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Abstract

Genome-wide association studies (GWAS) have identified ,100 loci associated with blood lipid levels, but much of the trait
heritability remains unexplained, and at most loci the identities of the trait-influencing variants remain unknown. We
conducted a trans-ethnic fine-mapping study at 18, 22, and 18 GWAS loci on the Metabochip for their association with
triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), respectively,
in individuals of African American (n = 6,832), East Asian (n = 9,449), and European (n = 10,829) ancestry. We aimed to
identify the variants with strongest association at each locus, identify additional and population-specific signals, refine
association signals, and assess the relative significance of previously described functional variants. Among the 58 loci, 33
exhibited evidence of association at P,161024 in at least one ancestry group. Sequential conditional analyses revealed that
ten, nine, and four loci in African Americans, Europeans, and East Asians, respectively, exhibited two or more signals. At
these loci, accounting for all signals led to a 1.3- to 1.8-fold increase in the explained phenotypic variance compared to the
strongest signals. Distinct signals across ancestry groups were identified at PCSK9 and APOA5. Trans-ethnic analyses
narrowed the signals to smaller sets of variants at GCKR, PPP1R3B, ABO, LCAT, and ABCA1. Of 27 variants reported previously
to have functional effects, 74% exhibited the strongest association at the respective signal. In conclusion, trans-ethnic high-
density genotyping and analysis confirm the presence of allelic heterogeneity, allow the identification of population-specific
variants, and limit the number of candidate SNPs for functional studies.
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Introduction

Genome-wide association studies (GWAS) have identified many

common genetic variants associated with human diseases and

complex traits (www.genome.gov/gwastudies), including ,100

loci associated with triglycerides (TG), high-density lipoprotein

cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C),

or total cholesterol [1–5]. A majority of the lead SNPs at these loci
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have shown small effect sizes, leaving much of the trait heritability

unexplained. Some of this missing heritability may be due to the

incomplete coverage of functional common or rare variants and

the poor representation of appropriate proxies on commercial

genotyping arrays [6,7]. Other missing heritability may result from

a failure to detect the full spectrum of causative variants present at

GWAS-identified loci.

Fine-mapping of GWAS signals should increase the power to

detect variants that influence trait variability. Genotyping of

additional variants at GWAS loci can identify SNPs with stronger

evidence of association than the reported GWAS index SNPs and

may help detect or further localize the underlying causal variants

[7,8]. The Metabochip is a high-density custom genotyping array

designed to replicate and fine-map known GWAS signals for

metabolic and atherosclerotic/cardiovascular endpoints, and more

extensively, to identify all signals around the index SNPs [9,10].

The fine-mapping SNPs spanned a wide range of allele frequencies

including rare (minor allele frequency (MAF),0.005) and less

common (0.005#MAF,0.05) SNPs selected from the catalogs of

the International HapMap Project and the August 2009 release of

the 1000 Genomes Project. SNPs annotated as nonsynonymous,

essential splice site or stop codon were included regardless of

MAF, design score, or the presence of nearby SNPs [10]. The

Metabochip contains densely spaced SNPs at 18, 22, and 18 loci

previously reported for TG, HDL-C, and LDL-C, respectively.

Allelic heterogeneity, in which different variants at the same

gene/locus affect the same phenotype, is a frequent characteristic

of both single-gene and complex disorders. Recently GWAS have

identified more than one independent signal at loci associated with

coronary artery disease [11] and type 2 diabetes [12,13]. Among a

set of 30 lipid loci reported through GWAS, secondary SNPs that

exhibited weak to moderate LD with the corresponding index

SNPs and displayed little change of association in conditional

analyses were detected at seven loci including CETP, LIPC,

APOA5, APOE, LDLR, ABCG8, and LPL [4]. More than one

association signal also was detected at 26 of 95 lipid loci reported

by the Global Lipids Genetics Consortium [5]. However, allelic

heterogeneity has not been comprehensively evaluated for

common traits including lipid traits across ethnically diverse

populations, especially in non-European populations such as

African Americans and East Asians.

Due to divergent evolutionary and migratory histories, patterns

of linkage disequilibrium (LD) vary across ancestry groups [14].

Greater haplotype diversity in some ancestry groups, especially in

African ancestry populations, may facilitate the localization of

functional variants that show association signals delimited in part

due to weaker LD with neighboring SNPs [14,15]. A recent multi-

ethnic analysis of lipid associated loci demonstrated that genetic

determinants at many lipid loci differed between European

Americans and African Americans [16]. For example, in African

Americans from the PAGE consortium [9,17], a reported

regulatory variant rs12740374 at CELSR2/PSRC1/SORT1 locus

[18] was more strongly associated with LDL-C compared to many

nearby variants demonstrating similar strength of association in

European ancestry individuals [5]. High-density genotyping

enables trans-ethnic fine-mapping studies to narrow the set of

plausible candidate functional variants at GWAS loci without

introducing uncertainty through imputation [19].

In this study, we analyzed high-density genotyped SNPs on the

Metabochip for their associations with TG, HDL-C, and LDL-C

in 6,832 African Americans, 9,449 East Asians, and 10,829

Europeans at 58 known lipid loci. We sought to (i) identify the

variants with the strongest evidence of association at each locus in

populations with different ancestries and in the combined trans-

ethnic samples; (ii) investigate allelic heterogeneity and population-

specific signals at the established lipid loci; (iii) explore whether

high-density genotyping in diverse ethnic populations would

narrow the sets of plausible candidate functional variants for

further study; and (iv) assess whether the variants reported to have

functional effects on gene expression or protein function during

the past 30 years of biological study exhibited the strongest

evidence of association at the corresponding GWAS signals.

Results

Loci with evidence of association in diverse populations
and in the combined trans-ethnic samples

Descriptions of the collection, phenotyping, and genotyping of

study samples for each study site are provided in Table S1. Given

that all 58 loci have a priori genome-wide significant evidence of

association with one or more of these three lipid traits, we used a P

value threshold of 161024 as an approximate correction for the

mean of 451 SNPs tested at each locus in African Americans

(Table S2). An average of 273 SNPs per locus was tested in East

Asians and an average of 291 in Europeans, but we applied the

same, more conservative, P value threshold of 161024 to these two

groups as well.

A total of 33 loci (nine for TG, 14 for HDL-C, and 10 for LDL-

C) exhibited evidence of association at P,161024 in at least one

of the three ancestry groups, including 22 loci in African

Americans, 17 in East Asians, and 31 in Europeans (Table S3A–

S3C). The variants that reached this threshold of significance were

common (MAF$0.05), except at three loci (PCSK9 and ABO for

LDL-C, and APOA5 for HDL-C) in African Americans and two

loci (PCSK9 and TOP1, both for LDL-C) in European ancestry

individuals. When individuals of diverse ancestry groups were

combined, 11, 15, and 12 loci showed evidence of significant

association with TG, HDL-C, and LDL-C, respectively (Table

S4A–S4C). Among these 38 loci, six loci had not reached the P

value threshold of 1024 within any individual ancestry group,

including CETP and NAT for TG, GALNT2 and MMAB for HDL-

C, and TRIB1 and TIMD4 for LDL-C. One locus, COBLL1, was

Author Summary

Lipid traits are heritable, but many of the DNA variants that
influence lipid levels remain unknown. In a genomic region,
more than one variant may affect gene expression or
function, and the frequencies of these variants can differ
across populations. Genotyping densely spaced variants in
individuals with different ancestries may increase the
chance of identifying variants that affect gene expression
or function. We analyzed high-density genotyped variants
for association with TG, HDL-C, and LDL-C in African
Americans, East Asians, and Europeans. At several genomic
regions, we provide evidence that two or more variants can
influence lipid traits; across loci, these additional signals
increase the proportion of trait variation that can be
explained by genes. At some association signals shared
across populations, combining data from individuals of
different ancestries narrowed the set of likely functional
variants. At PCSK9 and APOA5, the data suggest that
different variants influence trait levels in different popula-
tions. Variants previously reported to alter gene expression
or function frequently exhibited the strongest association at
those signals. The multiple signals and population-specific
characteristics of the loci described here may be shared by
genetic loci for other complex traits.
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significantly associated with HDL-C in Europeans alone

(P = 8.561025), but displayed less evidence of association in the

combined trans-ethnic samples (P = 1.661024).

