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INTRODUCTION

Molecular systematics has revolutionised our view of fungal 
evolution. Recent large scale sequencing efforts resulted in 
comprehensive multi-locus phylogenies, which have signifi-
cantly improved our understanding of phylogenetic relation-
ships within fungi (Binder & Hibbett 2002, Lumbsch et al. 
2004, Lutzoni et al. 2004, James et al. 2006). These data led 
to the first phylogenetic classification of the Fungi (Hibbett et 
al. 2007). However, early events in fungal evolution still remain 
uncertain because of missing support and resolution at the 
backbone of the phylogeny. We lack information, for example, 
about the relationships of the different ascomycete classes to 
one another, or the evolution within major lineages, such as 
the lichenised Lecanoromycetes, or the basidiomycete clade 
Agaricomycetes. Robust and well-supported phylogenies are 
essential for a better understanding of fungal evolution, and a 
prerequisite for studies aiming at reconstructing the evolution 
of non-molecular characters on the background of a molecular 
phylogeny.

Commonly used molecular loci in fungal phylogenetics include 
nuclear and mitochondrial ribosomal rDNA (18S, 28S, ITS, 
IGS, mtSSU, mtLSU), as well as protein-coding genes, such 

as RNA polymerases (RPB1 and RPB2), β-tubulin, γ-actin, ATP 
synthase (ATP6), and elongation factor EF-1α (TEF1α). Some 
single-copy protein-coding genes such as RPB1 and RPB2 
are promising for yielding well resolved and highly supported 
phylogenies (Liu & Hall 2004, Reeb et al. 2004, Crespo et al. 
2007, Lumbsch et al. 2007). Other protein-coding genes, such 
as the tubulins, are present in the genome in multiple copies 
and thus have the potential of being phylogenetically misleading 
(Landvik et al. 2001). Generally, slow evolving loci are more 
suitable for reconstruction of deep phylogenetic relationships, 
while loci with high rates of evolution are better for the recon-
struction of more recent evolutionary events. Ribosomal loci 
with high and heterogeneous rates of change, such as ITS, IGS 
and mtSSU rDNA, can be used to distinguish taxa at the genus 
and species level. However, the non-coding regions of these 
loci are prone to significant length variation, making alignment 
of distantly related taxa problematic. Fast evolving ribosomal 
genes are therefore less useful in large scale concatenated 
analyses involving higher-level phylogenetic relationships. 
Molecular systematists are constantly searching for loci that 
are conserved enough to produce reliable alignments, and at 
the same time have sufficient variability to yield well resolved 
and well supported phylogenies. Analysing phylogenetic rela-
tionships at lower and higher taxonomic levels simultaneously, 
while using only a few loci, is desirable, because sequencing 
entire genomes or even multiple loci is not feasible for many 
phylogenetically interesting taxa. Fungal material suitable for 
molecular study is often limited, and culturing of many species 
impossible. 

In a recent study Aguileta et al. (2008) used a bioinformatics ap-
proach to assess the performance of single-copy protein-coding 
genes for fungal phylogenetics. Their analyses of 30 published 
fungal genomes revealed two loci, MS277 and MS456, which 
outperformed all other single-copy genes in phylogenetic util-
ity. MS277 corresponds to the gene Tsr1, required for rRNA 
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Species Order Class Source            GenBank accession 

    Mcm7 (MS456) Tsr1 (MS277) 

