Sensitivity analysis for the parameter of the effective reproduction number. We have studied the
change in the effective reproductive number to respect the parameters (the sensitivity index of Reff

of alpha for example accounts for the report rate). Rather than comparing absolute changes, we
normalize the sensitivity indices in order to compare the 1% changes of parameters to see how it
influences Reff .

The exact expression is:

E(Rt, ϕt) =
∂Rt

∂ϕi

ϕi

Rt

Then, the analytical normalized sensitivity indexes for the parameters and it’s value using the
best mean posterior estimates are:

E(βt) = 1

E(Tr) = 1

E(ζ) =
ζ

1− ζ
= 0.009713[0.009593− 0.009828] 95%CI

E(αt) =
αt(1− σ)

(1− α)σ + αt
= 0.442645[0.441758− 0.443485] 95%CI

E(σ) =
σ(1− α)

(1− α)σ + αt
= 0.218746[0.217655− 0.219720] 95%CI

S.10 Number of infected Municipalities

Median estimates of the effective reproductive number Reff for the top 5 municipalities with more
reported cumulative death by October.

Figure S6: Number of municipalities with more than 50 reported cases (red line) and more than 1
reported death (black line).
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