Loci with evidence of multiple signals at a locus, and
often population-specific signals

To assess the presence of two or more signals at each locus that

exhibited evidence of association in at least one ancestry group, we

performed sequential conditional analyses by adding the most

strongly associated SNP to the regression model as a covariate and

testing the association with each of the remaining regional SNPs

independently. A set of sequential conditional analyses were

followed by inclusion of the strongest SNP in each conditional

model until the most strongly associated SNP showed a

conditional P value.1024 and was not annotated as a nonsense

or nonsynonymous substitution. We also investigated whether

association signals were population-specific, which we defined as

association signals with variants that are not variable in the

samples from the other two ancestry groups in this study or in the

1000 Genomes Project populations that represent those groups

among total European ancestry (EUR), total East Asian ancestry

(ASN), or total west African ancestry (AFR).

In African Americans, sequential conditional analyses revealed

that 10 of the 22 loci with evidence of association exhibited two or

more signals at P,1024 (Table 1). Two loci (PCSK9 and the

TOMM40-APOE-APOC4 cluster; both for LDL-C) each had seven

signals, four loci (APOB for LDL-C, LDLR for LDL-C, LCAT for

HDL-C, and CETP for HDL-C) had three signals, and another

four loci (APOB, APOC1, APOA5, and LPL; all for TG) had two

signals. Among the 10 loci with two or more signals, all these

signals led to an average 1.8-fold increase in the amount of

phenotypic variance (R2) compared to that explained by the

strongest signals alone (See Method) in African Americans. Among

these 34 signals, 15 were represented by less common

(0.005#MAF,0.05, n = 11) or rare (MAF,0.005, n = 4) variants.

In addition, 15 signals at eight loci were African American-

specific. If we only include SNPs that meet a locus-specific P-value

threshold based on the number of genotyped SNPs (Table S2),

LPL for TG and APOB for both TG and LDL each had one signal,

and the seven loci with multiple signals still showed an average of

1.8-fold increase in the explained phenotypic variance.

The seven signals at PCSK9 in African Americans included six

nonsense or nonsynonymous variants previously shown to

associate with LDL-C levels and to affect PCSK9 expression or

function [20–22], along with an unreported intronic variant

(Table 1). The strongest signals were a nonsense variant

rs28362286 (C679X, Figure 1A) and a nonsynonymous variant

rs28362263 (A443T, Figure 1B), which showed no reduction of

association evidence when conditioned on C679X. Conditional

analysis on both C679X and A443T yielded a third signal at

rs28362261 (N425S, Figure 1C); and further conditional analyses

successively implicated rs67608943 (Y142X, Figure 1D),

rs72646508 (L253F, Figure 1E), and an intronic variant

rs11800243 (Figure 1F). The seventh signal, which did not reach

the Pconditional,1024 threshold, was represented by the nonsynon-

ymous variant rs11591147 (R46L, Figure 1G) that exhibited the

strongest and directionally consistent evidence of association with

LDL-C in Europeans (Pinitial = 2.8610230, Table 2). The seven

signals were weakly correlated with each other in African

American individuals, and all pairwise LD r2 values were less

than 0.02. Among the seven PCSK9 signals, the top five were

African American-specific, and six were either less common or

rare in African Americans. The lead SNP C679X accounted for

1.3% of the explained LDL-C phenotypic variance and the seven

signals together explained 3.6% of the phenotypic variance in

African Americans. PCSK9 exhibited two signals in Europeans

(R46L and rs2495477, Table 2), but no SNP reached Pinitial,1024

in East Asians.

At the TOMM40-APOE-APOC4 cluster, the seven signals in

African Americans explained 6.6% of the LDL-C phenotypic

variance compared to 4.1% explained by the strongest signal

R176C, which had reported functional effects [23] (Table 1, Figure

S1). These seven signals were not entirely independent of one

another. The fourth signal, rs157588, showed association with

LDL-C (P = 2.061027) only after conditioning on the top three

signals, but not in the original unconditioned association analysis

(P = 0.72). The trait-decreasing allele (G allele: freq = 0.176) of

rs157588 was present on haplotypes containing the trait-increasing

allele of the third signal rs1038026 (A allele: freq = 0.351), thus the

association of the fourth signal increased in significance after

accounting for linkage disequilibrium (r2/D9 = 0.35/0.92) with the

third signal at the same locus. Haplotype analysis revealed that

compared to the reference A-A (increasing-increasing) haplotype,

the G-G (decreasing-decreasing) haplotype only displayed modest

association with LDL-C (P = 7.561023), but the A–G (rs1038026

increasing- rs157588 decreasing) haplotype showed significant

association with decreased level of LDL-C (P = 1.5610210) (Table

S5). In Europeans (Table 2) and East Asians (Table 3), three and two

signals were identified at TOMM40-APOE-APOC4, respectively.

The known functional variant R176C exhibited the strongest

evidence of association across the three ancestry groups, with effect

sizes of 20.536, 20.505, and 20.411 mmol/L in individuals of

African American, European, and East Asian ancestry, respectively

(Table 1). However, another APOE variant rs429358 (C130R), that

together with R176C, defines the three major isoforms of APOE (e2,

e3, and e4) [7,24], was not successfully genotyped, therefore the

LDL-C association with either C130R or the APOE haplotype was

unavailable in this study.

In Europeans, 21 signals at nine of the 31 loci exhibited multiple

signals for at least one of the three lipid traits at P,1024 (Table 2).

Three loci (APOA5 for TG, TOMM40-APOE-APOC4 cluster for

LDL-C, and CETP for HDL-C) each had three signals while

another six loci (PCSK9 for LDL-C, GCKR for TG, LIPC for HDL-

C, APOB for LDL-C, and LPL for both TG and HDL-C) each had

two signals. At the nine loci that had two or more signals, all

association signals resulted in an average of 1.3-fold increase in the

explained phenotypic variance compared to the strongest signals

alone across loci. At PCSK9, rs11591147 (R46L) exhibited the

strongest evidence of association in Europeans. As reported above,

R46L also represented the seventh signal in African Americans.

R46L accounted for 1.2% of the total variation in LDL-C levels in

Europeans compared the 0.16% in African Americans. This SNP

was not variable in the 1000 Genomes Project ASN samples (East

Asian ancestry) and the .9,000 East Asian individuals in this

study.

In East Asians, we observed three signals at the TG locus

APOA5, and two signals at three loci including TOMM40-APOE-

APOC4 cluster for LDL-C, CETP for HDL-C, and ABO for LDL-

C (Table 3). At the four loci that exhibited multiple signals, all the

association signals increased the explained phenotypic variance by

an average of 1.3-fold compared to the strongest signal across loci.

The second signal at APOA5 was the nonsynonymous variant

G185C previously reported to affect the protein function [25].

Although G185C was not unique to East Asians, the frequency

was very low in African Americans (MAF = 0.002, P = 0.028) and

Europeans (MAF = 0.0003, P = 0.23), and the low allele frequency

meant that this study had less than 5% statistical power to detect

the association in these groups.

