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Abstract

Alzheimer’s Disease (AD) represents a major and rapidly growing burden to the healthcare 

ecosystem. A growing body of evidence indicates that cognitive, behavioral, sensory, and motor 

changes may precede clinical manifestations of AD by several years. Existing tests designed to 

diagnose neurodegenerative diseases, while well-validated, are often less effective in detecting 

deviations from normal cognitive decline trajectory in the earliest stages of the disease. In the 

quest for gold standards for AD assessment, there is a growing interest in the identification of 

readily accessible digital biomarkers, which harness advances in consumer grade mobile and 

wearable technologies. Topics examined include a review of existing early clinical manifestations 

of AD and a path to the respective sensor and mobile/wearable device usage to acquire domain-

centric data towards objective, high frequency and passive digital phenotyping.

INTRODUCTION

Alzheimer’s Disease (AD) represents a major and rapidly growing burden to the healthcare 

ecosystem. In the USA alone, some 5 million people suffer from the disease that costs the 
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managed healthcare system in excess of $250 billion. Currently the sixth leading cause of 

death, AD prevalence has increased by 89% since 2000, underscoring the need for 

interventive and preventative measures. Despite enormous capital investments, drug 

development has been problematic. It is generally accepted that the likelihood of reversing 

anatomic and physiologic changes (e.g., neuronal death) decreases dramatically as the 

disease advances, placing increased attention on early cohort discovery and patient 

stratification for any future clinical studies. Accordingly, there is an acute need to detect the 

disease at prodromal stages. In this quest for monitoring biomarkers for AD assessment, 

there is growing interest in the identification of readily accessible digital biomarkers, which 

leverage widely available mobile and wearable technologies, and it is these that are the 

subject of this review article.

A growing body of evidence indicates that cognitive, sensory and motor changes may 

precede clinical manifestations of AD by several years.1 In particular, sensory and motor 

(non-cognitive) changes can help detect a neurological or neurodegenerative disease 10 or 

15 years prior their effective diagnosis. This said, existing validated neuropsychological/

cognitive tests designed to diagnose neurodegenerative diseases are often less effective in 

detecting deviations from normal cognitive trajectory in the earliest stages of the disease. 

Furthermore, cognitive tests can suffer from intrinsic cultural bias, take a relatively long time 

to administer, provide only episodic information, show “practice effect” or “ceiling effect,” 

and are rater dependent.2 Explorations into the inclusion of genetic testing, structural MRI 

imaging and PET molecular imaging of beta-amyloid and tau protein promise earlier 

detection of disease, though these tests are currently limited to research applications due to 

their cost and invasive nature. These limitations preclude repeated and frequent use to test an 

individual and specifically in the early pre-symptomatic stage.

Mobile and wearable digital consumer technology has the potential to overcome these 

limitations, and their application in AD detection has become an area of increased interest.

MOBILE AND WEARABLE DEVICE-DERIVED DATA

Mobile and wearable technologies (such as smart phones, tablets, smart watches, and rings, 

smart suits) present a unique opportunity to massively detect neurodegenerative diseases in a 

timely and economical fashion due to:

a. the widespread usage of such technologies

b. the immediate access of information due to the inherent connectivity

c. the increasing sensitivity and plurality of onboard sensors

d. the nature of these sensors that are uniquely equipped to study such physical and 

cognitive abilities or symptoms

e. the extremely low burden on the healthcare system, since these devices are 

increasingly in use by large segments of the population.
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Onboard sensors at the heart of these systems are able to provide metrics by means of active 

(prompted) or passive (unnoticed) measurements, offering considerable flexibility in 

approach.

Active data collection occurs when a user is prompted to perform a measurement and/or 

enter a metric value, e.g., a digital e-assessment cognitive test that probes memory on a 

tablet to detect AD,3 or a prompted voice test that probes vocal cord tremor to detect PD.4 

These measurements are usually targeted at addressing specific metrics that have previously 

been correlated with the disease.

