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Abstract

This file contains supplementary information for “Measuring the predictability of life outcomes using
a scientific mass collaboration.” It is designed to be used as a reference for readers seeking information
on specific topics. It is not designed to be read from beginning to end.
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S1 Design and execution of the Fragile Families Challenge

S1.1 Data

The background and outcome data used in the Fragile Families Challenge come from the Fragile Families and

Child Wellbeing Study (hereafter Fragile Families study). The Fragile Families sample was a multi-stage,

stratified random sample of hospital births between 1998 and 2000 in large U.S. cities (more than 200,000

residents), with a 3:1 oversample of births to non-married parents [22].

Data collection for the Fragile Families study occurred in six waves: at the birth of the focal

child and when the focal child was approximately age 1, 3, 5, 9, and 15. Each wave consisted of different

data collection modules (Figure 1, main text). Each data collection module is made up of approximately

10 sections, where each section includes questions about a specific topic. The full list of data collection

modules between birth and year 9 and the topics included in each module are presented in Table S1. The

survey codebooks—which include information about question text, response options, and question order—are

available at https://fragilefamilies.princeton.edu/documentation.

The background dataset used in the Fragile Families Challenge was a specially constructed version of

the Fragile Families data collected between the child’s birth and age nine. To create the background dataset,

we 1) combined the Fragile Families data into a single file, 2) dropped observations that were obtained in

2 out of the 20 cities of birth because these were pilot cities where some questions were asked differently,

and 3) made changes to the data to promote the privacy of respondents and reduce the risk of harm in the

event of re-identification [18]. Ultimately, the background dataset had 4,242 rows—one for each family—and

12,943 columns—one for each variable plus an ID number for each family. Of the 12,942 variables, 2,358

were constant (i.e., had the same value for all rows). Some of these constant variables were caused by our

privacy and ethics redactions [18]. In addition to the data, metadata described the contents of the data [15].

Of the approximately 55 million possible entries in the background dataset (4, 242× 12, 942), about

73% of possible entries did not have a value (Fig. S1). The Fragile Families study uses a variety of codes to

denote reasons that a data entry might not have a value, including not being in the survey wave (about 17%

of all possible entries), refusal to answer certain questions (about 0.1% of entries), intentional skip patterns

within the survey design (about 25% of entries), and redaction for privacy and ethics [18] (about 6% of

entries).

The largest source noted above—intentional skip patterns—are not an indicator of poor data quality

but are instead an immediate consequence of the survey design. For example, questions about relationships

and parenting behaviors were often asked separately for resident versus non-resident parents, with the valid
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Data module Child
age

Sections

Mother Birth A) Child health and development, B) Father-mother relationships, C) Fatherhood, D) Marriage attitudes, E)
Relationship with extended kin, F) Environmental factors and government programs, G) Health and health
behavior, H) Demographic characteristics, I) Education and employment, J) Income

Father Birth A) Child health and development, B) Father-mother relationships, C) Fatherhood, D) Marriage attitudes, E)
Relationship with extended kin, F) Environmental factors and government programs, G) Health and health
behavior, H) Demographic characteristics, I) Education and employment, J) Work activities, K) Income

Mother 1 A) Family characteristics, B) Child well-being and mothering, C) Father-child relationship, D) Mother’s
relationship with father, E) Current partner, F) Demographics, G) Mother’s family background and support, H)
Environment and programs, J) Health and health behavior, K) Education and employment, L) Income

Father 1 A) Family characteristics, B) Child well-being and fathering, C) Mother-child relationship, D) Father’s
relationship with mother, E) Current partner, F) Demographics, G) Father’s family background and support, H)
Environment and programs, J) Health and health behavior, K) Education and employment, L) Income

Mother 3 A) Family characteristics, B) Child well-being and mothering, C) Father-child relationship, D) Mother’s
relationship with father, E) Current partner, F) Demographics, H) Mother’s family background and support, I)
Environment and programs, J) Health and health behavior, R) Religion, K) Education and employment, L)
Income

Father 3 A) Family characteristics, B) Child well-being and fathering, C) Mother-child relationship, D) Father’s
relationship with mother, E) Current partner, F) Demographics, H) Father’s family background and support, I)
Environment and programs, J) Health and health behavior, R) Religion, K) Education and employment, L)
Income

Primary care giver and
in-home observation

3 A) Health and accidents, B) Family routines, C) Home toy and activity items, D) Nutrition, E) Food
expenditures, F) Housing/building characteristics, G) Parental stress, H) Parental mastery, J) Discipline, K)
Informal social control and social cohesion and trust, L) Exposure to violence, M) Child’s behavior problems, P)
Observation checklist, Q) Common areas, R) Interior of house or apartment, S) Child’s appearance, T) Home
scale, U) Child emotion and cooperation, V) Ending

In-home activities with
child and mother

3 A) Height and weight, B) Child’s Peabody Picture Vocabulary Test or TVIP, C) Walk-A-Line, D) Q-Sort, E)
Mothers Peabody Picture Vocabulary Test or TVIP, F) Child Care/Employment History Calendar

Child Care Provider
Survey (for center-based
care)

3 A) Care provided at the center, B) Care provided for focus child (Information from director or teacher), C) Care
provided for focus child (Information from teacher), E) Teacher-parent relationship, F) Teacher beliefs, G)
About the childcare teacher

Child Care Center
Observations

3 No clear section headings but contents include: Space and furnishings, personal care routines,
language-reasoning, activities, interaction, program structure, parents and staff

Family Care Provider
Survey (for family-based
care)

3 A) Care provided, B) Child care routine and program, D) Provider-parent relationship, E) Child care provider
beliefs, F) About the child care provider

Family Care Provider
Observations

3 No clear section headings but contents include: Space and furnishings for care and learning, basic care, language
and reasoning, learning activities, social development

Child Care Study
Post-Observation Form

3 A) Observation checklist, B) Common areas, C) Interior of building, D) Home scale, E) Post-visit rating by
interviewer

Mother 5 A) Family characteristics, B) Child well-being and mothering, C) Father-child relationship, D) Mother’s
relationship with father (for mothers who are or were in a relationship) E) Current partner, F) Demographics,
H) Mother’s family background and support, I) Environment and programs J) Health and health behavior, R)
Religion K) Education and employment, L) Income

Father 5 A) Family characteristics, B) Child well-being and fathering C) Mother-child relationship D) Father’s
relationship with mother (for fathers who are or were in a relationship), E) Current partner, F) Demographics,
H) Father’s family background and support I) Environment and programs J) Health and health behavior, R)
Religion K) Education and employment, L) Income

Primary care giver and
in-home observation

5 A) Health and accidents, B) Family routines, C) Home toy and activity items, D) Nutrition, E) Housing/building
characteristics, F) Parental stress and mastery, G) Discipline, H) Exposure to violence, J) CPS contact, K)
Food expenditures, L) Child’s behavior, N) Activities, P) Observation checklist, Q) Common areas, R) Interior
of house or apartment, S) Child’s appearance, T) Home scale, U) Child emotion and cooperation, V) Ending

In-home activities with
child and mother

5 A) Weight/height, B) Peabody Picture Vocabulary Test with child, C) Woodcock-Johnson Letter-Word activity
with child, D) Attention sustained task, E) Child care employment history calendar, F) Five-minute speech
sample, G) Peabody Picture Vocabulary Test with mother

Teacher 5 A) Information specific to the participating child, B) Academic skills specific to the participating child, C)
Classroom behavior and social skills specific to the participating child, D) Classroom characteristics, E) Class
resources and activities, F) School climate and environment, G) General information about teacher

Mother 9 A) Core mother interview: Family characteristics, household roster, marital, and fertility history, B) Bio father
contributions and resources, C) Mother’s relationship with father, D) Current partner, E) Mother’s family
background and support, F) Environment and programs, G) Health and health behavior, H) Religion, I)
Education and employment, J) Income, K) Secondary caregiver

Father 9 A) Core father interview: Family characteristics, household roster, marital, and fertility history, B) Bio mother
and bio father contributions and resources, C) Father’s relationship with mother, D) Current partner, E)
Father’s family background and support, F) Environment and programs, G) Health and health behavior, H)
Religion, I) Education and employment, J) Income, K) Secondary caregiver