Ajellomyces capsulatus  Onygenales Eurotiomycetes – XM_001538714 XM_001541629
Arctomia delicatula incertae sedis Lecanoromycetes Sweden, 2002, Palice s.n. (F) GQ272388 GQ272430
Arctomia teretiuscula incertae sedis Lecanoromycetes China (GZU – holotype)  GQ272389 GQ272431
Aspergillus clavatus Eurotiales Eurotiomycetes – XM_001275314 XM_001275562
Aspergillus fumigatus Eurotiales Eurotiomycetes – XM_750254 XM_750526
Aspergillus nidulans Eurotiales Eurotiomycetes – XM_658504 XM_658778
Aspergillus nidulans Eurotiales Eurotiomycetes – XM_001213626 XM_001208611
Aspergillus niger Eurotiales Eurotiomycetes – XM_001397760 XM_001399262
Aspergillus oryzae Eurotiales Eurotiomycetes – XM_001826176 XM_001821764
Aspicilia caesiocinerea Pertusariales Lecanoromycetes USA, Lumbsch 19277e (F) GQ272390 GQ272432
Aspicilia cinerea Pertusariales Lecanoromycetes USA, Lumbsch 19190c (F) GQ272391 GQ272433
Botryotinia fuckeliana Helotiales Leotiomycetes – XM_001556412 XM_001554531
Bulbothrix apophysata Lecanorales Lecanoromycetes Costa Rica, Lücking 16650btu (F) GQ272392 GQ272434
Cetrariastrum andense Lecanorales Lecanoromycetes Peru, Lumbsch 19334 (MAF) GQ272429 GQ272471
Cetrariastrum dubitans Lecanorales Lecanoromycetes Peru, Lumbsch 19366 (MAF) GQ272427 GQ272470
Chaetomium globosum Sordariales Sordariomycetes – XM_001220296 XM_001225626
Coccidioides immitis Onygenales Eurotiomycetes – XM_001240385 XM_001245725
Dermatocarpon intestiniforme Verrucariales Eurotiomycetes Turkey, 27.7.1997, John (F) GQ272393 GQ272435
Dermatocarpon miniatum Verrucariales Eurotiomycetes Germany, 17.10.2001, Zimmermann (F) GQ272394 GQ272436
Everniastrum lipidiferum Lecanorales Lecanoromycetes Peru, Lumbsch 19309b (MAF) GQ272395 GQ272437
Everniopsis trulla Lecanorales Lecanoromycetes Peru, Lumbsch 19309b (F) GQ272396 GQ272438
Flavoparmelia marchantii Lecanorales Lecanoromycetes Australia, (MAF-Lich 10492) GQ272420 GQ272463
Gibberella zeae Hypocreales Sordariomycetes – XM_387281 XM_384579
Lecanora allophana Lecanorales Lecanoromycetes Turkey, Lumbsch 19618d (F) GQ272399 GQ272444
Lecanora carpinea Lecanorales Lecanoromycetes Turkey, Lumbsch 19611m (F) GQ272400 GQ272443
Lecanora chlarotera Lecanorales Lecanoromycetes Turkey, Lumbsch 19622e (F) GQ272398 GQ272440
Lecanora margarodes Lecanorales Lecanoromycetes Australia, Lumbsch 19086b (F) GQ272401 GQ272439
Lecanora pulicaris Lecanorales Lecanoromycetes Turkey, Lumbsch 19627c (F) GQ272419 GQ272441
Lecanora subcarpinea Lecanorales Lecanoromycetes Turkey, Lumbsch 19622a (F) GQ272428 GQ272442
Lobothallia radiosa Pertusariales Lecanoromycetes Switzerland, 9.8.2004, Lumbsch (F) GQ272397 GQ272445
Magnaporthe grisea Sordariales Sordariomycetes – XM_364455 XM_368157
Malcolmiella psychotrioides Ostropales Lecanoromycetes Costa Rica, Lücking s.n. (F) GQ272412 GQ272456
Malcolmiella sp. 1 Ostropales Lecanoromycetes Thailand, Kalb 37092 (hb. Kalb) GQ272402 GQ272447
Malcolmiella sp. 2 Ostropales Lecanoromycetes Thailand, Kalb 36969 (hb. Kalb) GQ272411 GQ272455
Malcolmiella sp. 3 Ostropales Lecanoromycetes Thailand, Kalb 37093 (hb. Kalb) GQ272405 GQ272450
Malcolmiella sp. 4 Ostropales Lecanoromycetes Thailand, Kalb 36858 (hb. Kalb) GQ272403 GQ272448
Malcolmiella sp. 5 Ostropales Lecanoromycetes Thailand, Kalb 37060 (hb. Kalb) GQ272407 GQ272446
Malcolmiella sp. 6 Ostropales Lecanoromycetes Thailand, Kalb 37072 (hb. Kalb) GQ272408 GQ272452
Malcolmiella sp. 7 Ostropales Lecanoromycetes Thailand, Kalb 36832 (hb. Kalb) GQ272406 GQ272451
Malcolmiella sp. 8 Ostropales Lecanoromycetes Thailand, Kalb 37005 (hb. Kalb) GQ272409 GQ272453
Malcolmiella sp. 9 Ostropales Lecanoromycetes Thailand, Kalb 36963 (hb. Kalb) GQ272404 GQ272449
Malcolmiella sp. 10 Ostropales Lecanoromycetes Thailand, Kalb 37086 (hb. Kalb) GQ272410 GQ272454
Neosartorya fischeri Eurotiales Eurotiomycetes – XM_001260497 XM_001260746
Neurospora crassa Sordariales Sordariomycetes – XM_958785 XM_951859
Ochrolechia parella Pertusariales Lecanoromycetes Turkey, Lumbsch 19625g (MIN) GQ272421 GQ272464
Ochrolechia subpallescens Pertusariales Lecanoromycetes USA, Lumbsch 19900a & Schmitt (MIN) GQ272422 GQ272465
Parmeliopsis hyperopta Lecanorales Lecanoromycetes Spain (MAF-Lich 10181) GQ272426 GQ272468
Peltula euploca Lichinales Lichinomycetes USA, Lumbsch 19923b & Schmitt (MIN) GQ272424 GQ272467
Penicillium marneffei Eurotiales Eurotiomycetes – XM_002146315 XM_002148793
Pertusaria amara Pertusariales Lecanoromycetes USA, Lumbsch 19925a & Schmitt (MIN) GQ272423 GQ272466
Pertusaria velata  Pertusariales Lecanoromycetes USA, Lumbsch 19913c & Schmitt (MIN) GQ272425 GQ272469
Podospora anserina Sordariales Sordariomycetes – XM_001912857 XM_001909251
Psiloparmelia denotata Lecanorales Lecanoromycetes Peru, Lumbsch 19302g (F) GQ272413 GQ272457
Pyrenula subpraelucida  Pyrenulales Eurotiomycetes Costa Rica, Lücking 17550f (F) GQ272414 GQ272459
Pyrgillus javanicus Pyrenulales Eurotiomycetes Australia, Lumbsch 19115e (F) GQ272415 GQ272458
Sclerotinia sclerotiorum Helotiales Leotiomycetes – XM_001586126 XM_001593622
Umbilicaria leprosa incertae sedis Lecanoromycetes Peru, Lumbsch 19355a (F) GQ272416 GQ272460
Usnea endochrysaea Lecanorales Lecanoromycetes USA, Buck 51175 (hb. Lendemer) GQ272417 GQ272461
Verrucaria muralis Verrucariales Eurotiomycetes Czech Republic, Palice 6011 (hb. Palice) GQ272418 GQ272462