Trans-Ethnic Fine-Mapping of Lipid Loci
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At APOA5, which exhibited multiple signals in all three

populations (Table 1, Table 2, Table 3), the strongest TG-

associated SNPs differed and were not in high LD (r2,0.8) with

each other in any of the ancestry groups. In African Americans,

the two signals S19W (MAF = 0.058, P = 8.4610215) and

rs79624460 (MAF = 0.083, P = 4.8610212), showed no evidence

of significant association in East Asians (Table 1), likely due to the

low allele frequency and the limited power (,10%) to detect the

association. The three signals at APOA5 in East Asians were only

modestly associated with TG in African Americans (all P.1023,

Table 3). The SNP LD r2 values between the African American

and East Asian signals were less than 0.02 in both populations,

suggesting that they represent distinct APOA5 signals in the two

ancestry groups. In addition, the APOA5 signal rs3741298

(P = 9.7610244, MAF = 0.222) in Europeans exhibited evidence

of association with TG in African Americans (P = 9.861025,

MAF = 0.327) and East Asians (P = 1.2610220, MAF = 0.357), but

the significance levels of the association with rs3741298 were

substantially attenuated by conditioning on the strongest signals

S19W in African Americans (P = 0.10) and rs651821 in East

Asians (P = 0.88). In Europeans, the associations with rs3741298

were partially removed when conditioning on S19W and rs651821

(Pconditional = 1.7610228 and 3.1610217, respectively). The Europe-

an signal rs3741298 was moderately correlated with the African

American signal S19W (LD r2 = 0.21 and 0.10 in the 1000

Genomes Project EUR samples (European ancestry) and in PAGE

African American samples, respectively), and with the East Asian

signal rs651821 (LD r2 = 0.31 and 0.28 in 1000 Genomes Project

EUR and ASN samples, respectively). Notably, the effect sizes of

the two reported functional variants S19W [26] and G185C [25]

at APOA5 were similar across the three groups (S19W, African

American: 0.136; East Asian: 0.136; European: 0.121 and G185C,

African American: 0.204; East Asian: 0.201; European:

0.269 mmol/L in loge scale) despite the limited power to detect

significant evidence of association at low allele frequencies. These

findings support the hypothesis that causative variants may have a

similar genetic impact on trait variation across populations if not

influenced by hidden gene-gene or gene-environment interactions

[27]. We also observed that the second European signal

rs75919952 exhibited nominal evidence of association (P

initial = 0.018, MAF = 0.041), but was not associated with TG in

the other two groups (Table 2). The lack of association may be due

to insufficient power (15% and 55% in African Americans and

East Asians, respectively; assuming a= 0.05) corresponding to the

lower allele frequency (MAF = 0.012) in African Americans, the

smaller sample sizes in both populations, or underlying interac-

tions.

Trans-ethnic high-density genotyping narrowed the
region of association signals

We next examined whether trans-ethnic meta-analysis or

comparison across ancestries would refine the association signals

by narrowing the genomic regions where functional variants might

be expected to reside. The trans-ethnic analysis allowed the

refinement of association signals at loci of GCKR, PPP1R3B, ABO,

LCAT, and ABCA1 (Table 4, Table S3A–S3C). The signal at

GCKR was localized to the reported functional variant P446L [28]

due to the limited LD in African Americans (Figure S2A–S2D).

Notably, there were seven and six variants in high LD (r2.0.8)

with P446L in the 1000 Genomes Project ASN and EUR samples,

but no SNP with LD r2.0.8 in African American individuals. At

the signal ,200 kb from the PPP1R3B gene for which no

functional regulatory variant(s) have been reported, the association

signal was narrowed from 4 SNPs spanning 36 kb (P,1024) in

Europeans to two highly correlated SNPs located 1 kb apart in

African Americans (rs6601299, P = 8.061028 and rs4841132,

P = 2.961027; LD r2.0.94) (Figure 2). The lead SNP rs6601299

was in high LD with 11 variants in the 1000 Genomes Project

EUR samples but only highly correlated with two and one variant

in the 1000 Genomes Project AFR samples (West African

ancestry) and PAGE African American individuals, respectively.

At the ABO locus, trans-ethnic meta-analysis revealed six SNPs

exhibiting stronger evidence of association (P,1.1610211) with

LDL-C compared to other variants in the same region

(P.2.361027) (Figure S3A–S3D). At the locus LCAT for HDL-

C, the association signals spanned ,800 kb, ,360 kb, and

,360 kb in Europeans, East Asians, and African Americans, with

a ,50 kb overlapping region. Trans-ethnic meta-analysis of all

samples localized the signal to four variants spanning this 50 kb

region (Figure S4A–S4D). At HDL-C locus ABCA1, the reported

GWAS index SNP rs1883025 consistently showed the strongest

association within each of the three ancestry groups that we

examined, but the significance level of the association was similar

to those of the nearby SNPs. Trans-ethnic meta-analysis refined

the signal by revealing that rs1883025 (P = 4.3610217) and

rs2575876 (P = 1.8610215) displayed much stronger association

than the neighboring SNPs (P.8.4610210) (Figure S5A–S5D).

Reported functional variants were frequently the most
strongly associated ones at a signal

Among loci associated with at least one lipid trait (P,1024), at

least 27 variants at 15 loci have been previously reported

[18,22,23,25,26,28–47] to functionally influence gene expression

or protein function in vitro (Table 5). Among the 27 variants, 17 are

present on the Metabochip and two are well-represented by

perfect proxies in complete LD (r2 = 1) based on the 1000

Genomes Project EUR data. Of the 19 reported functional

variants, 14 (74%) exhibited the strongest association P-value

among all SNPs at that signal in at least one population. In

addition, two more reported functional variants (APOB-rs7575840,

P = 7.0610217 and LPL-rs328, P = 2.3610211) were in high LD

(r2.0.95) with the most strongly associated variants and showed

similar evidence of association (APOB-rs934198, P = 3.7610217;

LPL-rs1803924, P = 1.1610211). If we include these two variants,

then 16 of the 19 (84%) reported functional variants displayed the

strongest association P-value at the primary, secondary, or

successive signals. The remaining three reported functional

variants: LDLR-rs688 (N591N), LPL-rs1801177 (D9N), and

HMGCR-rs3761740 (911C.A), were poorly tagged (LD r2,0.2)

by the strongest variants in our data. Additional functional

variants may exist at these loci that have not yet been reported to

change gene expression/protein function or that were not

identified in our literature search. For example, P2739L and

P145S that represented the two signals at APOB (Table 1) were

predicted by PolyPhen [48] to be ‘probably damaging’ with a

score of ‘1’, although their functional roles were unclear.

Figure 1. LDL-C locus PCSK9 exhibited seven signals in African Americans. Initial association in the main analysis (A). Residual association in
sequential conditional analysis by sequentially adding the lead SNPs into the regression model (B–G). Each SNP was colored according to its LD (r2) in
the PAGE consortium, with the strongest SNP colored in purple and symbols designating genomic annotation defined in the ‘annotation key’.
Genomic coordinates refer to build 36 (hg18).
doi:10.1371/journal.pgen.1003379.g001

Trans-Ethnic Fine-Mapping of Lipid Loci

PLOS Genetics | www.plosgenetics.org 8 March 2013 | Volume 9 | Issue 3 | e1003379



T
a

b
le

2
.

Li
p

id
lo

ci
w

it
h

m
u

lt
ip

le
si

g
n

al
s

in
Eu

ro
p

e
an

s.