Passive data collection occurs when metric values are acquired unbeknownst to the user, e.g, 

a smartwatch-based step counter that continuously estimates step symmetry and length or a 

smart ring-based continuous heart rate monitor that picks up heart rate variability (HRV). As 

such, daily interaction with mobiles/wearables can result in a rich, high-frequency 

longitudinal data set that can be mined for signatures of a disease—while using users as their 

own control. Passive data collection has several advantages, including,

a. high frequency or even continuous data acquisition,

b. objectivity (not influenced by user perspective and learning effects),

c. low patient burden, which can lead to higher adherence.

On the other hand, passive data collection may

a. be limited to particular metrics that can be collected non-actively,

b. be expensive computationally and storage wise,

c. requires complex analysis tools to extract useful information.

These issues notwithstanding, given the decline in cognitive function and memory 

experienced by AD patients, passive data collection provides a logical approach for 

developing methods for disease forecasting, detection and monitoring. An enormous 

opportunity is presented for technology developers and healthcare professionals to ideate on 

new clinical studies which can provide insights to both disease detection and symptom 

assessment.

This review article considers disease-relevant aspects of sensor and device design, data 

collection modalities, and a path to clinical grade digital phenotyping. A non-exhaustive 

summary of available sensors or digital senses on each wearable/mobile device is presented 

in Fig. 1.

DISEASE SPECIFIC METRICS AND SENSORS

Sensor signals can individually or collectively provide metrics that can determine aspects of 

a domain that is affected by a particular disease or condition (Table 1)
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Movement—gross motor function. Sensors: IMU, geopositioning

A majority of AD patients exhibit pyramidal and extrapyramidal motor impairments starting 

at an early stage of the disease, which precede signs of cognitive impairment by at least a 

decade.5

Gait speed, stride length and gait symmetry are statistically reduced and gait speed 

variability is increased.6 This can be measured actively, by performing a fixed distance or 

duration walking test, or passively, by monitoring a subject using fixed7 or portable 

equipment.8 Buracchio and colleagues9 found that there is an inflection point in longitudinal 

observations of gait speed 12.1 years before clinical diagnosis of MCI (Mild Cognitive 

Impairment) where the annual decline rate in gait speed goes from −0.005 m/s/y to a 

dramatic −.023 m/s/y. It has also been shown that central nervous system impairment is 

related to stance time variability, whereas sensory impairment is related to step length 

variability.10

Although gait metrics alone provide limited specificity for AD detection, their value could 

come by incorporation into a composite scoring system. IMU sensors on smart phones, 

watches, rings and patches can estimate such metrics with good accuracy (step count: −6.7 

to 6.2% for smartphone apps; Stride length: <5% for median values).11 In addition, contact 

pressure sensors (sock, shoe) can provide even higher insight on gait characteristics such as 

stance/swing ratio (pressure correlation > 95%).12 Further accuracy improvements can be 

achieved by fusing geopositioning information. Longitudinal monitoring of these metrics 

can help create composite disease predictors.

Movement—fine motor control. Sensors: touch screen, keyboard & stylus

Fine motor control and more particularly finger tapping speed and tracing accuracy have 

long been probed as potential early signs of AD. The finger tapping test is an active test 

where the subject is asked to tap beat a button as fast and as regularly as they can for a 

period of time; the total number of taps is recorded. While tapping speed normally decreases 

with age at a rate of −0.03 taps/y, the speed after the inflection point (2.66 y prior to clinical 

manifestation of the disease) dramatically decreased to a rate of −0.15 taps/ y.9 Rabinowitz 

and colleagues13 showed that the contact time in a tapping test for subjects having an 

MMSE < 23 (a cognitive test used to evaluate AD: 20−24 is considered mild dementia, >24 

is considered Normal) was increased by 38%, suggesting a much slower reaction speed. 

Tapping tests have already been implemented in smart phone applications with good patient 

adherence14 with a primary focus on Parkinson’s disease monitoring. Moreover, finger 

tapping speed has been correlated (r = 0.77) to inter-keystroke interval (typing speed),15 

hence the potential for high frequency data collection from daily computer/tablet keyboard 

use. More recently, it has been shown16 that the text keystrokes per minute (excluding non-

text keystrokes) as well as the number of pauses while typing, can discriminate between 

cognitive impairment (128.48 ± 35.03 keystrokes per minute) and healthy controls (63.65 

± 32.64 keystrokes per minute). Fine motor control can also be probed by looking at the 

accuracy of a digital pen motion, as in a tracing test, administered with a digital pen and 

tablet; the standard delineation (RMS distance) from the actual shape is calculated17 and was 

found to correlate with visuomotor performance and age.
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Since one of the main means of interaction with mobile equipment is typing or drawing 

using a stylus, probing for typing speed and pauses while typing as well as pen trajectories 

present an excellent opportunity to longitudinally evaluate early signs of AD.