Table 1   Material and DNA sequences used in this study.

Primer Name Direction Sequence (5’-3’) Position in A. nidulans Corresponding amino acid Length Degeneracy
   mRNA (XM_658504 and sequence in A. nidulans
   XM_658778) (AN5992 and AN6266)

Mcm7-709for For ACI MGI GTI TCV GAY GTH AAR CC 709 TRVSDVKP 23 bp 32
Mcm7-1348rev Rev GAY TTD GCI ACI CCI GGR TCW CCC AT 1348 MGDPGVAKS 26 bp 16
Mcm7-1447rev Rev C ATI ACI GCI GCI GTR AGR CC 1447 GLTAAVM 21 bp 4
Tsr1-1453for For GAR TTC CCI GAY GAR ATY GAR CT 1453 EFPDEIEL 23 bp 32
Tsr1-1459for For CCI GAY GAR ATY GAR CTI CAY CC 1459 PDEIELHP 23 bp 32
Tsr1-2308rev Rev CTT RAA RTA ICC RTG IGT ICC 2308 GTHGYFK 21 bp 8

Table 2   Primers developed in the current study.
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accumulation during biogenesis of the ribosome (Gelperin et 
al. 2001), while MS456 corresponds to the gene Mcm7, a DNA 
replication licensing factor required for DNA replication initiation 
and cell proliferation (Moir et al. 1982, Kearsey & Labib 1998). 
Alignments based on these two loci alone recovered phylog-
enies that had the same topology, resolution power, and branch 
support as phylogenies based on a concatenated analysis of 
all 135 orthologous single-copy genes identified from fungal 
genomes (Aguileta et al. 2008). Strikingly, the authors report 
that most protein-coding genes commonly used in fungal sys-
tematics, such as RPB1, RPB2, TEF1α, β-tubulin, and γ-actin 
are not found among the best performing genes. 