Primary care giver 9 A) Introduction to non-parental caregiver survey, B) Mother-child relationship, C) Father-child relationship, D)
Demographics, E) Income, education, and employment, F) Health and wellbeing, G) Environment, H) Health
and accidents, I) Family routines and home life, J) Nutrition, K) Parental stress and mastery, L) Child’s
education, M) Child’s neighborhood

Interviewer observation 9 A) Observation checklist, B) Common areas, C) Interior of house or apartment, D) Child’s appearance, E) Home
scale, F) Child emotion and cooperation, G) Ending

Child 9 A) Parental supervision and relationship, B) Parental discipline, C) Sibling relationships, D) Routines, E)
School, F) Early delinquency, G) Task completion and behavior, H) Health and safety, I) Closing

In-home activities with
child and primary
care-giver

9 No clear section headings but activities include: Consent, Child assessment (PPVT, Digit span,
Woodcock-Johnson Tests 9 and 10), Primary caregiver self-administered questionnaire, Health measures, Saliva
sample, Biological mother weight, Child weigh/height, Primary caregiver open-ended responses

Teacher 9 A) General information, B) Classroom behavior and social skills specific to the participating child, C)
Information specific to the participating child, D) Parent/guardian involvement, E) Classroom characteristics,
F) School climate and environment, G) General information about teacher

Table S1. Summary of information collected in the Fragile Families and Child Wellbeing Study
between child birth and age 9. Section letters are not always consecutive in the questionnaires. Full
questionnaires are available at https://fragilefamilies.princeton.edu/documentation.
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Fig. S1. Missing entries in the Fragile Families Challenge background dataset. The Fragile
Families Challenge background dataset had 4,242 rows and 12,942 columns (plus an ID number). Of the
approximately 55 million distinct data entries, about 73% were missing. There were many types of missing
entries.

values stored in separate columns for each of these subgroups. Another source of intentional skips is that

some questions were asked only of the subpopulation to whom they applied. For example, only mothers not

married to the child’s father at the birth were asked the likelihood that they would marry him. It is also

the case that some of the entries coded as “not in wave” correspond to intentional skip patterns that caused

some individuals to be excluded from certain data collection modules entirely. For instance, those who did

not meet a threshold of hours spent with a child care provider are coded as “not in wave” on the childcare

provider survey modules. In summary, some of the missingness in the data matrix is a consequence of the

survey design—gathering an enormous amount of information from respondents over many years by only

asking the relevant questions—rather than an indicator of poor data quality.

Of the missing data that were not an intentional component of the survey design, the share from

survey nonresponse is arguably low compared to what one might expect for a study following a longitudinal

research design. For example, of the 4,898 mothers that began the study, 3,515 (72%) were interviewed

in wave 5, 9 years after they were initially recruited to participate. The study minimizes nonresponse by

employing multiple strategies to reach families, including phone tracking, neighborhood canvassing, social

media outreach, and using alternate contacts from families and friends. Data collection in each city typically

last 9 months to 1 year.

The outcome data used in the Fragile Families Challenge was measured at child age 15. The full

list of data collection modules at year 15 are presented in Table S2. The six outcomes that we selected
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Data module Child
age

Sections

Mother/Primary care
giver

15 A) Non-parental caregiver, B) Youth health and behavior, C) Youth education, D) Family life and parenting, E)
Household structure and family relationships, F) Nonresident biological parent, G) Coresidental biological
father or coresideential/nonresidental partner H) Primary care giver health and behavior, I) Social environment
and informal support J) Housing and programs K) Education, employment, and income

In-home assessment 15 A) Observation checklist, B) Common areas, C) Interior of house or apartment, D) Youth’s appearance, E)
Home scale, F) Youth emotion and cooperation, G) Ending

Child 15 A) Introduction, B) Education, C) Family relationships, D) Health and health behavior, E) Neighborhood, F)
Risky behaviors - sexual activity and illegal drug use

Table S2. Summary of information collected in the Fragile Families and Child Wellbeing
Study at child age 15. Full questionnaires are available at https://fragilefamilies.princeton.edu/
documentation.

to be the focus of the Challenge were: 1) child grade point average (GPA), 2) child grit, 3) household

eviction, 4) household material hardship, 5) primary caregiver layoff, and 6) primary caregiver participation

in job training. We selected these six variables for substantive and methodological reasons. Substantively,

we picked variables from a variety of domains where we thought that good predictions would be useful for

subsequent empirical research. Methodologically, we wanted a variety of variable types—such as binary or

continuous and about the child, household, or primary caregiver—so that we could study the relationship

between the type of outcome, its overall predictability, and the best methods for predicting it. The variables

we refer to as continuous actually take a discrete set of numeric values (Table S3). We did not pick these

six outcomes because we thought that they would be especially easy or difficult to predict.

The operationalization of each of these six outcomes varies across the scientific literature, and Ta-

ble S3 describes the operationalization we used. Two outcomes in particular—eviction and grit—warrant

further discussion. The measure of eviction in the Fragile Families study includes eviction for nonpayment

of rent or mortgage, regardless of whether a court ordered the eviction or a landlord carried it out informally

[7, 17]. Other research, however, focuses on formal court-ordered evictions for any reason [6]. Also, the

Fragile Families measurement of grit is different from the measure proposed in [8]. More specifically, [8]

proposes a grit scale consisting of six items related to consistency of interest and six items related to perse-

verance of effort. The Fragile Families study scale is shorter—four items—and was designed with adolescent

school outcomes in mind. Two items (“I finish whatever I begin”; “I am a hard worker”) are exactly as in

the original scale for perseverance of effort. One item on the Fragile Families study scale (“Once I make a

plan to get something done, I stick to it”) is a simplified version of one of the original items about consis-

tency of interests (“I have difficulty maintaining my focus on projects that take more than a few months

to complete”). Likewise, the Fragile Families study scale includes an item focused on schoolwork (“I keep

at my schoolwork until I am done with it”), which is a more targeted version of an item from the original

perseverance scale (“I am diligent”). A final difference is that [8] propose a scale with five answer choices

(“not at all like me” to “very much like me”) whereas the Fragile Families study scale involves four choices
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(“strongly disagree” to “strongly agree”).

Following standard practice for the common task method, we divided the outcome data into three

disjoint sets: training, leaderboard, and holdout. To split the outcome data, we started by acquiring the

information needed to construct the six outcome variables (Table S3); these data were available only to mem-

bers of the Fragile Families team. Next, we randomly split the outcome data using systematic sampling [25].

More specifically, we first sorted all observations by city of birth, parents’ relationship status at the birth,

mother’s race, whether at least one outcome was non-missing, and then the outcomes in the following order:

eviction, layoff, job training, GPA, grit, and material hardship. In the sorted data, we grouped observations

into sets of 8 sequential observations. Then, we randomly assigned four, one, and three of the observations

to the training, leaderboard, and holdout sets.

Figure S2 shows the distribution of outcomes in the training data, and Table S4 shows the number of

non-missing cases in each of the training, leaderboard, and holdout sets. Cases with missing outcomes were

not used when measuring the mean squared error of the predictions in the holdout set. In the leaderboard set

only, we imputed missing values on the outcome variables by taking a random sample (with replacement) from

the distribution of observed outcomes in the leaderboard set. Because these random draws are unpredictable

by construction, we could assess whether respondents were overfitting to the leaderboard (i.e., submitting

numerous queries and updating their models based on leaderboard score) by measuring how well participants

could predict these random values.
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Age 15
outcome

Age 9 questions Response values Reporter How aggregated

GPA At the most recent grading period, what was your
grade in

1. English or language arts?

2. Math?

3. History or social studies?

4. Science?

1. A

2. B

3. C

4. D or lower

Child Reverse-coded and
averaged. Marked NA if
any item missing due to no
grade, pass/fail, refusal,
don’t know, homeschooled,
or not interviewed.

Grit Thinking about how you have behaved or felt during
the past four weeks, please tell me whether you
strongly agree, somewhat agree, somewhat disagree,
or strongly disagree with the following statements.

1. I keep at my schoolwork until I am done with it.

2. Once I make a plan to get something done, I stick
to it.

3. I finish whatever I begin.

4. I am a hard worker.

1. Strongly
agree

2. Somewhat
agree

3. Somewhat
disagree

4. Strongly
disagree

Child Reverse-coded and
averaged. Marked NA if
any item missing due to
refusal, don’t know, or not
interviewed.