Speech and language. Sensor: microphone

Many aspects of language including grammatical and informational content as well as 

speech characteristics show deficits with increased AD progression. Using a combination of 

metrics such as periodic and aperiodic segment lengths, vocal reaction time, relative length 

(question/response), the amount of insertions/ deletions and other irregularity traits, Konig 

and colleagues18 were able to classify between healthy controls, MCI and AD patients with 

an success rate of up to 87%. Fraser showed that the use of semantic, syntactic and acoustic 

voice features in a short picture-describing narration test can increase specificity of the 

disease and its stage.19 Even the simple metric of quantifying between-utterance pauses was 

shown to correlate with episodic memory that is associated to AD.20 In another simplified 

metrics study,21 the proportion of spoken words in a discussion (user vs interlocutor) was 

shown to positively correlate with transitions from normal cognition to MCI in the pre-

symptomatic phase.

Conversations over mobile phones or between user and digital assistants are an excellent 

source of dense speech input. The available automatic speech recognition technologies (for 

example Google Assistant, Apple Siri, Microsoft Cortana, Amazon Alexa) claim high 

accuracy and can be used for transcription of subject discussions to be further analyzed. 

Another good source of language metrics is the keyboard-entered text on a mobile phone or 

tablet. As such, the syntactic and semantic analysis of spoken or written language can reveal 

early signs of the disease in a longitudinal, passive manner.

Occulomotor. Sensors: camera, light sensor

Eye movements and pupillary reflex have been used for several decades in neurological 

disease research. Careful examination of both allows to probe the medial temporal lobe 

memory system,22 the cholinergic neuronal pathways,23 the progressive neuropathological 

changes within the newcortex24,25 and the brain dopamine activity.26

Visual preference.—The Visual Paired Comparison active test is administered by 

presenting on a screen a series of image pairs to a subject; these pairs include images that 

have previously been shown to the user.27 Healthy control eyes consistently perform more 

fixations on the novel image, whereas pre-AD subjects do not.22 Given the amount of new 

information we all receive from our tablets, a passive test that measures the fixation time on 

each new or old graphic presented to a user could be devised in order to quantify the extent 

of neuronal loss in the medial temporal lobe.

Pupillary reflex.—Pupillary constriction and dilation in response to light intensity changes 

is an efficient way to evaluate the central cholinergic dysfunction and consists a balance of 

forces exerted by the iris sphincter and dilator muscles. In an active test developed 

previously23,28 where a light flashes while the subject eyes are recorded using a high speed 

camera, it was shown that AD patients had significantly lower pupil constriction velocity 
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and acceleration. Similarly, it was shown that pupillary reflex caused by abrupt changes in 

the illumination in a room were significantly different between patients with AD and 

controls.29 Today’s phone and tablet cameras have enough resolution to capture pupil 

diameter at high frame rate, thus providing the potential for a high frequency, pupillary 

reflex passive data collection.

Eye movements in reading.—Reading is a complex process that involves optical 

sensory function, cognitive processing of incoming information and occulomotor functions. 

Using standard text and a high speed eye tracker, researchers showed that patients with early 

AD exhibited reduced number of words per fixation, an increase in the total number and 

duration of fixations and and increase in the number of words skipped.30,42 Given that 

reading is one of the basic functions performed on tablets, an on board high frequency eye 

movement data collection system while text is presented can provide insight to the stage of 

the disease. In addition, AD subjects show increased latency decreased eye movement 

velocity, and also have trouble fixating on a target.31 In a recent study, AD patients exhibited 

longer maximum fixation times compared to controls (2908 vs 1951 ms, respectively) as 

well as a higher number of large intrusive saccades (2.5 vs 0.7 respectively per test).32

Eye Blink Rate has also been examined26 to be a potential biomarker of Mild Cognitive 

Impairment, with MCI participants having a higher blink rate per minute than healthy 

controls (27.60 ± 15.09 versus 20.24 ± 13.24). Given the time spent in front of a tablet or 

phone screen, longitudinal blink rate changes can be picked up by the face camera and can 

be used in the digital biomarker arsenal for early disease detection.