In the current study we designed degenerate primers to amplify 
a 600–800 bp fragment of each, MS277 and MS456, over a 
wide range of Pezizomycotina. We tested variability and phylo-
genetic utility of these loci at taxonomic levels ranging from 
genus to class. Our analyses include in silico comparisons 
of the new primers to sequences of Saccharomycotina and 
Basidiomycota to predict primer utility in these phylogenetic 
groups.

MATERIALS AND METHODS

Material and GenBank sequences used in the current study 
are listed in Table 1. We designed new degenerate primers 
based on amino acid alignments of Mcm7 (MS456) and Tsr1 
(MS277) of euascomycete sequences available in GenBank. 
These alignments included members of Dothideomycetes, 
Eurotiomycetes, Leotiomycetes and Sordariomycetes. Primer 
sequences and annealing conditions are reported in Table 2 
and 3. The locations of the fragments amplified by the new 
primers are indicated in Fig. 1. We used Aspergillus nidulans 
mRNA sequences of Mcm7 and Tsr1 as reference sequences 
(GenBank accession numbers XM_658504 and XM_658778). 
Saccharomycotina, Taphrinomycotina and Basidiomycota used 
for in silico analysis of primer fit are listed in Table 4.

Molecular procedures

We extracted total genomic DNA from our samples using the 
Qiagen Plant Mini Kit (Qiagen). PCR reactions (25 μL) con-
tained PuReTaq Ready-To-Go PCR beads (GE Healthcare), 
1.25 μL of each primer (10 mM), 19.5 μL H

2
O, and 3 μL DNA 

template. Alternatively we used 0.125 μL AmpliTaq Gold Taq 
(Applied Biosystems), 2.5 μL buffer, 2 μL dNTPs, 2.5–4 μL 

MgCl (20 mM), 0–5 μL BSA, 1.25 μL of each primer, and 3 μL 
DNA template. We found that increasing the amount of forward 
primer Tsr1-1459for to 2.5 μL, as well as adding 2 μL MgCl 
(20 mM) to PCR reactions involving PCR beads often improved 
PCR results. PCR cycling conditions for Mcm7-709for/Mcm7-
1447rev and Mcm7-709for/Mcm7-1348rev (MS456) were: initial 
denaturation 94 °C for 10 min, followed by 38 cycles of 94 °C 
for 45 s, 56 °C for 50 s, 72 °C for 1 min, and final elongation 
72 °C for 5 min. PCR cycling conditions for Tsr1-1459for/Tsr1-
2308rev (MS277) were the same as above except with 49 °C 
annealing temperature. Amplification products were stained 
with EZ-Vision DNA dye (Amresco) and viewed on 1 % low melt 
agarose gels. We excised bands of the expected length from the 
gel and purified them using GELase (Epicentre). Alternatively, 
PCR products were cleaned using the Bioclean Columns kit 
(Biotools, Madrid) according to the manufacturer’s instructions. 
We sequenced the fragments using Big Dye v3.1 chemistry 
(Applied Biosystems) and the same primers as for PCR. Cycle 
sequencing was executed with the following program: initial 
denaturation for 1 min at 96 °C followed by 32 cycles of 96 °C 
for 15 s, 50 °C for 10 s, 60 °C for 4 min. Sequenced products 
were precipitated with 25 μL of 100 % EtOH mixed with 1 μL of 
3 M NaOAC, and 1 μL of EDTA, before they were loaded on an 
ABI PRISMTM 3730 DNA Analyser (Applied Biosystems). We 
assembled partial sequences using SeqMan v4.03 (Lasergene) 
and edited conflicts manually. We aligned the sequences based 
on amino acid sequence using ClustalW as implemented in the 
program BioEdit v7.0.9 (Hall 1999) and subsequently translated 
them back to nucleotides. 