Material
hardship

We are also interested in some of the problems
families have making ends meet. In the past twelve
months, did you do any of the following because
there wasn’t enough money?

1. Did you receive free food or meals?

2. Were you ever hungry, but didn’t eat because you
couldn’t afford enough food?

3. Did you ever not pay the full amount of rent or
mortgage payments?

4. Were you evicted from your home or apartment
for not paying the rent or mortgage?

5. Did you not pay the full amount of gas, oil, or
electricity bill

6. Was your gas or electric services ever turned off,
or the heating oil company did not deliver oil,
because there wasn’t enough money to pay the
bills?

7. Did you borrow money from friends or family to
help pay bills?

8. Did you move in with other people even for a
little while because of financial problems?

9. Did you stay at a shelter, in an abandoned
building, an automobile or any other place not
meant for regular housing, even for one night?

10. Was there anyone in your household who needed
to see a doctor or go to the hospital but couldn’t
go because of the cost?

11. Was your telephone service (mobile or land line)
cancelled or disconnected by the telephone
company because there wasn’t enough money to
pay the bill?

0. Event did not
occur

1. Event
occurred

Child’s
primary
caregiver

Averaged. Marked NA if
any response missing due
to refusal, don’t know, or
not interviewed.

Eviction

1. In the past twelve months, were you evicted from
your home or apartment for not paying the rent or
mortgage?

2. (If no above:) Since [month and year of interview
at approximately child age 9], were you evicted
from your home or apartment for not paying the
rent or mortgage?

0. No

1. Yes

Child’s
primary
caregiver

If no to both questions, 0.
If yes to either question, 1.
Marked NA if missing due
to refusal, don’t know, or
not interviewed.

Layoff Since [month and year of interview at approximately
child age 9], have you been laid off from your
employer for any time?

0. No

1. Yes

Child’s
primary
caregiver

Marked NA if missing due
to refusal, don’t know, or
not interviewed.

Job
training

Since [month and year of interview at approximately
child age 9], have you taken any classes to improve
your job skills, such as computer training or literacy
classes?

0. No

1. Yes

Child’s
primary
caregiver

Marked NA if missing due
to refusal, don’t know, or
not interviewed.

Table S3. Outcome variables measured at child age 15.
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Outcome Training Leaderboard Holdout
GPA 1,165 304 886
Grit 1,418 362 1,075
Material hardship 1,459 375 1,099
Eviction 1,459 376 1,103
Layoff 1,277 327 994
Job training 1,461 376 1,104
Total possible 2,121 530 1,591

Table S4. Number of non-missing cases for each outcome in the training, leaderboard, and
holdout sets.
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Fig. S2. Distribution of outcomes in the training set. The number of missing cases for each outcome
varied (Table S4) and are excluded here.
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S1.2 Evaluation metric: Mean squared error

There are many potential metrics by which to evaluate predictive performance, and different metrics may

lead to different conclusions [13]. For the Challenge, we wanted an evaluation metric that met three criteria:

1) familiar to participants, 2) applicable to both binary and continuous outcomes, and 3) aligned with how

we plan to use the predictions in further research. Mean squared error (MSE) meets these criteria. MSE is

widely used for outcomes that are continuous (e.g., ordinary least-squares regression minimizes squared error)

and binary (e.g., it is deeply related to the Brier score [5]). Additionally, we plan to use these predictions

to identifying families with particularly unexpected outcomes so that we can collect more information from

these families. MSE is suited to this goal because it heavily penalizes large errors, thereby encouraging

predictions that produce large errors only when a case is truly unexpected.

We present results in terms of R2
Holdout (Eq. 1, main text), a transformation of MSE that increases

interpretability and comparability across outcomes. There are many definitions of R2 in the literature, and

our definition is based on the recommendation of [16]. We normalized the squared prediction errors by

the squared prediction error from a null model: predicting the mean of the training data. An alternative

approach would normalize by the squared prediction error when predicting the mean of the holdout data.

Both approaches produce similar results because the training and holdout sets are similar because of the

way we created them.
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Fig. S3. Self-reported disciplinary affiliation and professional background of applicants. Each
applicant could select as many of these as applied. See [18] for a copy of the application.

S1.3 Procedures of the Fragile Families Challenge

We recruited participants to the Fragile Families Challenge through a variety of approaches including: con-

tacting colleagues, working with faculty who wanted their students to participate, and hosting getting started

workshops at universities, in courses, and at scientific conferences. Anyone who wanted to participate in

the Challenge needed to apply for data access [18]. During the application process, participants provided

informed consent to the procedures of the Fragile Families Challenge.

Applicants came from a wide range of disciplinary backgrounds (Fig. S3a). By far the most common

self-reported disciplinary affiliation reported was “data scientist”, and there was also a substantial repre-

sentation from social science disciplines and other disciplinary backgrounds. 64% of participants reported

affiliation with more than one discipline. Applicants also came from a variety of sectors and career stages

(Fig. S3b). Finally, applicants reported a variety of motivations such as general interest in the topic and to

improve the lives of disadvantaged children (Fig. S4).

In order to make a submission to the Challenge, each team needed to create an account on our

Challenge platform, which was a customized instance of CodaLab1, open-source software designed to manage

research projects using the common task method. Each submission was required to include three main

elements: predictions for all six outcomes for all 4,242 cases, the code used to generate those predictions,

and a narrative explanation of the strategy used to generate the predictions. When a submission was

uploaded, it was automatically assessed to see if it met the submission guidelines. Submissions meeting

the guidelines were automatically scored with the leaderboard data. Each account was permitted to upload

10 submissions per day. Although participants were required to upload predictions for all six outcomes,

1http://codalab.org/

S10

http://codalab.org/


Required for coursework

To earn scholarly
recognition

Relevant to job

Collaborating with
strangers

Relevant to school or
degree program

To make the best−
performing model in the

challenge

To work on a prestigious
research project

Relevant to own research

To create the most
interesting/innovative

model in the challenge

Collaborating with
university researchers

Connecting with others
who share my interests

To experience a mass
scientific collaboration

Collaborating with
colleagues/friends

For fun

Contributing to data
science

Learning about cutting−
edge research

Contributing to social
science

Learning/practicing data
analysis skills

Curiosity about the
challenge

To improve the lives of
disadvantaged children

General interest in topic

0% 25% 50% 75% 100%
Proportion

R
ea

so
n

Reasons for participating

Fig. S4. Self-reported motivations of Fragile Families Challenge applicants. Each applicant could
select as many of these as applied. See [18] for a copy of the application.
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Fig. S5. Flow diagram of criteria producing the sample of 160 accounts that made a valid
submission.

some participants chose to focus on a subset of outcomes (e.g., just GPA or just continuous outcomes) and

uploaded the mean of the training data for the other outcomes.

At the end of the Challenge, each team selected one submission to be on the leaderboard as their final

submission, with the default choice being the most recent submission. Our analyses began with these final

submissions. All participants agreed—during the application processes—that all their submissions would be

open-sourced at the end of the Challenge [18].

The first submissions to the Challenge were on March 5, 2017, as part of a controlled roll-out in a

class at Princeton University. The Challenge officially opened to the larger research community on March

21, 2017 and ended on August 1, 2017. We opened the holdout data and scored these final submissions on

September 11, 2017.