S
N

P
A

n
n

o
ta

ti
o

n
E

ff
e

ct
/n

o
n

-
e

ff
e

ct
a

ll
e

le
E

u
ro

p
e

a
n

(n
=

1
0

,8
2

9
)

V
a

ri
a

n
ce

e
x

p
la

in
e

d
b

y
th

e
st

ro
n

g
e

st
si

g
n

a
ld

V
a

ri
a

n
ce

e
x

p
la

in
e

d
b

y
a

ll
si

g
n

a
ls

d
A

fr
ic

a
n

A
m

e
ri

ca
n

(n
=

6
,8

3
2

)
E

a
st

A
si

a
n

(n
=

9
,4

4
9

)

E
A

F
L

D
(r

2
/D

9)
a

b
b

P
in

it
ia

l
b

b
P

c
o

n
d

it
io

n
a

lc
E

A
F

b
b

P
e

E
A

F
b

b
P

e

A
P

O
A

5
fo

r
T

G

rs
3

7
4

1
2

9
8

Z
N

F2
59

-i
n

tr
o

n
T

/C
0

.7
7

8
--

--
2

0
.1

0
8

9
.7

E-
4

4
--

--
--

--
1

.8
%

2
.4

%
0

.6
7

3
2

0
.0

3
4

9
.8

E-
0

5
0

.6
4

3
2

0
.0

7
3

1
.2

E-
2

0

rs
7

5
9

1
9

9
5

2
--

--
T

/C
0

.0
4

1
0

.0
3

/0
.3

3
2

0
.0

3
9

0
.0

1
8

2
0

.1
2

8
7

.8
E-

1
4

0
.0

1
2

0
.0

3
0

0
.4

5
0

.0
4

2
2

0
.0

2
3

0
.2

4

rs
2

0
7

5
2

9
0

Z
N

F2
59

-i
n

tr
o

n
T

/C
0

.9
1

8
0

.4
0

/1
.0

0
2

0
.1

5
1

4
.4

E-
3

7
2

0
.0

5
8

9
.3

E-
0

5
0

.9
4

3
2

0
.0

4
0

0
.0

2
3

0
.7

7
1

2
0

.0
9

3
2

.1
E-

2
5

TO
M

M
40

-A
P

O
E-

A
P

O
C

4
fo

r
LD

L-
C

rs
7

4
1

2
A

P
O

E-
R

1
7

6
C

T
/C

0
.0

5
6

--
--

2
0

.5
0

5
5

.4
E-

7
6

--
--

--
--

3
.4

%
4

.0
%

0
.1

1
0

2
0

.5
3

6
6

.7
E-

7
5

0
.0

8
6

2
0

.4
1

1
1

.1
E-

6
4

rs
5

6
1

3
1

1
9

6
A

P
O

C
1

-3
9U

T
R

A
/G

0
.2

6
2

0
.0

2
/1

.0
0

0
.1

2
6

1
.9

E-
1

8
0

.0
9

2
1

.5
E-

1
0

0
.1

9
3

0
.0

3
0

0
.2

6
0

.1
0

6
0

.1
2

5
2

.7
E-

0
8

rs
3

5
1

3
6

5
7

5
--

--
C

/G
0

.7
3

9
0

.0
1

/1
.0

0
0

.0
5

6
9

.6
E-

0
5

0
.0

7
5

2
.6

E-
0

7
0

.8
1

7
0

.0
1

4
0

.5
5

0
.9

0
4

2
0

.0
0

3
0

.9
1

C
ET

P
fo

r
H

D
L-

C

rs
5

6
1

5
6

9
2

2
--

--
T

/C
0

.7
1

6
--

--
2

0
.0

9
0

4
.7

E-
5

9
--

--
--

--
2

.3
%

3
.6

%
0

.8
5

4
2

0
.0

7
1

2
.0

E-
1

2
0

.8
3

0
2

0
.0

7
1

1
.1

E-
2

6

rs
1

2
7

2
0

9
2

2
C

ET
P

-i
n

tr
o

n
A

/G
0

.1
7

7
0

.0
5

/0
.6

8
2

0
.0

9
8

6
.7

E-
5

0
2

0
.0

7
3

2
.2

E-
2

6
0

.3
3

2
2

0
.0

1
7

0
.0

2
6

0
.1

3
7

2
0

.0
5

8
6

.9
E-

1
6

rs
5

8
8

3
C

ET
P

-F
2

8
7

F
T

/C
0

.0
4

6
0

.0
3

/1
.0

0
0

.0
5

5
5

.0
E-

0
6

0
.0

6
5

6
.2

E-
0

8
0

.1
0

1
0

.0
8

8
1

.3
E-

1
3

0
.0

1
0

0
.0

1
7

0
.7

0

P
C

SK
9

fo
r

LD
L-

C

rs
1

1
5

9
1

1
4

7
P

C
SK

9
-R

4
6

L
T

/G
0

.0
4

0
--

--
2

0
.3

8
4

2
.8

E-
3

0
--

--
--

--
1

.2
%

1
.3

%
0

.0
0

3
2

0
.5

9
5

2
.3

E-
0

3
--

--
--

--
--

--

rs
2

4
9

5
4

7
7

P
C

SK
9

-i
n

tr
o

n
A

/G
0

.5
7

1
0

.0
0

/0
.2

1
0

.0
8

6
1

.3
E-

1
1

0
.0

5
7

9
.4

E-
0

6
0

.2
9

2
0

.0
5

5
7

.4
E-

0
3

0
.7

6
1

0
.0

4
8

2
.6

E-
0

3

G
C

K
R

fo
r

T
G

rs
1

2
6

0
3

2
6

G
C

K
R

-P
4

4
6

L
T

/C
0

.3
5

0
--

--
0

.0
6

9
4

.4
E-

2
4

--
--

--
--

0
.9

%
1

.0
%

0
.1

4
9

0
.0

6
5

2
.2

E-
0

8
0

.4
8

4
0

.0
5

6
1

.5
E-

1
3

rs
1

3
3

9
9

7
5

8
C

A
D

-i
n

tr
o

n
T

/C
0

.9
4

9
0

.0
4

/1
.0

0
0

.0
8

3
2

.7
E-

0
8

0
.0

6
0

7
.6

E-
0

5
0

.4
8

3
0

.0
2

3
5

.4
E-

0
3

0
.9

9
9

0
.1

9
1

0
.2

1

LI
P

C
fo

r
H

D
L-

C

rs
1

0
4

6
8

0
1

7
--

--
T

/C
0

.3
2

7
--

--
0

.0
5

1
2

.5
E-

2
1

--
--

--
--

0
.8

%
1

.4
%

0
.1

6
0

0
.0

2
0

0
.0

4
5

0
.1

8
3

0
.0

3
1

1
.3

E-
0

6