Phylogenetic analyses

We assembled two alignments including the same 59 taxa 
each. For phylogenetic analysis we used a maximum parsimony 
(MP), maximum likelihood (ML) and a Bayesian approach (B/
MCMC) (Larget & Simon 1999, Huelsenbeck et al. 2001). We 
performed all analyses on the single gene alignments as well 
as on a combined alignment. We tested for potential conflict 
between individual datasets by comparing the 75 % MP boot-
strap consensus trees. 

We used PAUP v4.0 (Swofford 2003), GARLI v0.96 (Zwickl 
2006) and MrBayes v3.1.2. (Huelsenbeck & Ronquist 2001) to 
analyse the alignments. MP analyses included 100 replicates 
with random sequence additions and TBR branch swapping 
in effect. MP bootstrapping (Felsenstein 1985) was performed 
based on 2 000 replicates with the same settings as for the 

Gene Primer combination Approximate fragment length Annealing temp. PCR success (% of attempts)

Mcm7 (MS456) Mcm7-709for/Mcm7-1348rev 640 bp 56 °C 80 %
Mcm7 (MS456) Mcm7-709for/Mcm7-1447rev 740 bp 56 °C 50 %
Tsr1 (MS277) Tsr1-1459for/Tsr1-2308rev 750 bp 49 °C 40 %
Tsr1 (MS277) Tsr1-1453for/Tsr1-2308rev 750 bp 49 °C 40 %

Table 3   Annealing conditions and PCR success rates for primers used in this study.

Fig. 1   Locations of the new primers for Mcm7 and Tsr1 using Aspergillus 
nidulans mRNA (XM_658504 and XM_658778) as reference sequence. 
Shaded areas in Tsr1 indicate regions of high sequence variability.

Taxon Mcm7 Tsr1

Saccharomycotina
 Ashbya gossypii NP_984137 NP_984911
 Kluyveromyces lactis XP_454998 XP_454177
 Saccharomycetes cerevisiae NP_009761 NP_010223
 Yarrowia lipolytica XP_501070 XP_500653
Taphrinomycotina
 Schizosaccharomyces pombe NP_596545 NP_593391
Basidiomycota
 Coprinopsis cinerea EAU88865 EAU91047
 Cryptococcus neoformans XP_571487 XP_570891
 Ustilago maydis EAK87259 EAK85759

Table 4   Taxa used to test the fit of the new primers in silico.
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MP search. Likelihood analyses were run using the GTR+I+G 
model and default settings in GARLI. For Bayesian analyses 
we partitioned the dataset into three parts (each codon posi-
tion) and each partition was allowed to have its own parameter 
values (Nylander et al. 2004). No molecular clock was assumed, 
and no interpartition rate heterogeneity was allowed. Heating 
of the chains was set to 0.2. A run with 3 000 000 generations 
starting with a random tree and employing 4 simultaneous 
chains was executed for the individual datasets. Every 100th 
tree was saved into a file. The first 300 000 generations (i.e. 
the first 3 000 trees) were deleted as the ‘burn in’ of the chain. 
For the combined alignment dataset we executed a run with 
6 000 000 generations and deleted the initial 600 000 genera-
tions (i.e. the first 6 000 trees). We plotted the log-likelihood 
scores of sample points against generation time using TRACER 
v1.0 (http://tree.bio.ed.ac.uk/software/tracer/) to ensure that 
stationarity was achieved after the first 300 000 (600 000 for 
the combined alignment dataset) generations by checking 
whether the log-likelihood values of the sample points reached 
a stable equilibrium value (Huelsenbeck & Ronquist 2001). 

Additionally, we used AWTY (Nylander et al. 2008) to compare 
splits frequencies in the different runs and to plot cumulative 
split frequencies to ensure that stationarity was reached. We 
calculated a majority rule consensus tree with average branch 
lengths of the remaining 54 000 trees (27 000 from each of 
the parallel runs) using the sumt option of MrBayes. For the 
combined alignment dataset the majority rule consensus tree 
consisted of 108 000 (2 × 54 000) trees from the stationarity 
phase. Posterior probabilities were obtained for each clade. 
Clades with posterior probabilities ≥ 0.95 were considered as 
strongly supported. Phylogenetic trees were visualised using 
the program Treeview (Page 1996).