Effective eye tracking is possible real time, given the high resolution of tablet and phone 

cameras. Numerous programs are currently active in developing video-based eye tracking 

solutions that can be incorporated in future operating systems of mobile devices, probing 

continuously for metrics that relate to AD.

Autonomic nervous system function. Sensors: PPG, ECG, ballistocardiography

A key hallmark of AD is the disruption of the cholinergic system of the brain; the resulting 

acetylcholine deficiencies are tied to many of the higher order cognitive symptoms such as 

memory loss and attention deficits21 and are related to severity of dementia.28 This also 

results in downstream physical symptoms through the disruption of the Autonomic Nervous 

System (ANS), whose parasympathetic system is heavily dependent on acetylcholine.33 

Since both cholinergic34 and autonomic brainstem nuclei35 are amongst the earliest areas of 

the brain affected by AD-related tau aggregation, preceding cognitive symptoms by years, 

ANS disruptions represent a compelling opportunity to identify AD early on.

An important marker of ANS balance is Heart Rate Variability (HRV), a measure of the time 

intervals between heartbeats, resulting from the dual modulation of the heart by the 

sympathetic and parasympathetic systems. Due to the bidirectional vagal innervation 

between the heart and the brain, HRV has also been put forward as an index of cognitive 

function and stress.33 In healthy adults, lower Heart Rate Variability (and thus suppressed 

parasympathetic activity) was correlated with cognitive function,36 attention and working 

memory,33 mental stress37 and social cognition.38 In AD and MCI populations, where 
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Parasympathetic function is suppressed due to damage to the cholinergic systems, HRV has 

been found to be lower than healthy controls as well as being negatively correlated to the 

level of cognitive function.39 Given the ties between HRV and cognition, the early disruption 

of the cholinergic and parasympathetic system as well as its progressive decline in AD, HRV 

serves as a compelling marker for AD progression.

The advent and increased prevalence of fitness trackers and smart watches equipped with 

photoplethysmography (PPG) capability set the foundation for widespread passive and 

continuous monitoring of users’ heart rate and heart rate variability.40 Although there are 

varying levels of validity between different devices when compared with ECG,41 studies 

have shown that in certain conditions (e.g., resting still) and for certain devices, HRV 

measurements were accurate enough to be used as detection tools.42,43 Proof-of-concept 

studies have used the data from devices with significant consumer uptake such as Apple 

Watche (Apple Inc, Cupertino, CA) and Android Wear (Google Inc., Mountain View, CA) to 

detect conditions passively such as atrial fibrillation with moderate amounts of accuracy.
44,45 Smart rings equipped with PPG, such as the Oura ring (Oura Health Ltd, Oulu, 

Finland), have shown high reliability in measuring HR and HRV when compared to 

Electrocardiography (ECG).46 Consumer Ballistocardiography devices, in the form of 

sensing pads placed on the mattress, have also been shown to be capable of passively 

measuring HRV47 and detecting arrhythmias48 based on HRV signals. Another way to probe 

for the sympathetic nervous system condition (mainly arousal periods) is to measure skin 

resistance that varies with the state of sweat glands using a Galvanic Skin Response (GSR) 

sensor.49 A series of wrist-worn devices are equipped with such sensors, Empatica’s E4 

(Empatica, Milan, Italy) and Verily’s Study Watch (Verily, South San Francisco, CA) have a 

validated track record of determining stress/anxiety during activities. Other emerging heart 

monitor modalities include the use of wrist or finger derived ECG from a wristband or a 

smartphone (KardiaBand and KardiaMobile, Alivecor, Mountain View, CA; Apple Watch, 

Cuppertino, CA), demonstrated to detect atrial fibrillation and tachycardia.50,51