rs
1

0
7

7
8

3
4

LI
P

C
-5

9U
T

R
T

/C
0

.7
5

1
0

.0
2

/0
.1

3
2

0
.0

5
0

1
.9

E-
1

7
2

0
.0

4
7

3
.0

E-
1

5
0

.4
8

1
2

0
.0

3
4

2
.2

E-
0

6
0

.5
9

8
2

0
.0

3
7

1
.8

E-
1

3

A
P

O
B

fo
r

LD
L-

C

rs
9

3
4

1
9

8
--

--
T

/G
0

.2
9

8
--

--
0

.1
1

6
3

.7
E-

1
7

--
--

--
--

0
.7

%
0

.8
%

0
.1

3
8

0
.0

5
7

0
.0

3
7

0
.1

3
8

0
.0

5
8

3
.3

E-
0

3

rs
6

6
8

9
4

8
--

--
A

/G
0

.8
1

0
0

.1
3

/1
.0

0
0

.1
0

2
2

.5
E-

1
0

0
.0

6
8

5
.1

E-
0

5
0

.4
4

6
0

.1
0

0
1

.2
E-

0
7

0
.9

6
6

2
0

.0
0

1
0

.9
9

LP
L

fo
r

T
G

rs
1

5
2

8
5

3
9U

T
R

T
/C

0
.2

5
8

--
--

2
0

.0
6

1
1

.1
E-

1
6

--
--

--
--

0
.6

%
0

.8
%

0
.5

0
5

2
0

.0
4

2
2

.1
E-

0
7

0
.1

8
7

2
0

.0
5

5
2

.0
E-

0
8

rs
3

4
7

7
0

2
5

3
--

--
T

/C
0

.8
0

2
0

.3
9

/1
.0

0
0

.0
1

4
0

.0
9

8
2

0
.0

4
4

1
.5

E-
0

5
0

.8
6

0
2

0
.0

1
8

0
.1

2
0

.9
0

5
0

.0
0

8
0

.5
5

LP
L

fo
r

H
D

L-
C

rs
1

5
2

8
5

3
9U

T
R

T
/C

0
.2

5
8

--
--

0
.0

3
5

1
.4

E-
0

9
--

--
--

--
0

.3
%

0
.4

%
0

.5
0

5
0

.0
4

7
3

.5
E-

1
1

0
.1

8
2

0
.0

2
2

6
.8

E-
0

4

rs
4

4
0

7
8

9
4

--
--

T
/C

0
.3

6
0

0
.2

4
/1

.0
0

2
0

.0
3

1
4

.3
E-

0
9

2
0

.0
2

3
7

.3
E-

0
5

0
.1

6
7

2
0

.0
1

4
0

.1
3

0
.6

3
7

2
0

.0
1

8
3

.7
E-

0
4

a
LD

(r
2
/D

9)
w

it
h

SN
P

sh
o

w
in

g
th

e
st

ro
n

g
e

st
e

vi
d

e
n

ce
o

f
as

so
ci

at
io

n
at

e
ac

h
lo

cu
s.

b
b

:
e

ff
e

ct
si

ze
fr

o
m

an
ad

d
it

iv
e

m
o

d
e

l
an

d
co

rr
e

sp
o

n
d

in
g

to
th

e
e

ff
e

ct
al

le
le

,
in

th
e

u
n

it
o

f
m

m
o

l/
L

fo
r

H
D

L-
C

,
LD

L-
C

an
d

n
at

u
ra

l
lo

g
tr

an
sf

o
rm

e
d

T
G

.
c
P

va
lu

e
s

o
f

se
q

u
e

n
ti

al
co

n
d

it
io

n
al

an
al

ys
e

s,
in

w
h

ic
h

w
e

ad
d

e
d

th
e

SN
P

w
it

h
th

e
st

ro
n

g
e

st
e

vi
d

e
n

ce
o

f
as

so
ci

at
io

n
in

to
th

e
re

g
re

ss
io

n
m

o
d

e
l

as
a

co
va

ri
at

e
an

d
te

st
e

d
fo

r
th

e
n

e
xt

st
ro

n
g

e
st

SN
P

u
n

ti
l

th
e

st
ro

n
g

e
st

SN
P

sh
o

w
e

d
a

co
n

d
it

io
n

al
P

va
lu

e
.

1
0

2
4

an
d

h
ad

n
o

an
n

o
ta

ti
o

n
su

g
g

e
st

in
g

p
o

te
n

ti
al

fu
n

ct
io

n
.

d
V

ar
ia

n
ce

e
xp

la
in

e
d

b
y

SN
P

s
at

e
ac

h
lo

cu
s

w
as

e
st

im
at

e
d

b
as

e
d

o
n

Eu
ro

p
e

an
sa

m
p

le
s.

e
P

va
lu

e
s

o
f

in
it

ia
l

as
so

ci
at

io
n

in
A

fr
ic

an
A

m
e

ri
ca

n
s

an
d

Ea
st

A
si

an
s.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

g
e

n
.1

0
0

3
3

7
9

.t
0

0
2

Trans-Ethnic Fine-Mapping of Lipid Loci

PLOS Genetics | www.plosgenetics.org 9 March 2013 | Volume 9 | Issue 3 | e1003379



T
a

b
le

3
.

Li
p

id
lo

ci
w

it
h

m
u

lt
ip

le
si

g
n

al
s

in
Ea

st
A

si
an

s.

S
N

P
A

n
n

o
ta

ti
o

n
E

ff
e

ct
/n

o
n

-
e

ff
e

ct
a

ll
e

le
E

a
st

A
si

a
n

(n
=

9
,4

4
9

)

V
a

ri
a

n
ce

e
x

p
la

in
e

d
b

y
th

e
st

ro
n

g
e

st
si

g
n

a
ld

V
a

ri
a

n
ce

e
x

p
la

in
e

d
b

y
a

ll
si

g
n

a
ls

d
A

fr
ic

a
n

A
m

e
ri

ca
n

(n
=

6
,8

3
2

)
E

u
ro

p
e

a
n

(n
=

1
0

,8
2

9
)

E
A

F
L

D
(r

2
/D

9)
a

b
b

P
in

it
ia

l
b

b
P

c
o

n
d

it
io

n
a

lc
E

A
F

b
b

P
e

E
A

F
b

b
P

e

A
P

O
A

5
fo

r
T

G

rs
6

5
1

8
2

1
A

P
O

A
5

:
-3

A
.