RESULTS

We report 84 new sequences of Mcm7 (MS456) and Tsr1 
(MS277) for 42 lichenised ascomycetes belonging to the 
classes Eurotiomycetes, Lecanoromycetes and Lichinomycetes 
(Table 1). PCR success rates for our newly developed primers 
were highest for the primer combination Mcm7-709for/Mcm7-

Fig. 2   Phylogeny of Pezizomycotina (Ascomycota) based on a combined alignment of Mcm7 (MS456) and Tsr1 (MS277) sequences. Total alignment length 
is 1203 bp. This is a 50 % majority rule consensus tree based on a sampling of 108 000 B/MCMC trees. Bold branches indicate posterior probabilities ≥ 0.95. 
Numbers above branches are maximum parsimony bootstrap support values ≥ 70 based on 2 000 random addition replicates.
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 Mcm7 (MS456) Tsr1 (MS277)

Introns None some (length: 189–272 bp)
Total alignment length (bp) 573 827
Hypervariable (excluded) sites  None 198 
Variable sites 357/573 (62.3 %) 489/629 (77.7 %)
Constant sites 216/573 (37.7 %) 140/629 (22.3 %)

Within-genus sequence variation (p-distances) excluding hypervariable sites:
 Malcolmiella (11 OTUs) 0.0055–0.2227 0.0332–0.2193
 Aspergillus (7 OTUs) 0.0230–0.2307 0.0357–0.3076
 Lecanora (6 OTUs) 0.0377–0.2756 0.0226–0.4148

Table 5   Mcm7 and Tsr1 sequence and alignment properties.

 Mcm7 (MS456) Tsr1 (MS277) Combined

MP tree length 3537 4606 8200

Number of MP trees 1 12 8

Consistency Index (CI) excluding 
 uninformative sites 0.195 0.216 0.205

# of nodes supported by bootstrap
 ≥ 70 in MP analyses (based on 
 2 000 replicates) 23 30 37

ML score using GTR+I+G (GARLI) -13732 -18424 -32262

# of nodes supported by PP ≥ 95
 in B/MCMC analyses 36 38 44

Table 6   Comparison of phylogenetic analyses (MP, ML, B/MCMC) between 
single and combined datasets.

1348rev (± 80 %), while Mcm7-709for/Mcm7-1447rev worked 
in ± 50 % of the attempted PCRs, and the Tsr1 primers in ± 
40 %. Multiple bands were sometimes present when we used 
the primer combinations Mcm7-709for/Mcm7-1447rev and 
Tsr1-1459for/Tsr1-2308rev. Tsr1-1453for is a modification of 
Tsr1-1459for that we used under the same annealing condi-
tions. We used the Aspergillus nidulans mRNA sequences of 
Mcm7 (XM_658504) and Tsr1 (XM_658778) as references 
for the locations of our primers. The full length genomic DNA 
sequences of Aspergillus nidulans Mcm7 and Tsr1 contain 
1–2 introns of ± 60 bp length, which, however, do not overlap 
with the sequence fragments amplified by primers developed 
in this study. We found introns (length: 189–272 bp) with 
characteristic GT-intron-AG splice sites near the reverse 
primer (Tsr1-2308rev) in Tsr1 in three Lecanora species. Two 
hypervariable regions containing many gaps (Tsr1: positions 
198–221 and 518–628) were excluded from the phylogenetic 
analysis. The Mcm7 alignment contained no gaps and no 
ambiguously aligned regions. Properties of the sequences 
and alignments are summarized in Table 5. We performed 
parsimony bootstrap analyses on each individual dataset, and 
examined 75 % bootstrap consensus trees for conflict (Lutzoni 
et al. 2004). We used the program Modeltest v3.7 (Posada & 

Crandall 1998) to determine the nucleotide substitution model 
that best fit our data. For both datasets the program selected 
the GTR+I+G model. 