Sleep patterns. Sensors: PPG, microphone, IMU, ballistocardiography

A commonly reported feature of AD has been circadian rhythm disruption in the form of 

sundowning or sleep fragmentation. Sleep studies of AD populations have confirmed these 

phenomena with sleep lab research indicating that patients with AD experienced more night-

time awakenings, less time in REM sleep and lower sleep efficiency.52,53 Furthermore, the 

level of sleep disruption appeared to track with the level of cognitive deficit.53,54 Sleep 

disruption is corroborated by the biological changes in AD as the disease attacks the basal 

forebrain structures of the cholinergic55 and raphe nuclei of the serotonergic systems34 that 

contribute to sleep. Components of these systems are among the earliest affected brain areas 

and see changes in the prodromal stages of AD before cognitive decline.56,57

Indeed, there appears to be a bidirectional relationship between sleep quality and AD as 

studies have shown that sleep fragmentation contributes to developing Tau and AB 

pathologies, increasing the risk of developing AD.58 Accordingly, sleep quality could serve 

as an important indication of the early stages of AD.
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App based and most wrist worn sleep monitors with a few exceptions, were shown to offer 

limited reliability at determining sleep stages when compared to Polysomnography (PSG).59 

At the forefront, the Pulse-On (PulseOn Oy, Espoo, Finland) wearable device and the Oura 

Ring, have shown high levels of sleep staging accuracy,60 and correlation to PSG 

evaluations.61 Ballistocardiography-based sensing pads can automatically stage sleep 

comparatively to PSG or ECG.48,62 Finally, there are consumer Electroencephalography 

(EEG) headsets that have similar accuracy to PSG.63 Implementation of these passive 

measures to track abundant amounts of sleep data would allow one to capture the subtle, 

long term sleep deviations that could be indicative of AD related changes long before more 

blatant cognitive symptoms manifest.

Neuropsychiatric behavioral disruptions. Sensors: GPS, IMU, Device Usage Log

Beyond declines in specific cognitive and physiological domains, Alzheimer’s disease has 

also been associated with wider-range disruptions of behavior. Approximately 90% of 

Alzheimer’s patients experience at least one neuropsychiatric symptom64 with a spectrum of 

resulting behavioral changes such as mood disruptions, agitation and apathy.65 Apathy is 

one of the most common disruptions, affecting up to 90% of patients66 and has been 

implicated in patients’ lessened ability to carry out activities of daily living as well as a 

decreased motivation to participate in social activities.64,66 Depressive features are also 

common with up to 25% of patients being diagnosed with major depression and 50% 

experiencing depressive symptoms.67,68 Social withdrawal and dysphoria can precede 

diagnosis by years69 and are commonly seen in MCI populations as an early manifestation 

of AD.70 These depressive symptoms are also implicated in the decreased ability to perform 

activities of daily living and disruption of patients’ routines.71 These changes in patient’s life 

activities manifest themselves in tangible ways, studies have shown decreases in the size of 

patients’ social networks and frequency of social contact.72 These neuropsychiatric 

disruptions cause early impairment to more complex activities of daily living and can 

precede the dementia phase.64 Similar decreases in time spent outside of the house73 and 

social network sizes72,74 were seen in MCI populations. While there was some dispute as to 

the nature of the relationship between social activity and cognition; some studies showing 

social activity at baseline was a predictor or risk factor of progression to dementia,72 and 

that the current level of social activity was correlated to current level of cognitive decline.75 

Continuously monitoring these complex everyday activities may demonstrate the behavioral 

disruptions resulting from the earliest underlying neurobiological changes.

Depression and anxiety symptomatology.—Recently, there has been increased 

interest in using passive data from smartphones and wearables in psychiatry and metal 

health applications with depressive symptoms being of key interest.76,77 Mobility features 

such as location variance in terms of time and location extracted from the GPS sensors of 

smartphones have been shown to correlate with depressive symptom severity as determined 

by questionnaire.78 Actigraphy data from the accelerometers on wrist-worn wearables were 

also able to passively distinguish between subjects with Major Depressive Disorder while 

passive actigraphy has also been found to be helpful in establishing an objective measure of 

apathy in diminished activity levels.79 Beyond passive measures of physical activity and 

location, the smartphone also allows for insight into social activity. Meta-information on text 
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messages and conversation frequency have also been correlated with depression severity as 

well as providing an objective correlate to the Social Rhythm Metric in Bipolar Disorder.80 

Specific types of smartphone use, non-social (e.g., news consumption) and social (e.g., 

social networking) have been correlated to anxiety and depressive symptom severity.81 

While more research needs to be performed in the Alzheimer’s space, these studies indicate 

the viability of using passive smartphone use data to provide objective measures of subtle 

neuropsychiatric behavioral disruptions.