G
T

/C
0

.7
2

5
--

--
2

0
.1

4
5

7
.2

E-
6

8
--

--
--

--
2

.6
%

3
.4

%
0

.8
5

1
2

0
.0

3
7

1
.4

E-
0

3
0

.9
2

1
2

0
.1

5
1

8
.5

E-
3

6

rs
2

0
7

5
2

9
1

A
P

O
A

5
-G

1
8

5
C

A
/C

0
.0

6
4

0
.0

9
/1

.0
0

0
.2

0
1

3
.7

E-
3

7
0

.1
0

6
7

.2
E-

1
0

0
.0

0
2

0
.2

0
4

0
.0

2
8

0
.0

0
0

3
0

.2
6

9
0

.2
3

rs
1

1
6

0
4

4
2

4
Z

N
F2

59
-i

n
tr

o
n

T
/C

0
.6

5
0

0
.3

9
/1

.0
0

2
0

.0
7

5
2

.0
E-

2
1

2
0

.0
4

5
4

.8
E-

0
5

0
.7

2
5

2
0

.0
2

0
0

.0
3

2
0

.7
6

5
2

0
.1

0
1

6
.5

E-
4

0

TO
M

M
40

-A
P

O
E-

A
P

O
C

4
fo

r
LD

L-
C

rs
7

4
1

2
A

P
O

E-
R

1
7

6
C

T
/C

0
.0

8
6

--
--

2
0

.4
1

1
1

.1
E-

6
4

--
--

--
--

8
.0

%
9

.0
%

0
.1

1
0

2
0

.5
3

6
6

.7
E-

7
5

0
.0

5
6

2
0

.5
0

5
5

.4
E-

7
6

rs
7

6
9

4
4

9
A

P
O

E-
in

tr
o

n
A

/G
0

.0
8

6
0

.0
0

/1
.0

0
0

.1
7

3
2

.8
E-

1
2

0
.1

9
1

3
.8

E-
0

6
0

.0
2

4
0

.3
0

2
1

.1
E-

0
6

0
.1

6
0

0
.1

2
1

1
.7

E-
1

2

C
ET

P
fo

r
H

D
L-

C

rs
1

7
2

3
1

5
0

6
C

ET
P

-5
9U

T
R

T
/C

0
.1

6
8

--
--

0
.0

7
3

3
.6

E-
2

8
--

--
--

--
1

.0
%

2
.3

%
0

.1
4

6
0

.0
7

1
2

.9
E-

1
2

0
.2

8
4

0
.0

9
0

2
.2

E-
5

8

rs
7

4
9

9
8

9
2

C
ET

P
-i

n
tr

o
n

T
/C

0
.1

6
4

0
.0

0
/1

.0
0

2
0

.0
5

2
2

.8
E-

1
5

2
0

.0
6

5
2

.0
E-

0
7

0
.3

7
2

2
0

.0
6

6
1

.4
E-

1
6

0
.1

7
3

2
0

.0
9

7
4

.6
E-

4
8

A
B

O
fo

r
LD

L-
C

rs
9

4
1

1
4

7
6

A
B

O
-

d
o

w
n

st
re

am
A

/G
0

.1
6

2
--

--
0

.1
0

6
1

.1
E-

0
8

--
--

--
--

0
.8

%
1

.8
%

0
.1

2
1

0
.0

4
3

0
.1

4
0

.0
0

5
2

0
.1

9
0

0
.0

3
7

rs
1

9
1

6
3

7
0

5
5

A
D

A
M

TS
L-

in
tr

o
n

A
/C

0
.9

9
8

0
.0

0
/1

.0
0

2
0

.6
8

8
1

.1
E-

0
3

2
1

.0
5

5
4

.0
E-

0
5

0
.9

7
7

2
0

.0
1

4
0

.8
3

0
--

--
--

--

a
LD

(r
2
/D

9)
w

it
h

SN
P

sh
o

w
in

g
th

e
st

ro
n

g
e

st
e

vi
d

e
n

ce
o

f
as

so
ci

at
io

n
at

e
ac

h
lo

cu
s.

b
b

:
e

ff
e

ct
si

ze
fr

o
m

an
ad

d
it

iv
e

m
o

d
e

l
an

d
co

rr
e

sp
o

n
d

in
g

to
th

e
e

ff
e

ct
al

le
le

,
in

th
e

u
n

it
o

f
m

m
o

l/
L

fo
r

H
D

L-
C

,
LD

L-
C

an
d

n
at

u
ra

l
lo

g
tr

an
sf

o
rm

e
d

T
G

.
c
P

va
lu

e
s

o
f

se
q

u
e

n
ti

al
co

n
d

it
io

n
al

an
al

ys
e

s,
in

w
h

ic
h

w
e

ad
d

e
d

th
e

SN
P

w
it

h
th

e
st

ro
n

g
e

st
e

vi
d

e
n

ce
o

f
as

so
ci

at
io

n
in

to
th

e
re

g
re

ss
io

n
m

o
d

e
l

as
a

co
va

ri
at

e
an

d
te

st
e

d
fo

r
th

e
n

e
xt

st
ro

n
g

e
st

SN
P

u
n

ti
l

th
e

st
ro

n
g

e
st

SN
P

sh
o

w
e

d
a

co
n

d
it

io
n

al
P

va
lu

e
.

1
0

2
4

an
d

h
ad

n
o

an
n

o
ta

ti
o

n
su

g
g

e
st

in
g

p
o

te
n

ti
al

fu
n

ct
io

n
.

d
V

ar
ia

n
ce

e
xp

la
in

e
d

b
y

SN
P

s
at

e
ac

h
lo

cu
s

w
as

e
st

im
at

e
d

b
as

e
d

o
n

C
LH

N
S

sa
m

p
le

s
(n

=
1

,7
1

6
).

e
P

va
lu

e
s

o
f

in
it

ia
l

as
so

ci
at

io
n

in
A

fr
ic

an
A

m
e

ri
ca

n
s

an
d

Eu
ro

p
e

an
s.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

g
e

n
.1

0
0

3
3

7
9

.t
0

0
3

Trans-Ethnic Fine-Mapping of Lipid Loci

PLOS Genetics | www.plosgenetics.org 10 March 2013 | Volume 9 | Issue 3 | e1003379



Among the 16 reported functional variants and proxies that

exhibited the strongest association P-value at a signal (Table 5),

R176C at APOE was strongest in all three populations and GCKR

L446P was identified in both African Americans and Europeans.

The remaining 14 variants showed the strongest associations in

only one of the populations, including 10 in African Americans,

three in East Asians, and one in Europeans. Five of the 10 variants

in African Americans were at the PCSK9 locus. Furthermore, nine

of the 16 variants represented the strongest signal at a given locus,

three for a 2nd signal, and four for the 3rd or additional signals.

These functional variants covered a wide allele frequency

spectrum (MAF: 0.003–0.481), including five less common or rare

variants observed only in African Americans.

Discussion

This study evaluated densely spaced SNPs at 58 lipid loci across

three ancestrally diverse populations. The results support evidence

that allelic heterogeneity is a frequent feature of polygenic traits

[5,49] and extend the findings to non-European populations,

especially to African ancestry populations that have high levels of

haplotype diversity. The results also provide strong evidence that

fine mapping at GWAS loci can identify population-specific

signals. Despite comparable sample sizes, we identified more

signals per locus and more signals overall in African Americans (34

signals at 10 loci) compared to Europeans (21 signals at nine loci)

and East Asians (nine signals at four loci), and 15 of the 34 signals

identified in African Americans were population-specific (Table 1,

Table 2, Table 3). These observations may reflect the larger

number of SNPs genotyped in African Americans (Table S2),

variation across populations subject to natural selection during

human evolution [14], or genetic drift [50]. Due to the varied

number of signals per locus, different associated markers, and

different effect sizes, the phenotypic variance explained differs

across populations [51–53]. Sampling variability, epistasis, and

gene-environment interactions may cause over- or under-estima-

tion of the proportion of explained phenotypic variance. In this

study, we also observed that many population-specific signals,

including those at PCSK9 and APOA5, are largely confirmatory

[20,22,54]; however, the association evidence at other signals, in

particular the additional signals at APOE, LDLR, and APOC1

identified by the conditional analyses, requires replication in future

studies.

At PCSK9, the strongest signal C679X identified in African

Americans is population-specific and showed substantially stronger

evidence of association with LDL-C (P = 4.1610222) compared to

the GWAS index SNP rs2479409 [5] (P = 0.12) and the most

strongly associated SNP R46L identified via fine-mapping [7]

(P = 2.361023), both of which were previously reported in

Europeans. The proportion of phenotypic variance explained in

African Americans increased from 0.16% by the GWAS index

SNP to 1.3% by the Metabochip signal C679X, and all variants at

the locus together explained 3.6% of the total variation in LDL-C,

providing evidence that heritability at identified loci may be

underestimated by GWAS [7]. A limitation of these variance

estimates is that calculations included the SNPs based simply on

their significant association P values rather than the variants with

biological function, which could over-estimate effects due to the

winner’s curse.

Results across the genotyped loci demonstrated that the

majority of signals were represented by common variants, yet

high-density genotyping also identified less common and rare

variants associated with lipid traits. At PCSK9, the MAFs of six out

of the seven signals were ,0.05 in African Americans. These

signals, along with other low frequency variants identified at

APOE, LDLR, LCAT, APOB, APOC1, and LPL provide evidence of

the substantial contribution of low frequency genetic variants to

the variance of lipid traits [6]. Other variants, some with very low

allele frequency, may exist at these loci, suggesting that future

sequencing studies may identify additional functional variants that

influence lipid variation.