There were a total of 219 accounts that attempted to submit predictions to the Challenge, of which

160 accounts were considered valid submissions. Some of our analysis uses a subset of these accounts that

made a qualifying submission, which is defined to be a valid submission that scored better than the mean

of the training data. Figure S5 provides information about why some accounts were excluded. Table S5

provides additional information about the valid submissions and qualifying submissions. The set of accounts

does not have a one-to-one relation to the set of participants. Some accounts are associated with teams of

participants and a small number of participants contributed to more than one account.
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Material Job
Restriction hardship GPA Grit Eviction training Layoff
Valid submissions 160 160 160 160 160 160

Submissions different from the
mean of the training data

122 128 121 111 117 112

Qualifying submissions (better
than the mean of the training
data)

92 98 65 48 42 42

Table S5. Submission restrictions. Many of our analyses use either the full set of 160 valid submissions,
the restricted set of submissions for which at least one prediction was at least 10−4 away from the mean of
the training data, or the restricted set of qualifying submissions, which are the submissions that were more
accurate than the mean of the training data.
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S2 Analysis of the best performance

S2.1 Construction of confidence intervals

The best R2
Holdout scores observed in the Challenge are descriptive quantities known with certainty. However,

we may also view the holdout set as one random sample from the population of families that were eligible for

the Fragile Families and Child Wellbeing Study. In this case, the observed scores can be considered estimates

that would vary from holdout sample to holdout sample. The 95% confidence intervals in Fig. 3 capture this

variability by bootstrapping. More specifically, we mimic a simplified version of the Fragile Families and

Child Wellbeing Study sampling process by drawing 10,000 simple random samples with replacement from

the holdout set. Within each replicate sample, we score all submissions and record the highest observed

performance: max
j

R̂2∗
j (using ∗ to denote evaluation within a bootstrap sample). Finally, we report the .025

and .975 quantiles of the max
j

R̂2∗
j scores to produce a 95% confidence interval.
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S2.2 Winning submissions slightly outperform benchmark models but many

submissions do not

The winning submissions in the Fragile Families Challenge did not produce accurate predictions as measured

by R2
Holdout. To provide a comparison, we worked with domain experts to create a simple benchmark model

that used standard methods and a small number of commonly used variables. More specifically, we created

a benchmark model that used linear regression (for continuous outcomes) and logistic regression (for binary

outcomes) and four predictors: mother’s race/ethnicity (black, Hispanic, or white/other), mother’s level of

education (less than high school, high school degree, some college, college), and mother’s marital status at

the birth of the child (married, cohabiting, or other), and a measure of the outcome—or a closely related

proxy—collected at child age nine (Table S6). Further, to provide additional points of comparison, we

also assessed other closely related benchmark models, including those that use other statistical learning

procedures or subsets of the predictors.

To construct our benchmark models, we imputed missing data using the Amelia package [14]. In

the imputation model, we treated mother’s race and mother’s marital status as nominal variables, mother’s

education as an ordinal variable, and the lagged outcome variable as a continuous variable. We included the

six outcomes in the imputation model in order to improve efficiency, but observations with missing outcomes

were excluded from model fitting. After preparing the predictor variables, for each of the six outcomes

separately, we learned the relationship between the predictors and the Challenge training data using linear

regression for continuous outcomes and logistic regression for binary outcomes. After fitting the models, we

used them to make predictions about the outcomes for the holdout data. Next, we truncated predictions to

the range of possible outcome values (e.g., between 0 and 1 for eviction).

Figure S6 Panel A plots the performance of the best model in the Challenge and the main bench-

mark model. These values were substantively similar and can be compared in several ways. The absolute

difference between the values
(
R2

Holdout, Best −R2
Holdout, Benchmark

)
is presented in Fig. S6 Panel B. The per-

centage of the gap between the benchmark model and perfect prediction that was closed by the best model(
R2

Holdout, Best−R
2
Holdout, Benchmark

1−R2
Holdout, Benchmark

)
is presented in Fig. S6 Panel C. Although the preferred metric for comparing

R2
Holdout, Best and R2

Holdout, Benchmark varies depending on context, we conclude that the differences between

the performances were small in absolute terms. Small absolute improvements can be consistent with large

relative improvements when the benchmark model has very poor performance (e.g., grit, layoff). The best

submission for layoff, for instance, achieved R2
Holdout four times that achieved by the benchmark. However, in

these cases, the absolute performance of the best submission was still quite poor. Overall, we conclude that

the best submission had poor predictive performance that was only slightly better than a simple benchmark.
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A) Performance of benchmark and best submissions.
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Fig. S6. Maximum R2
Holdout relative to benchmark models. Horizontal lines indicate the value that

would be realized if the best submission and the benchmark had equal performance.
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To provide additional points of comparison, we also considered benchmarks with different predictor

sets (e.g., just information collected at birth or just the lagged outcome) and with a different method of

statistical learning (e.g., random forest). Figure S7 shows the predictive performance of these alternative

benchmarks. For some outcomes (e.g., material hardship), the predictive performance of the benchmark can

be almost matched by a subset with only one predictor (a proxy variable measured in the prior wave), and

adding three demographic predictors only adds minimally to prediction. For other outcomes (e.g., GPA),

the full benchmark can almost be matched by a subset with only the three demographic predictors, and

adding a lagged proxy adds very little. For simplicity, the main text presents only the benchmark with all

four predictors.

We note that a small difference in predictive performance, as measured by R2
Holdout, does not imply

that the best submission and the benchmark made similar predictions for any given observation (Fig. S8).

The correlation between the benchmark and best predictions ranged from 0.22 (Eviction) to 0.64 (GPA).

Finally, we note that although the best submissions to the Challenge performed better than the

benchmark, many submissions fell short of this benchmark model. Between 31% (layoff) and 100% (job

training) of qualifying submissions were worse than the benchmark model (Fig. S9), despite the fact that

many of these submissions were quite complex.
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Fig. S7. Alternative benchmark models. The benchmark results reported in Figure S6 use the full
predictor set (4 variables) and OLS (continuous outcomes)/logistic regression (binary outcomes).
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Holdout, they do not have
equivalent individual-level predictions.
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Fig. S10. Winner is uncertain. The account with the best score on the holdout set does not always have
the best score on bootstrap samples of the holdout set, suggesting the winner may be lucky in this particular
draw of the holdout set.

S2.3 Winner may be different in a new holdout set from the population

The winning submission to the Challenge is an unambiguous descriptive quantity: the submission with the

best score on the holdout set. However, the chosen winner might have been different if we had evaluated on a

different holdout from the same data generating process. To simulate this possibility, we constructed 10,000

bootstrap samples of the holdout set. Figure S10 shows the proportion of bootstrap samples for which the

best-scoring submission was the same submission that scored the best on the Challenge holdout set. This

proportion ranges between 23% and 54%, suggesting that the chosen winner depended partly on the luck of

the holdout set.
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S2.4 The best holdout score is optimistic for out-of-sample performance

In the main text we reported the R2
Holdout of the submission that scored best in the holdout set. In other

words, we evaluated all the submissions in the holdout set and picked the one with the best score. While this

approach accurately describes what happened in the Fragile Families Challenge, it provides an optimistic

estimate of the best performance that would be measured if we could evaluate the submitted models on the

full population from which the holdout set was drawn.

To illustrate this concern, consider a setting in which five researchers contribute models that are

all different but equally good: they would all achieve R2 = 0.5 on average across possible draws of a

holdout sample from the population. In one draw of the holdout set, we might observe the scores R̂2 =

{0.4, 0.45, 0.47, 0.52, 0.56}, and we would report 0.56 as the best score in this specific holdout set. Next,

imagine that we drew a new holdout set from same population and again scored the submissions from these

five model. We would again expect to get R̂2 values of around 0.5, with the best submission slightly above

0.5. However, the submission that originally scored 0.56 is likely to have a score closer to 0.5 in this new

holdout set. If we could evaluate the models on a very large holdout set, all the scores would converge to their

true value of 0.5. When the holdout set is of limited size, however, the best R̂2 in that set is likely to be at

least partly lucky in the sense that it happened to predict well for the observations in that particular holdout

set. Likewise, the the maximum R2
Holdout in the Challenge is likely optimistic for the best performance that

would be achieved if models were evaluated on the full population.

In order to assess the possible magnitude of this issue in the Challenge, we developed and used an

alternative procedure for estimating the maximum performance, which is likely pessimistic and which has

higher variance. The alternative procedure splits the holdout set in half in order to select the best submission

on a selection sample and then assess the performance of that best submission on an independent evaluation

sample. In the simple five-submission example above, regardless of which model was selected in the selection

sample, in expectation this model would achieve R̂2
Evaluation = 0.5. Using separate samples for selection and

evaluation allows us to combat a “winner’s curse” phenomenon in which the submission that happens to do

the best in the selection sample is likely to regress toward the mean in a new sample.