The tree topologies obtained from the single gene datasets 
resulting from MP, ML and Bayesian analyses did not show 
any strongly supported conflicts. Thus, we present only the 
B/MCMC tree of the combined analysis (Fig. 2). Statistical 
values and number of supported nodes obtained by MP, ML 
and Bayesian analyses of single and combined datasets are 
summarised in Table 6. The Sordariomycetes were used as out-
group. The classes Sordariomycetes, Leotiomycetes, Eurotio- 
mycetes and Lecanoromycetes are monophyletic and highly 
supported (PP ≥ 95). Lichinomycetes is only represented by 
a single species, Peltula euploca. The phylogenetic estimate 
obtained from the combined analysis of Mcm7 and Tsr1 agrees 
with previously published phylogenies (Gargas et al. 1995, 
James et al. 2006). Lecanoromycetes form a supported sis-
ter group relationship with Eurotiomycetes. Basal to this are 
Lichinomycetes and Leotiomycetes. Within Lecanoromycetes, 
the subclasses Lecanoromycetidae and Ostropomycetidae 
form supported groups, while the genus Umbilicaria is in an 
unsupported position at the base of Lecanoromycetes. Within 

Mcm7-709for ACIMGIGTITCVGAYGTHAARCC

Ashbya ACTAGGATATCTGACGTTAAGCC

Kluyveromyces ACCAGAGTCTCTGATGTGAAGCC

Saccharomyces ACCAGAGTTTCTGATGTCAAACC

Yarrowia ACACGAGTTTCTGATGTCAAGCC

Schizosacch. ACTCGTACAAGTGATGTTAAGCC

Coprinopsis ACGCGCGTGTCAGAAGTCAAACC

Cryptococcus ACCCGTGTTTCTGAAGTCAAGCC

Ustilago ACGCGCGTGTCCGAGGTAAAGCC

Mcm7-1447rev GGYCTYACIGCIGCIGTIATG

Ashbya GGCTTGACGGCCGCGGTTATG

Kluyveromyces GGTCTAACAGCCGCCGTTATG

Saccharomyces GGTCTGACCGCTGCCGTCATG

Yarrowia GGTCTTACAGCAGCTGTGATG

Schizosacch. GGTTTAACTGCTGCTGTAATG

Coprinopsis GGACTCACTGCTGCTGTCATG

Cryptococcus GGTTTGACAGCCGCGGTTATG

Ustilago GGCTTGACGGCAGCAGTGATG

Tsr1-1459for CCIGAYGARATYGARCTICAYCC

Ashbya CCAGATGAGATTGAACTGGATCC

Kluyveromyces CCTGACGAAATTGAACTTGACCC

Saccharomyces CCCGATGAGATCGAACTAGAGCC

Yarrowia CCTGATGAAGTCGAACTCAAGCC

Schizosacch. CCCGATGAGGTAGAGCTTCAACC

Coprinopsis CCTGATGAAGTCGATACCCCTCA

Cryptococcus CCGGACGAAGTTGACACTCCTCG

Ustilago CCGGACGAAGTTGACACGCCACT

Tsr1-2308rev GGIACICAYGGITAYTTYAAG

Ashbya GGTACTCATGGTTACTTCAAG

Kluyveromyces GGTACGCATGGCTACTTCAAA

Saccharomyces GGTACGCATGGTTATTTCAAG

Yarrowia GGTACTCATGGATACATGAAG

Schizosacch. GGTACCCACGGTTATTTCAAG

Coprinopsis GGTACACATGGCTACTTCAAA

Cryptococcus GGCACACACGGATACTTTAAA

Ustilago GGTACGCACGGCTACTTCAAG

Mcm7-1348rev ATGGGWGAYCCIGGIGTIGCHAARTC

Ashbya ATGGGTGATCCTGGTGTGGCCAAGTC

Kluyveromyces ATGGGTGATCCTGGTGTTGCTAAATC

Saccharomyces ATGGGTGATCCCGGTGTTGCCAAATC

Yarrowia ATTGGAGATCCAGGTGTGGCCAAGTC

Schizosacch. ACTGGTGATCCTGGTGTCGCAAAATC

Coprinopsis ATGGGTGATCCCGGTGTTGCCAAATC

Cryptococcus ATGGGTGACCCTGGTGTTGCCAAATC

Ustilago ATGGGCGATCCCGGTGTGGCGAAATC

Tsr1-1453for GARTTCCCIGAYGARATYGARCT

Ashbya GAGTTCCCAGATGAGATTGAACT

Kluyveromyces GAATTTCCTGACGAAATTGAACT

Saccharomyces GAGTTCCCCGATGAGATCGAACT

Yarrowia GATTTCCCTGATGAAGTCGAACT

Schizosacch. GAATTTCCCGATGAGGTAGAGCT

Coprinopsis GCTTTCCCTGATGAAGTCGATAC

Cryptococcus ATGTTCCCGGACGAAGTTGACAC

Ustilago GAGTTCCCGGACGAAGTTGACAC

Fig. 3   Comparison of the new primers to homologous sequences in Saccharomycotina (Ashbya, Kluyveromyces, Saccharomyces, Yarrowia), Taphrinomycotina  