Sequential conditional analyses provided further insight into the

genetic architecture of the established lipid loci by explaining

additional phenotypic variation and revealing complex patterns of

Figure 2. Trans-ethnic high-density genotyping narrows the
association signal at the HDL-C locus PPP1R3B. Association in
Europeans (A), East Asians (B), African Americans (C) and in a combined
trans-ethnic meta-analysis (D). Index SNP rs6601299 colored in purple is
the variant showing strongest evidence of association in the combined
trans-ethnic meta-analysis.
doi:10.1371/journal.pgen.1003379.g002
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association. We observed loci at which signals were not

independent of each other, but partially correlated based on

moderate LD estimates and changes of association statistics before

and after accounting for other signals. For these dependent signals,

such as those at TOMM4-APOE-APOC4, the significance of

residual association would increase when trait-increasing alleles

were present on opposite haplotypes and decrease when trait-

increasing alleles were on the same haplotype. Other signals that

appeared to be independent on the basis of low pairwise LD and

unchanged association evidence after conditional analysis may still

be partially tagging an un-typed, yet influential, variant [55–57].

Therefore, deeper sequencing that identifies all variants at a locus

will be required to characterize more fully the allelic heterogeneity

and the patterns of association.

One of the major goals of high-density genotyping is to aid in

identification of the functional variants by recognizing the most

compelling candidate variants for experimental study. Because of the

diverse LD structure across populations, particularly in terms of the

limited LD extent in African ancestry populations, trans-ethnic fine-

mapping of GWAS loci can narrow the region where functional

variants are most likely to reside. This study was able to narrow the

association signals at five lipid loci, based on the much smaller subsets

of most strongly associated variants located in smaller regions. One

signal was localized to a reported causal variant (GCKR-P446L) [28]

and another to an uncharacterized nonsynonymous variant (SLC12A4-

E4G near LCAT). These findings demonstrate that trans-ethnic

association analyses can increase the resolution of fine-mapping by

enlarging the haplotypic diversity of samples with different ancestries

and consequently, narrowing the sets of candidate functional variants

[58,59]. The previously described functional variants at LCAT [44] and

ABCA1 [42,43], which are not present on the Metabochip, were

physically located 22 kb and .43 kb away from the narrowed

association signals observed in this study (Table 4).

Refining signals by trans-ethnic meta-analysis largely relies not only

on the existence of distinct LD patterns across ancestry groups but also

on shared functional variants. If functional variants are shared across

populations, as observed with GCKR-P446L, performing trans-ethnic

meta-analysis and integrating LD information across different

populations may refine the signal. On the contrary, if trait variation

is influenced by distinct functional variants across populations, as our

data suggest for APOA5 (Figure S6A–S6D), the lead SNPs produced by

meta-analysis would be influenced by the sample size, magnitude of

genetic effects, and allele frequencies. Similarly, in the case of

population-specific functional variants, such as those at PCSK9, the

results from meta-analysis would reflect the association in one

particular population rather than the combined effect across

populations if signals unique to this population drive the results.

Therefore, accurate assessment of allelic variability is needed on a

population-by-population and locus-by-locus basis.

Although genotype imputation has become a standard practice to

increase genome coverage in GWAS by predicting the genotypes at

SNPs that are not directly genotyped, imputation accuracy tends to be

lower for rare variants owing to the lower degree of LD and the more

challenging haplotype reconstruction [60]. In addition, African

American samples pose a challenge for imputation due to their varying

degree of admixture [61]. A major strength of our study is that all

variants we tested for association were directly genotyped using the

Metabochip, which was designed to provide a high-density coverage

for both overall SNPs and low frequency variants concentrated around

GWAS-identified loci and/or signals [9,10]. This approach increases

the reliability of our association results overall, but in particular the

variants with low allele frequencies.

In conclusion, we performed a large-scale trans-ethnic fine-mapping

study to investigate the established lipid loci using the Metabochip
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high-density genotyping array and focusing on diverse groups including

African Americans, East Asians, and Europeans. Our results highlight

the value of high-density genotyping in diverse populations to identify a

wider spectrum of susceptibility variants at established loci, both in

terms of additional signals and in terms of population-specific and/or

potentially functional variants. The additional signals revealed through

the sequential conditional analyses lead to a 1.3- to 1.8-fold increase in

the explained phenotypic variance across the different populations. In

addition, integrating diverse LD patterns across diverse ancestry groups

allows for the refinement of association signals. Lastly, our findings that

74% of the reported functional variants exhibited the strongest

association at these densely typed signals suggest that at loci and signals

where functional variants are unknown, the variants with strongest

association may be good candidates for functional assessment.

Materials and Methods

Study populations and phenotypes
The 6,832 African Americans studied are comprised of individuals

from the Atherosclerosis Risk in Communities Study (ARIC) [62], the

Multiethnic Cohort Study (MEC) [63], and the Women’s Health

Initiative (WHI) [64,65] that are part of Population Architecture

using Genomics and Epidemiology (PAGE) consortium [66] and

from Hypertensive Genetic Epidemiology Network (HyperGEN)

[67]. The 9,449 East Asian samples are comprised of 1,716 Filipinos

from the Cebu Longitudinal Health and Nutrition Survey (CLHNS)

[68] and 7,733 Chinese from Taiwan-Metabochip Study for

Cardiovascular Disease (TAICHI). The 10,829 European samples

are comprised of Finnish and Norwegian individuals; the Finns are

from the Finland-United States Investigation of NIDDM Genetics

(FUSION), Dehko 2D 2007 (D2D2007), Diabetes Prevention Study

(DPS), Dose-Responses to Exercise Training (DR’s EXTRA), and

Metabolic Syndrome in Men (METSIM) [69,70], and the Norwe-

gians were from the cohorts of Nord-Trøndelag Health Study

(HUNT 2) and the Tromsø Study (TROMSO) [71,72].

All study protocols were approved by Institutional Review

Boards at their respective sites. Brief descriptions of the studies

are provided in the Text S1. General characteristics and

measurements of TG, HDL-C, and LDL-C in each cohort are

summarized in Table S1. Values of triglycerides were natural log

transformed to approximate normality in each study sample

separately.

Table 5. Reported functional variants exhibited the strongest association at a signal (P,1024).

Reported functional variants [ref]

Reported functional
variants on
Metabochip

Variants with strongest
association at a signal Signal Ethnic group* MAF Notes

PCSK9: rs28362286 (C679X) [22] Yes rs28362286 1st AA 0.009 Same variant

PCSK9: rs28362263 (A443T) [29] Yes rs28362263 2nd AA 0.097 Same variant

PCSK9: rs28362261 (N425S) [30] Yes rs28362261 3rd AA 0.017 Same variant

PCSK9: rs67608943 (Y142X) [22] Yes rs67608943 4th AA 0.004 Same variant

PCSK9: rs72646508 (L253F) [22] Yes rs72646508 5th AA 0.003 Same variant

APOE: rs7412 (R176C) [23] Yes rs7412 1st AA, ASN, EUR 0.056–0.110 Same variant

APOE: rs769455 (R163C) [31] Yes rs769455 2nd AA 0.020 Same variant

APOA5: rs3135506 (S19W) [26] Yes rs3135506 1st AA 0.058 Same variant

APOA5: rs651821(-3A.G) [32] Yes rs651821 1st ASN 0.275 Same variant

APOA5: rs2075291 (G185C) [25] Yes rs2075291 2nd ASN 0.064 Same variant

GCKR: rs1260326 (L446P) [28] Yes rs1260326 1st AA, EUR 0.149–0.350 Same variant

SORT1: rs12740374 [18] Yes rs12740374 1st AA 0.247 Same variant

CETP: rs17231520 [33] Yes rs17231520 3rd AA 0.069 Same variant

LIPC: rs2070895 [34] Proxy: rs1077834 (LD
r2 = 1.00)