Our alternative procedure targets the following estimand: the expected predictive performance of

a procedure that uses a random half of the holdout set to select the best model and uses observations not

used for training or selection to evaluate performance. We estimate this quantity by randomly splitting

the Challenge holdout set into two halves: a selection set (795 observations) and an evaluation set (796

observations). We select the best submission in the selection set and then evaluate its R̂2
Evaluation in the

evaluation set. Because the selection and evaluation sets are independent samples from the population, the
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performance in the evaluation set of the submission chosen in the selection set is an unbiased estimator of

the ability of this submission to predict new observations.

To avoid an unlucky split of the holdout set, we repeat this procedure 100 times, under different

partitions of the holdout observations to selection and evaluation, and average the results.

τ̂ =
1

100

100∑
i=1

R̂2
Evaluation,i (S1)

To produce a conservative confidence interval for this estimand, we calculate the analytical sample

variance of the mean squared error within each split. We then average over splits to produce an estimated

variance, which is upwardly biased for the true variance of the estimator because it does not account for the

reduction in the variance achieved by averaging over 100 splits. We used this estimated variance (which is

conservative) along with the typical normal approximation to produce a conservative 95% confidence interval

around the overall point estimate.

Figure S11 (lines A and B) presents our results. For all six outcomes, this alternative procedure

produces slightly lower point estimates. Two possible sources of this difference are: 1) with only half of

the holdout set, we are more likely to select an inferior model and 2) when selecting and evaluating on

the full holdout set, our original estimator is optimistically biased for out-of-sample performance. For all

six outcomes, the alternative procedure also produces wider confidence intervals. Two possible sources of

this difference are: 1) with a smaller evaluation set we are more uncertain about performance and 2) a

conservative bias in how we estimates variance when averaging over split.

To conclude, in the main text we reported the R2
Holdout of the submission that scored best in

the holdout set. This quantity describes what happened in the Challenge but is optimistic for the best

performance that would be measured if we could evaluate the submitted models on the full population. To

assess the magnitude of this problem in the Challenge, we developed and deployed an alternative procedure

that is likely pessimistic and produces estimates with higher uncertainty. Both procedures produce essentially

the same results (Fig. S11 (lines A and B)). We chose to present the results from a single holdout set in the

main paper for two reasons: 1) they are simpler and 2) an optimistic bias—predictive performance tends

to look better than it is—created by selecting and evaluating on one holdout set runs counter to the main

claim of the paper that predictions were inaccurate. If anything, the chosen best submission would be—in

expectation—even more inaccurate if re-evaluated on a new holdout set from the same population.
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Fig. S11. Maximum R2
Holdout relative to alternative estimators of out-of-sample error. Model

(A) is the best-scoring submission to the Challenge, evaluated on the same set used to select it. Error bars
approximate the sampling distribution of this estimate by the middle 95% of bootstrap draws, with selection
and evaluation performed within each bootstrap draw. Model (B) splits the holdout set into selection
and evaluation samples, selects the best model on the selection sample, and evaluates it on the evaluation
sample, and averages over 100 repetitions of this procedure as described in Section S2.4. This approach
avoids overfitting in the model selection stage. Model (C) uses the same sample splitting procedure as (B)
but creates a weighted average of submissions as described in Section S2.5. Confidence intervals in (B) and
(C) are analytic as described in Sections S2.4 and S2.5.
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S2.5 A weighted average of submissions does not perform better

Rather than focusing on the best submission, it might be possible to achieve better performance by combining

several submissions. We consider one simple strategy: combining submissions by a weighted average, a

technique sometimes called “stacking” [4, 40]. A weighted average would improve predictive performance if

the truth lies somewhere between the submitted predictions, or formally within their convex hull [4]. As a

concrete example, this would be true if one submission tended to under-predict the same observations that

another submission over-predicted, so that an average of the two would be close to the truth. However,

because the predictions were very similar across submissions, an ensemble combining several submissions

is unlikely to substantially outperform the best individual. Nonetheless, this section reports results for a

weighted average.

We construct a weighted average with weights ~β learned with a constraint that all weights are non-

negative and sum to 1 (Eq. S2). We impose the regularization constraint λ = 0.01 to avoid problems due to

highly correlated predictors.

Estimated
stacking
weights︷︸︸︷
~̂β = argmin

~β:~β≥0,|~β|1=1

(∣∣∣~y − ŷSubmitted~β
∣∣∣
2

+ λ|~β|2
)

(S2)

The stacked predictor is the weighted average of all submissions that results.

~̂yStacked = ŷSubmitted ~̂β (S3)

Because there is a risk of overfitting by learning the weights in the same holdout set used to evaluate

the final model, we conduct this entire procedure within the selection-evaluation split procedure as described

in Section S2.4. As in that section, we average results over 100 stochastic splits and calculate a conservative

95% confidence interval. After performing this procedure, we find that the performance of this weighted

average is comparable to that of the overall best individual submission (Fig. S11). In other words, combining

submissions in this way did not substantially improve predictive performance.
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S3 Patterns in predictions and prediction errors

In the main text, we report a number of patterns about the predictions and predictions errors. In this

section, we provide additional information about those patterns.

Figure S12 compares all qualifying submissions (those that beat the baseline submission) for each

outcome. It shows that the distance between the most divergent submissions was less than the distance

between the best submission and the truth. In other words, the submissions were much better at predicting

each other than at predicting the truth.

Figure 4 in the main text presents a heatmap of the squared prediction error for all qualifying

submissions for each outcome. Here we now provide further description of three patterns of prediction errors

for these submissions.

First, for each outcome, the squared prediction error is strongly related to the family being predicted

and weakly related to the technique used to make that prediction. This pattern is apparent visually in Figure

4 in the main text: for each outcome, many observations are well predicted by all submissions and some

observations are poorly predicted by all submissions. One way to quantify the pattern in squared prediction

errors is to compare the model fit of two linear regression models, one with fixed effects for each family:

e2
ijk = αi + εijk (S4)

and one with fixed effects for each submission:

e2
ijk = ηj + δijk. (S5)

where e2
ijk is the squared error for family i, submission j, and outcome k

e2
ijk = (ŷijk − yik)2. (S6)

The R2 values for these two models are reported in Table S7 and show that for each outcome the

squared prediction error is strongly related to the family being predicted and weakly related to the technique

used to the make the prediction.

A second pattern in the prediction errors is that the observations that are hardest to predict are those

that are far from the mean of the training data. One way to summarize the difficulty of predicting a particular
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Fig. S12. Comparing submissions to each other and the truth. For each outcome, the histograms
show the mean squared error between all pairs of submissions (left panel) and the mean squared error between
all submissions and the truth (right panel). For all six outcomes, the submissions were much closer to each
other than they were to the truth, where distance is measured by mean squared error. These results only
include qualifying submissions and are restricted to observations with non-missing outcome data.

Outcome Family fixed effects model Accounts fixed effects model

Material Hardship 0.925 0.002
GPA 0.897 0.002
Grit 0.968 0.0001
Eviction 0.986 0.00002
Job training 0.938 0.0001
Layoff 0.982 0.00002

Table S7. Model fit (measured by R2) for linear regression models of squared prediction error.
The model with fixed effects for each family fits the data very well, and the model with fixed effects for each
account fits the data poorly. These results quantify the visually apparent pattern in Figure 4 that squared
prediction error is strongly related to the family being predicted and weakly related to the technique used
to the make the prediction.
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Fig. S13. Observations that are furthest from the mean of the training data are the hardest
to predict. Each ridge indicates the smoothed density for the difficulty of predicting cases with a specific
outcome value (e.g., GPA of 4.0). Difficulty is defined to be the mean of the squared errors predicting that
case averaged over all qualifying submissions (Eq. S7).

observation, yik, is mean square error for that observation averaged across all qualifying submissions

dik =

∑
j (ŷijk − yik)2

njk
, (S7)

where njk is the number of qualifying submissions for outcome k (Table S5). It turns out that this difficulty

value (dik) is larger for observations that are far from the mean of the training data (Fig. S13). While one

might expect that unusual observations will be the hardest to predict, this pattern is not a guaranteed to

arise. For example, a child with a GPA of 3.0 (close to the mean of the training data) could have been

predicted to have a GPA of 1.0 by all submissions, which would have produced a case close to the mean of

the training data with large difficulty value (dik).

A third pattern in the prediction errors is that families with difficult-to-predict values for one outcome
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do not, in general, have difficult-to-predict values for the other outcomes. For example, adolescents with

a difficult-to-predict value for GPA do not also tend to have a difficult-to-predict value for grit (Fig. S14).