(Schizosaccharomyces) and Basidiomycota (Coprinopsis, Cryptococcus, Ustilago). 100 % matches between primer sequence and gene sequences studied 
are indicated by grey shading. High sequence similarities indicate that the new primers are likely to fit in members of the analysed groups. Some primer 
sequences may require slight modifications.
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Eurotiomycetes, Eurotiomycetidae and Chaetothyriomycetidae 
form supported clades. We included multiple species/strains of 
the genera Aspergillus (7), Lecanora (6), and Malcolmiella (11) 
to assess within-genus variation of the analysed loci, as well 
as resolution power at low taxonomic levels. Genetic distances 
within Aspergillus, Lecanora and Malcolmiella are reported in 
Table 5. Each of these genera forms a supported monophyletic 
clade with high internal resolution and support (Fig. 2).

We aligned selected members of Saccharomycotina, Taphrino-
mycotina and Basidiomycota (Table 4) with our datasets and 
compared the new primer sequences to the corresponding posi-
tions in these taxa. The low number of mismatches suggests 
that the new primers will need no adjustments or only minor 
modifications to also fit these phylogenetic groups (Fig. 3).

DISCUSSION

We developed new degenerate primers, which amplify frag-
ments of the single-copy protein-coding genes Mcm7 and 
Tsr1 in Pezizomycotina. Our study confirms that Mcm7 and 
Tsr1 are suitable loci for the reconstruction of phylogenetic 
relationships among fungi (Aguileta et al. 2008). We were able 
to obtain sequences from representatives of 5 classes and 11 
orders of euascomycetes, demonstrating the ability of the prim-
ers to amplify a wide range of unrelated taxa. Additionally we 
tested primer fit in silico using members of Saccharomycotina, 
Taphrinomycotina and Basidiomycota and found that the new 
primers can be used for these groups as well, possibly with 
slight sequence modifications.

Our analyses within Pezizomycotina show that Mcm7 and Tsr1 
are able to resolve large scale as well as fine scale phylogenetic 
relationships. The sequences are alignable across a wide range 
of unrelated taxa and at the same time have sufficient variability 
to resolve within-genus relationships (Table 5). This property 
sets the new loci apart from commonly used ribosomal markers, 
such as ITS or mtSSU, which also have the power to resolve 
lower level phylogenetic relationships, but may yield ambigu-
ous and saturated alignments, when used to compare distantly 
related taxa. We predict that Mcm7 and Tsr1 have an even 
higher potential to resolve phylogenetic relationships between 
fungi when analyzed in combination with other routinely used 
datasets, such as 18S, 28S, RPB1 and RPB2. 

Mcm7 and Tsr1 are two relatively long (~ 2.5 kb) single-copy 
genes which can be aligned across major fungal lineages, such 
as Ascomycota and Basidiomycota (Aguileta et al. 2008). The 
fact that Homo sapiens sequences can be used as outgroups 
(Aguileta et al. 2008, www.systematicbiology.org, online Ap-
pendix 5) indicates that these loci might also be useful for 
phylogenetic studies involving fungi as well as non-fungal 
organisms.
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