Driving behavior.—AD patients experience spatial confusion and get lost even when 

around familiar places, resulting in wandering behaviors. Although these symptoms present 

themselves at later stages of the disease, subtle changes in commuting or executive function 

patterns may be detected earlier. For example, driving pattern features such as reduced speed 

(at least 10mph slower) compared to the rest of the traffic, reduced—less than half— 

mileage overall and a relative increase in the proportion of mileage driven close to home was 

shown in subjects with early stage dementia.82,83 Other metrics include the repeatability of a 

particular commuting pattern, route tortuosity and the consistency of routine locations on a 

particular day of the week. A mathematical descriptor of habitual location patterns was 

proposed by Eagle and associates, by performing principal component analysis on the geo-

location vectors and extracting Eigen Behaviors, a digital biomarker of location frequency 

and intensity84: longitudinal excursions from these patterns may indicate an onset of a 

preclinical manifestation of AD.

Executive function. Sensors: phone usage log, touchscreen

Alzheimer’s Disease has long been defined by its characteristic decline in cognitive function 

and thus been evaluated by neuropsychological measures of the following broad cognitive 

domains: Memory, Attention, Executive Function, Language and Visuospatial Memory.85 

Although these impairments have traditionally been considered a late-stage phenomenon, 

there is increasing evidence that cognitive changes in these domains may occur decades 

before dementia,86 specifically memory and executive function,87 and attention.88 

Traditionally, these neuropsychological evaluations have been performed as test batteries or 

active tasks, typically involving an administrator.89 The logistical burden of administering 

these tests as well as their susceptibility to practice effects21 preclude their widespread use 

in determining a preclinical individual baseline as well as their use in continuous sampling 

to detect longitudinal deviations. In response to these shortcomings, there has been recent 

interest in the concept of digital phenotyping and its applications to mental health and 

psychiatry.90

The application of digital phenotyping to neurodegenerative conditions has already shown 

promising results. Researchers have been able to detect users with neurodegenerative 

conditions such as Parkinson’s and Alzheimer’s from web search data.91 Research at digital 

health company Mindstrong (Palo Alto, CA) has shown that continuous data from seven 

days of passive smartphone interactions can predict performance on traditional assessments 

of memory, language, dexterity and executive function.92 However, digital phenotyping in 

neurodegenerative conditions is still in its infancy as groups have yet to establish a clear, 

functional link between these passive activities and the cognitive domains of interest. 
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Nevertheless, there are certain passive digital scenarios and evolving associated metrics that 

appear to tie back to cognitive areas of interest. For example, task-switching or the ability to 

shift between multiple goals is a component of executive function.93 Human Computer 

Interaction studies have started examining passive user-specific app re-visitation rates94 as 

well as the time-overhead cost from switching between applications95 that can be considered 

a naturalistic example of task-switching. Vigilance, or the ability to sustain attention on a 

task, is a measure of overall attention70 and studies have been able to correlate level of 

alertness to temporal rhythms of application usage.96 While more work is required to further 

develop and validate these measures across different domains of interest, as well as to apply 

them in a longitudinal AD study setting, these examples show the potential of passively 

interrogating cognitive domains from continuous user data.

Future work: Alzheimer’s disease forecasting using multiple digital senses

Each device sensor data stream (e.g., IMU) can be used to define an overall neurological 

health metric (e.g., gait symmetry) for a particular domain (e.g., gross motor control or 

balance). To date, there exists a significant amount of individual sensor 
data→metric→domain→disease validation coming mainly from well-controlled, lab-based 

clinical observations, some of which are listed in this review article.