But, there are three exceptions. First, families where eviction was difficult to predict also tended to have

a material hardship value that was difficult to predict (r = 0.46). This pattern may be created, in part,

because eviction is one element of the material hardship scale (Table S3). Also, families where the layoff of

the primary caregiver was difficult to predict also had difficult-to-predict values for eviction (r = 0.17) and

material hardship (r = 0.12). These patterns may be created, in part, because of the causal relationships

between these three variables. For example, it could be that unexpected layoffs increase the chance of

unexpected eviction and unexpected material hardship.

In conclusion, for each of the six outcomes: the squared prediction error is strongly related to the

family being predicted and weakly related to the technique used to make that prediction (Table S7); the

observations that are hardest to predict tend to be far from the mean of the training data (Fig. S13); and

families with observations that are difficult to predict for one outcome generally do not have observations

that are difficult to predict for other outcomes (Fig. S14).
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Fig. S14. Families with observations that are difficult to predict for one outcome generally do
not have observations that are difficult to predict for other outcomes. Each scatter plot shows
the relationship between the difficulty values (Eq. S7) for two outcomes. The difficulty of prediction is not
strongly correlated across outcomes with three exceptions: eviction-material hardship (r = 0.46), layoff-
eviction (r = 0.17), and layoff-material hardship (r = 0.12). This figure only includes cases with non-missing
data for all six outcomes.
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S4 Approaches used by teams to generate predictions

S4.1 Prediction approaches as demonstrated in submitted code files

Many of the submissions in the Challenge had similar predictive performance (Fig. S15). This was not

because all of the teams used the same approaches to generating predictions. Here we parse the code that

accompanied all 160 valid submissions. This included scripts in the following languages: Python (230 scripts),

R (145 scripts), Stata (28 scripts), Matlab (9 scripts), and SPSS (2 scripts). In some cases, there was more

than one script per submission.

To analyze the code accompanying each submission, we first concatenated all the scripts in the

submission into a single file. We then extracted the set of functions used in each file. For submissions in

Python, R, Stata, and Matlab, we extracted the function automatically using Pygments2; for submissions in

SPSS, this step was done manually. Next, we identified the full set of functions that were used in the Chal-

lenge across all languages. We then manually categorized each function into one of three mutually exclusive

and exhaustive categories: data preparation (e.g., subsetting the data or imputing missing data); statistical

learning; or interpretation (e.g., visualization and extracting predictions). Further, we subcategorize statis-

tical learning functions into 11 mutually exclusive and exhaustive categories (Table S8). At the end of this

procedure, for each submission, we have a count of the number of times each function was used. However,

we do not know which of these function calls were associated with each particular outcome (i.e., we know

how many times a particular submission used linear regression, but we cannot associate these function calls

with a particular outcome).

2http://pygments.org/

Statistical learning label Meaning Example functions
tree Partitioning and tree-based methods ctree, rpart

regular Regularized models bayesglm, spikeslab

nn Neural networks nnet, sklearn.neural network

logistic Binary response models logit, probit

linear Linear models lm, reg

kernel Kernel methods sklearn.gaussian process

flex Flexible functional form models gam, svm

factor Latent variable models and factor analysis chol, svd

ensemb Ensemble models xgboost, randomforest

cv Cross-validated models sklearn.cross validation

classif Classification and clustering models sklearn.naive bayes, knn

Table S8. Classification scheme for statistical learning procedures. A single submission could
include more than one statistical learning procedure.
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Fig. S16. Statistical learning procedures used in submissions. Participants constructed predictions
using a wide range of functions. The classification scheme is described in Table S8.

Overall, the analysis of the submitted code produced three main results. First, submissions included

a wide variety of statistical learning procedures (Fig. S16). Second, if we restrict our attention to qualifying

submissions (those that performed better than predicting the mean of the training data), then there is

not a strong relationship between the amount of data preparation and R2
Holdout (Fig. S17). Third, again

restricting attention to qualifying submissions, there is not a strong relationship between the statistical

learning functions used in the submission and R2
Holdout (Fig. S18).

We emphasize that our automated analysis of submission code potentially misses important pieces

of each submission, such as the order that the functions were executed, user-created functions, and spe-

cific information about how each statistical learning approach was applied (e.g., procedure for estimating

hyperparameters). Also, some submissions might include code that was not actually executed to generate

predictions, or might exclude code that was executed (e.g., if it was commented out subsequent to the exe-

cution that generated the submitted predictions). Finally, these results do not provide causal evidence that

one procedure leads to better outcomes. Submissions using a particular learning method might have dif-

fered along other dimensions that affect predictive performance, such as the quality of the data preparation.

Despite these important caveats, the automated analysis shows that a wide range of statistical learning ap-

proaches were used in the Challenge. Further, this analysis provides suggestive evidence that the predictive

performance was not strongly related to the techniques used to produce each submission.
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Fig. S17. Performance of submissions by amount of data preparation. There is not a strong
relationship between the log number of data preparation function calls and R2

Holdout, for submissions with
R2
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Fig. S18. Performance of submissions by type of statistical learning procedure. Each ridge
indicates the smoothed density of R2

Holdout among submissions that used procedures of the corresponding
type and had R2

Holdout > 0. A missing ridge indicates that a statistical learning procedure of that type was
not used in any submission where R2

Holdout > 0 for that outcome. X-axis scales vary by facet.
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S4.2 Prediction approaches as reported in categorical survey responses

To give a sense for the range of methodological approaches used in the Challenge, participants authoring

this paper provided summaries of their methodological choices in the form of yes/no survey responses and

brief narratives. This section presents the survey responses as four figures corresponding to the following

steps: data preparation (Fig. S19), variable selection (Fig. S20), learning algorithm (Fig. S21), and model

interpretation (Fig. S22).
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Fig. S19. Participant reports of data preparation steps.
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Fig. S20. Participant reports of feature selection steps.
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Fig. S21. Participant reports of learning algorithms used.
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Fig. S22. Participant reports of model interpretation steps used.
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S4.3 Prediction approaches as described by narrative summaries

This section presents narrative summaries of the approaches teams used to produce submissions to the

Challenge, provided by teams for whom a participant is an author of this paper. We group together authors

who indicated that they are describing the same account submission. We provide account usernames next

to each narrative summary.

• Caitlin E. Ahearn and Jennie E. Brand (pups33)

Our approach to the Fragile Families Challenge was to draw on empirical results from the large literature

on the determinants of job loss to generate a simple model to predict caregiver layoff. We chose to

focus exclusively on layoff as the outcome because Jennie Brand, a member of our team, is an expert

in that area. We used prior research on layoff to build a model predicting layoff, and adjusted the

model based on model fit statistics of different iterations of predictors. Our models included subsets

of sociodemographic, employment, family, psychosocial, and family background characteristics. We

ultimately submitted a few model specifications to the Challenge: the first was based on prior research

on job loss for the general population; the second was based on prior research on job loss among

disadvantaged mothers (the primary population of the Fragile Families data); and the third was a

more parsimonious model that included a few key covariates. We also tested various methods of

imputation, including single and multiple imputation. The results and predictions of each of these

models were all quite similar. Our best performing model, and final submission, was one of our

early model specifications based on covariates for predicting layoff in the general population. We

chose a simple estimations strategy, and did not expect different model specifications to produce much

variation, as prior research has repeatedly shown that job loss is a relatively exogenous shock.

• Khaled Al-Ghoneim (KAG)

Using the same feature selection as the team (Pentlandians), I combined multiple random forests using

weighted averaging. The weights are the out-of-bag performance score for each forest.

• Abdullah Almaatouq (amaatouq)

In this submission, we ran a Random Forest regressor for continuous outcomes and Random Forest

classifier for the categorical outcomes. In the case of categorical outcomes, we predict the probability

of positive examples rather than the binary class. All of the models in this submission were trained

on the top 600 untransformed features selected by mutual information that was performed during the

pre-processing step. Due to the high potential of overfitting, we ran 300 Random Forests in a nested

cross-validation fashion. This means, we used a series of train/validation/test set splits, where in the
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inner loop, the score is maximized by fitting a model to each training set, and then maximized in

selecting hyper-parameters over the validation set. In the outer loop, generalization error is estimated

by averaging test set scores over several dataset splits. We then weighted each model predictions based

on this outer loop score.