rs1077834 1st, 2nd AA, EUR 0.481 LD r2 = 1.00

APOB: rs7575840 [35] Yes rs934198 1st EUR 0.298 LD r2 = 0.98

LPL: rs328 (S447X) [36] Yes rs1803924 1st ASN 0.095 LD r2 = 0.96

LDLR: rs688 (N591N) [37] Yes rs73015011, rs112898275 1st AA, EUR ---- LD r2,0.01

LPL: rs1801177 (D9N) [38] Yes rs75551077, rs15285 1st AA, EUR ---- LD r2,0.02

HMGCR: rs3761740 (-911C.A) [39] Proxy: rs17238330 (LD
r2 = 1.00)

rs12916 1st EUR ---- LD r2,0.20

LDLR: -139C.G [40] No ---- ---- ---- ---- ----

LPL: rs268 (N291S) [41] No ---- ---- ---- ---- ----

ABCA1: rs9282541 (R230C) [42] No ---- ---- ---- ---- ----

ABCA1: rs2066715 (V825I) [43] No ---- ---- ---- ---- ----

LCAT: rs28940887(R159W) [44] No ---- ---- ---- ---- ----

PLTP: R235W [45] No ---- ---- ---- ---- ----

LIPG: rs77960347 (A396S) [46] No ---- ---- ---- ---- ----

LIPG: rs34474737 [47] No ---- ---- ---- ---- ----

*AA, African American; EUR, European; ASN, East Asian.
doi:10.1371/journal.pgen.1003379.t005
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Genotyping
We genotyped all study samples with the Metabochip according

to the manufacturer’s protocol (Illumina, San Diego, CA, USA).

Table S1 summarizes the quality control criteria of genotyping,

including call rate, sample success rate, Hardy-Weinberg equilib-

rium, and MAF that varied across studies.

Statistical analyses
We applied multiple linear regression models and assumed an

additive mode of inheritance to test for association between

genotypes and HDL-C, LDL-C, or log-transformed triglycerides.

We performed each test of association separately in each of the 11

groups (Table S1) prior to meta-analysis. We constructed principal

components (PCs) using the software EIGENSOFT. We used age

and sex as covariates in each individual cohort; other cohort-

specific covariates including age2, enrollment site, socioeconomic

status, and principal components varied across studies (Table S1).

The European samples include type 2 diabetes (T2D) cases and

unaffected controls; to avoid confounding due to T2D status,

samples were analyzed separately as Finnish T2D patients, Finnish

unaffected individuals, Norwegian T2D patients, and Norwegian

unaffected individuals.

We first conducted the meta-analysis within the African Americans,

East Asians, and Europeans separately. We then performed combined

trans-ethnic meta-analyses by combining the statistics of each the 11

participating groups to assess the association with the SNPs at the 58

lipids loci.

At loci that exhibited evidence of association at P,1024, we next

performed a series of sequential conditional analyses by adding the

most strongly associated SNP into the regression model as a

covariate and testing all remaining regional SNPs for association.

We conducted a set of sequential conditional analyses until the

strongest SNP showed a conditional P value.1024 and had no

annotation or literature evidence that suggested a functional role.

For single SNP analyses, we applied PLINK (http://pngu.mgh.

harvard.edu/,purcell/plink/) [73] for population-based studies.

We used the R package GWAF [74] for the family-based study of

HyperGEN. We applied an inverse variance-weighted fixed-effect

meta-analysis implemented in METAL [75].

Unless otherwise noted, linkage disequilibrium estimates were

obtained from the 1000 Genomes Project November 2010 release.

SNP positions correspond to hg18.

We performed haplotype analysis at LDL-C locus TOMM40-

APOE-APOC4 in 5,593 unrelated African Americans from the

PAGE consortium, using the ‘haplo.stat’ R package. Haplotypes

and haplotype frequencies were estimated using the R function

‘haplo.em’. The association between haplotypes and LDL-C was

assessed using the R function ‘haplo.glm’. An additive model was

assumed, in which the regression coefficient b represents the

expected change in LDL-C level with each additional copy of the

specific haplotype compared with the reference haplotype, which

was set as the A-A (trait increasing-increasing) haplotype.

We created the regional association plots using LocusZoom

[76]. To plot the association results in Europeans and East Asians,

we used the LocusZoom-implemented LD estimates from the 1000

Genomes Project (June 2010) CEU and CHB+JPT samples, whose

LD structures are similar to our samples with European and East

Asian ancestries. We applied the user-supplied LD calculated from

the genotype data of the PAGE African American samples to plot

the regional association in African Americans [9], because the LD

patterns may vary from any pre-computed LD sources imple-

mented in LocusZoom.

We evaluated the proportion of variance explained by a single

SNP or any given locus by including the SNP or a set of SNPs into

a linear regression model with all covariates used in association

analysis and calculating the R2 for the full model. We subtracted

the variance explained by a basic model in which only covariates

were included from the variance we obtained from the full model.

We performed these analyses using SAS version 9.2 (SAS Institute,

Cary, NC, USA).

Supporting Information

Figure S1 LDL-C locus TOMM40-APOE-APOC4 exhibited

seven signals in African Americans. Each SNP was colored

according to its LD (r2) in PAGE consortium with the strongest

SNP rs7412 (R176C) colored in purple.

(PDF)

Figure S2 Association at TG locus GCKR in Europeans (A), East

Asians (B), African Americans (C), and trans-ethnic meta-analysis

(D). Index SNP rs1260326 (P446L) is the variant showing the

strongest evidence of association in trans-ethnic meta-analysis.

(PDF)

Figure S3 Association at LDL-C locus ABO in Europeans (A),

East Asians (B), African Americans (C), and trans-ethnic meta-

analysis (D). Index SNP rs2519093 is the variant showing the

strongest evidence of association in trans-ethnic meta-analysis.

(PDF)

Figure S4 Association at HDL-C locus LCAT in Europeans (A),

East Asians (B), African Americans (C), and trans-ethnic meta-

analysis (D). Index SNP rs3785100 (SLC12A4-E4G) is the variant

showing the strongest evidence of association in trans-ethnic meta-

analysis.

(PDF)

Figure S5 Association at HDL-C locus ABCA1 in Europeans (A),

East Asians (B), African Americans (C), and trans-ethnic meta-

analysis (D). Index SNP rs1883025 is the variant showing the

strongest evidence of association in trans-ethnic meta-analysis.

(PDF)

Figure S6 Association at TG locus APOA5 in Europeans (A),

East Asians (B), African Americans (C), and trans-ethnic meta-

analysis (D). The SNPs rs3741298, rs651821 (-3A.G), rs3135506

(S19W), and rs662799 that exhibited the smallest P values in

Europeans, East Asians, African Americans, and the trans-ethnic

meta-analysis are indicated.

(PDF)

Table S1 Characteristics of the study samples.

(PDF)

Table S2 Number of SNPs at each locus for analysis in each of

the three ancestry groups.

(PDF)

Table S3 Lead SNP at TG (A), HDL-C (B), and LDL-C (C) loci

within each ancestry group and their relative significance

compared to reported GWAS index SNPs.

(PDF)

Table S4 SNPs with the strongest association at TG (A), HDL-C

(B) and LDL-C (C) loci in combined trans-ethnic meta-analysis

and their associations within ancestry groups.

(PDF)

Table S5 LDL-C association with haplotypes consisting of the

third (rs1038026) and the fourth (rs157588) signals at TOMM40-

APOE-APOC4 cluster.

(PDF)
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Text S1 Study description.

(DOCX)
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