Similar metrics, acquired longitudinally and passively, in-the-wild (meaning not in a 

controlled lab setting), using consumergrade wearable devices, could produce data that could 

lead to domain predictors of AD before the actual clinical manifestation of the disease. The 

overall predictor signal is weak, since the changes in each domain are slow and difficult to 

separate from normal decline of ageing. Yet, the promise is to further amplify the signal’s 

ability to forecast AD by combining multiple metrics in a multivariate scoring and, if 

possible, a detection system. A multivariate approach was recently used to quantify 

symptom severity in Parkinson’s Disease patients based on mobile devices signals, resulting 

in a disease severity scoring system.97 Given the long time required for AD symptoms to 

fully manifest, a scoring or classification system could operate by means of anomaly 

detection, i.e., between user longitudinal trajectories, or/and by means of supervised 

training. Both approaches would require longitudinal observational studies involving healthy 

control, converter (to AD) and confirmed MCI cohorts that allow feature extraction of 

metrics, to inform—or train—the scoring or classification algorithms. In order to establish 

ground truth in such studies, validation using existing disease assessment methods such as 

cognitive tests, genomic phenotyping, and ideally longitudinal imaging (volumetric MRI, 

amyloid PET imaging, tau PET imaging) would be required.

DISCUSSION

Given the staggering current and escalating projected costs for providing care to AD 

patients, consumer grade technologies able to detect and monitor, once diagnosed, AD 

progression represent an urgent need. When developed to full potential, one can envision 

digital phenotyping of AD becoming a digitally embedded routine practice, triggering a 

series of interventional measures.
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One of the main questions that emerges with such forecasting systems is what to do when a 

signal is detected. While the debate on the preferred course of action is still on and it 

involves among others, regulatory, ethical, legal, data privacy and clinical considerations, 

some options involve:

-Notifying the user that there is something out of the normal with his/her longitudinal rate of 

progression of neurological health, so he/she can seek further clinical assessment.

-Providing longitudinal disease-related digital biomarkers to a healthcare practitioner, to 

allow for objective and continuous clinical evaluation of a user.

In parallel, such technologies can be used to establish objective, personalized baseline 

reference standards to design innovative clinical trials that assess the effectiveness of onset 

delaying or disease modifying treatment, once available.

An overwhelming amount of work lies ahead before we can claim forecasting and detection 

of Alzheimer’s disease especially in the preclinical phase, using consumer grade devices, 

passive data monitoring and analytics. It will require longitudinal, very large population 

observational studies, to account for inter and intra subject variability. It will also require 

new ways of securely managing and processing this vast amount of information. 

Underscoring the potential for such consumer digital devices to impact healthcare, the FDA 

recently issued guidelines98 to provide a clear path and encourage technology developers in 

their quest for efficient digital phenotyping.
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Fig. 1. 
Consumer wearable and mobile devices offer a large personalized, direct, and high 

frequency sensing potential. Microphones can sense ambient noise and voice. Touch screens 

can probe for fine motor skills in swiping and typing. Cameras can register eye movements, 

gaze, and pupillary reflexes as well as capture facial expression traits. Altimeters offer useful 

information with respect to activity and barometers provide atmospheric pressure readings 

and weather data. PPG (Photoplethysmography) provides beat-to-beat heart rate 

measurements (HRM), heart rate variability (HRV) and oxygen saturation (SpO2). IMU 

(Inertia Measurement Unit) includes accelerometer, gyroscope and magnetometer (9 spatial 

values) and is used by numerous applications to track activity. Geopositioning sensors (GPS 

and WiFi localization) provide accurate location information. Light sensors read ambient 

visible or UV radiation levels. Thermometers on rings, patches or watches provide body 

temperature readings. Electromyograph sensors (EMG) found on patches or suits yield 

muscle group activity signals. Electrodermograph (EDG) or Galvanic Skin Response (GSR) 

sensors equip patches and watches to measure the skin conductance and potential or the skin 

resistance/impendance. Social interactions can be monitored using proximity to Bluetooth or 

Wi-Fi enabled devices as well as by monitoring overall phone use (calls, texts) and social 

network activity. Finally, wearable/mobile devices are equipped with logic components that 

can probe the executive function and memory of a user
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