• Drew M. Altschul (dremalt)

I first removed many variables with low-variance, so that I could then select particular features of

interest with generalized boosting. Once I had a separate set of features for each outcome variable,

I made a single data subset and multiply imputed missing values. Prior to imputation I added some

variables to the dataset either because they were of special theoretical interest, or because I wanted to

use them to add power to the imputations. With the imputed datasets I fitted elastic net and more

standard linear regression models to the dataset, and using these models I generated the predictions

that I submitted to the challenge.

• Nicole Bohme Carnegie and James Wu (carnegien)

The first step in our process was data cleaning. Coming from a sociology-influenced statistics back-

ground, we felt that it was important to account for skips, etc. from the survey instruments in a

logical manner. We spent a great deal of time cleaning and recoding data to reflect implied answers

from the survey structure, and force categorical responses to be treated as such. We also dropped “ad-

ministrative” variables, like time of survey and sample weights, and any variables that were constant

across traning observations. Once this was done, we used one of four methods to reduce the number

of variables used in predictive modeling: LASSO, Bayesian GLM, Horseshoe, and Bayesian Additive

Regression Trees (BART). All predictive models were fit using BART. We fit many combinations of

variable selection methods and hyperparameter settings for BART, in order to explore which of these

would be related to final predictive performance.

• Ryan James Compton (rcompton)

Our method involved cleaning, balancing, and then splitting the data set to ensure a more generalizable

model. Due to the high number of variables within the data set, we used Principal Component Analysis

as a feature engineering method to reduce both the number of variables and redundant information.

After conducting a parameter search for how many components would be best for each dependent

variable, modeling was conducted through Cross Validation and Random Forests. The best model

found (through MSE performance) would then be used to make predictions for the Challenge test set.

• Debanjan Datta and Brian J. Goode (bjgoode)
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Our approach to the the Challenge was primarily focused on survey structure and variable construction.

In the former, we recognized when either dropouts would occur or the information would not be

available due to a previous answer. These data were then imputed using the nearest data point in

terms of year, relation, or question type. In the latter strategy, variables were constructed by counting

scale responses forming the Material Hardship, Grit, and GPA outcomes.

• Thomas Davidson (tdavidson)

I initially started by experimenting with all six outcomes and a range of models but decided to focus on

GPA. I used simple heuristics to deal with missingness and identify variable types. I then standardized

continuous variables and one-hot transformed categorical variables. To make predictions I used feed-

forward neural networks, varying the depth, breadth, and activation function used.

• Anna Filippova, Connor Gilroy, Ridhi Kashyap, Antje Kirchner, Allison C. Morgan,

Kivan Polimis, and Adaner Usmani (FormidableFamily)

Recent applications in computer science have sought to incorporate human knowledge into machine

learning methods to address overfitting during prediction tasks, where data sets are incomplete, and

have a high ratio of variables to observations. To address these issues, we implement a “human-in-

the-loop” approach in the Fragile Families Challenge. First, we try several different approaches for

imputing missing responses: mean imputation, regression based approaches, and multiple imputation.

Next, we use surveys to elicit knowledge from experts and laypeople about the importance of different

variables to different outcomes. This strategy gives us the option to subset the data before prediction or

to incorporate human knowledge as scores in prediction models, or both together. We incorporate this

variable information and imputed data into regularized regression models. What we find is that human

intervention is not obviously helpful. Human-informed subsetting reduces predictive performance, and

considered alone, approaches incorporating scores perform marginally worse than approaches which do

not. However, incorporating human knowledge may still improve predictive performance, and future

research should consider new ways of doing so.

• Eaman Jahani (eaman) I worked as an individual member of a group. The group generated a

single pipeline for data cleaning, imputation, and variable transformation which we all used for our

own independent statistical learning step. The group prediction was an ensemble of our individual

model predictions. Our data pipeline first determined which variables are categorical and which are

continuous based on the number of unique values they take. Then it converted all categorical variables

to dummies, including missingness dummies. It also dropped variables with low variance or high rate

of missingness. The final cleaned data had more than 20,000 features. So our individual models
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had to do aggressive feature selection. To reduce the number of features prior to model learning, I

performed univariate feature selection and reduced the number of features to the top most predictive

100, 300, 1000 and 1500 features. Prior to model building and feature selection, I also added various

transformations of the continuous variables, e.g. log or square or square-root, to the data matrix. I

only attempted to predict the continuous variables. My submission used a multi task elastic net which

predicted all dependent variables, GPA, grit and material hardship, at the same time. The multi-

task elastic net could be more efficient in case there is significant correlation between the dependent

variables. The grit prediction came from this multi task model. For GPA, I took the average of two

models. The first model was an elastic net (trained only on GPA) using the top 1500 features selected

first through univariate feature selection. The second model was a random forest regressor on top 1000

features. In both models, features were normalized. Elastic net was also trained on gpa-squared since

this transformation of the dependent variable gave better results. For material hardship, I used an

elastic net on the top 300 features.

• Stephen McKay (the Brit)

Subject specific knowledge was used to identify a long list of those variables most likely to have

associations with the outcomes of interest, including some of the scales available in the survey and

values of the outcomes in earlier waves. Statistical measures (R-squared, MSE, regression coefficients)

were then used, alongside subject expertise, to produce final models from among that list. Continuous

outcomes were modeled using relatively small random forests, and binary outcomes using logistic

regression.

• Allison C. Morgan (amorgan)

We chose only “constructed” variables – those derived from the originally collected data by domain

experts – to train our models on. These observations were more or less complete, meaning the issue

of handling missing data was less relevant for us here. In processing our data, we maintained discrete

categorical variables and turned continuous variables into discrete variables by binning them into

quartiles. This binning was done for later use with a different ML approach that required categorical

variables. In retrospect, it would have been wise to allow our models to learn the appropriate divisions

for a continuous variable. We predicted all outcome variables using a combination of regularized linear

regression (for continuous outcomes) and a random forest (binary outcomes). Results were evaluated

based on our ranking on the leadership board at the time of submission.

• Alex Pentland (Pentlandians)

The Pentlandians submission is an ensemble prediction, where it aggregated four individual sets of
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predictions (i.e., one from elastic net, two by random forest, and another from a GBoost tree). In

particular, the ensemble prediction consists of a weighted team average, in which the weights were

determined by relative ranking on the leaderboard (i.e., the weight vector for the top three performing

predictions for each outcome was given by (1/2, 1/3, 1/6) for first, second, and third, respectively).

Predictions performing worse than 30th on the leaderboard were not included in this averaging.

• Louis Raes (LouisR)

My approach in making predictions was based on a cursory reading of literature on the Fragile Families

and Child Wellbeing study, combined with a lot of trial and error.

• Daniel E. Rigobon (drigobon)

Pre-processing of the data was done by removing features with low-variance, performing one-hot-

encoding on all categorical features, and mean-imputing all missing continuous and ordinal features.

Due to the large amount of covariates produced by this process, a sparse linear regression was run

for each outcome to identify important features. A regularization parameter was selected to ensure

that the regression’s R2 value was close to an ad-hoc value of 0.4. Following feature selection, various

learning algorithms were evaluated on splits of the training data: Principal Components Regression,

Kernel Support Vector Machine, and Random Forest. The Random Forest algorithm consistently had

the best performance for all outcomes. Its’ hyperparameters were selected by cross-validation, and

final predictions were made with the full training set.

• Claudia V. Roberts (chicacvr)

We divided the project into two steps. In step 1, we used a completely automatic approach that does

not consider the data (the norm in data mining) to fit 124 models for GPA prediction. In step 2, we

attempt to improve upon our results. We use a strategy that combines engineering-centric statistical

analysis techniques with classical, more manual social science methodologies: we examined each variable

in the codebook, manually selecting the ones believed to be predictive of academic achievement based

on a non-expert reading of domain-specific research. Results indicate that it in most cases, it pays off

for engineers to “make friends” with the FFCWS codebooks. We were able to improve the predictive

accuracy of 6 of the 10 top step 1 models, of which 4 saw significant improvements. However, manual

variable selection did not improve the predictive ability of the 2 most accurate models from step 1. We

tried many different approaches to data pre-processing. We tried almost all combinations of 4 different

decisions: 2 types of automatic variable selection (F-test and mutual information) using 2 thresholds

(10% and 20%), 2 types of imputation strategies (median and mode), and 2 standardization approaches

(no standardization and standardization).
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• Yoshihiko Suhara (sy)

My approach was training Gradient-boosted Tree models on imputed features without feature selection,

with intensive hyper-parameter search based on Grid Search. The hyperparameter candidates were

manually crafted based on my experience in data science competitions. The approach was fully data-

driven; I made the best use of computation resource for the hyper-parameter search to reduce the risk

of overfitting, and I chose the predictive model that performed best in the cross-validation evaluation.

• Erik H. Wang and Diana M. Stanescu (haixiaow)

Our approach consists of the following steps. First, we do early house-cleaning by dropping variables

with more than 60 percent missing and dropping variables with standard deviation smaller than .01.

Second, we mean-impute the data and perform LASSO regressions of the outcome variables on all

remaining covariates. We then drop any covariate whose coefficient is zero. Third, for the remaining

covariates, we identify their originals (i.e., before mean imputation), and apply multiple-imputation

using Amelia (which employs EM algorithms). We apply LASSO again for variable-selection using the

Amelia-imputed dataset. When applying Amelia, we set M = 5 and pick the third dataset.

• Muna Adem, Andrew Halpern-Manners, Patrick Kaminski, Helge Marahrens, Landon

Schnabel, and Zhi Wang (IU Sociology)

Our approach rests on a combination of social science theory and machine learning methods. We first

developed a theoretically-informed list of variables we expected to be important. We then augmented

this list with highly predictive variables selected by a LASSO regression. All variables in the augmented

list were verified using domain knowledge. Finally, using the complete list, we trained a random forest

regressor / classifier, and tuned its hyperparameters with cross-validation.

• Abdulla Alhajri (alhajri)

Model performance for the leaderboard and holdout sets was determined by looking at the improvement

over the baseline - or relative accuracy improvement.

• Anahit Sargsyan, Areg Karapetyan, Bedoor AlShebli, and Wei Lee Woon (Anahit Sargsyan)

The employed approach resorts to machine learning techniques for devising a predictive model for GPA

with a particular focus on explicability of the results produced when considering the nuanced variations

between subjects. To facilitate the analysis of the data, a number of pre-processing steps were carried

out: (i) all missing and negative values were replaced by NaN and the columns with 0 variance were

removed, (ii) columns with more than 400 NaN values were dropped, (iii) the variant of kNN (k-Nearest

Neighbors) imputation algorithm was leveraged to estimate the NaN values. Next, a manifold of filter-

S45



and wrapper-based methods, including Principal Component Analysis, Ridge regression, Lasso, and

Gradient Boosting Regression, were attempted in search of the most informative feature subset of

reasonable cardinality. These methods were applied to the extracted pool of features, both recursively

and explicitly, and probed under diverse parameter settings. The acquired subsets were then evaluated

for their predictive accuracy across various models trained. The target subset of optimally descrip-

tive features, as revealed by extensive experiments, was obtained by the following means. Feature

importances were estimated by the Extra Trees Regressor algorithm and Randomized Lasso, and the

top 500 features were retained from each. For the latter, two different values were considered for the

regularization parameter, thus resulting in two separate feature subsets. The intersection of these three

subsets, containing 69 features, led to maximized GPA prediction accuracy. More concretely, with the

Random Forest algorithm, a mean squared error of approximately 0.363 was achieved, allowing these

results to be placed in the top quartile of the final FFC scoreboard.

• Redwane Amin (spike slab team)

Before using machine learning techniques to predict the outcomes, preparing the data and selecting

features are crucial steps. In addition to statistical techniques, investing time in analyzing the study

documentation allowed to filter out variables which would have otherwise added noise or led to over-

fitting. Then for each chosen statistical learning method, we tuned hyper-parameters (where applicable)

on the training set using cross validation and evaluated their performance on the held-out validation

set.

• Ryan B Amos and Guanhua He (rbamos)

Our most successful insight was the use of feature selection. We tried a variety of feature selection

techniques, and found k-means to be the most effective technique. We found using 50 clusters provided

the best results, which means most of the data can be well represented by just 50 variables. The most

effective machine learning techniques on the clustered data were elastic net regularization for continuous

outcomes and a support vector machine trained with stochastic gradient descent for discrete outcomes.

We tried a variety of imputation techniques, but ultimately we found that the naive method of imputing

the data to the mode was just as effective as more targeted imputation methods.

• Lisa Argyle (largyle)

I used subject area expertise and hypothesized that income at birth and household income growth

over time would be correlated with the outcome variables, especially layoffs and material hardship. I

conducted basic data cleaning of the predictor variables (child gender, and income/poverty at birth),

and generated a new variable indicating the change in household income from wave 1 to wave 5. I then
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used a linear OLS model to predict the six outcome variables. I imputed the mean value for any case

dropped due to missing data.

• Livia Baer-Bositis (lbb285)

The models to predict each of the six outcome variables were built around the concept that the past

predicts the future. The key explanatory variables were all constructed from data collected in year 9

of the study including a scaled measure of hardship and selected via trial and error.

• Moritz Büchi (mdb)

The first step was to obtain a complete data set using multiple imputation by chained equations.

The variable selected as the outcome was material hardship. The approach in this submission was to

show that a simple linear model may produce smaller mean squared errors than benchmark models

even when the selected predictors are theoretically uninterpretable, pointing to the often opposing

analytical goals of prediction versus explanation.

• Bo-Ryehn Chung and Flora Wang (fw)

Our methods and models were parsimonious in complexity, but still managed to perform higher than

average in at least one outcome. We first removed variables with low variance (mainly those of string

types) to reduce the dataset dimensionality. We then performed median and mode-based imputation

on variables with missing or certain no response codes, as most outcomes were of skewed distributions.

We then evaluated various regularized regression methods that selected important features, and applied

median importance weights to these features with cross-validation for the final model. The elastic net

model with cross validation performed the best based on metrics as MSE and confidence intervals of

the cross validation scores. We made sure to assess the features selected and their coefficients using

literature reviews and the study documentation. Other regularized regression methods either overfit

the data (ridge regression) or did not select enough variables that made intuitive sense (due to the

random nature of LASSO feature selection for correlated variables). We found that the elastic net

model had a good balance of finding correlated variables abundant in our longitudinal dataset and

selecting enough features for the final model.

• William Eggert (weggert)

It was interesting to see that classifying Eviction on the validation set yielded an accuracy of greater

than 90% out of the box; in fact PCA and K-Best feature selection often made the accuracy worse.

Additionally, this challenge was very susceptible to choosing hyperparameters that produced excel-

lent accuracy, but trivial results (e.g. predicting GPA but only producing middle-of-the-road GPAs).
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Therefore, careful feature space reduction is of utmost importance. Voting classifiers were the most

robust against this pitfall. However, a Gaussian Mixture Model Process served to be the most promis-

ing avenue for worthwhile results. A combination of domain-expert collaboration to reduce the feature

space, with a GMM, is predicted to produce the best results.

• Gregory Faletto (greg.faletto)

I only trained models for the continuous responses. I relied on the constructed variables. I trained

a lasso model and a principal components model on each continuous response. For the lasso model,

I chose the tuning/penalty parameter by cross-validation. For the principal components regression,

I chose the number of principal components to include by cross-validation. Finally, I chose which of

these models to use by comparing the mean squared error of each model.

• Zhilin Fan (ADSgrp5)

Given all the background data from birth to year 9 and some training data from year 15, we infer six

key outcomes (GPA, grit, material hardship, eviction, layoff, job training) in the year 15 test data.

In the data cleaning process, we deal with categorical variable and continuous variables separately,

for continuous variable, we replace the NA with the median value of that variable, and create a new

categorical variable to indicate the NAs (where the NAs may contain information to some degree),

attach the new indicating categorical variable to the original categorical features. For categorical

features, we replace the NAs with a number that doesn’t exist in original data set and transform every

categorical to a dummy matrix, for every dummy matrix whose elements are either 0 or 1, we choose

the 2nd to last column to avoid col-linearity. Given the cleaned data, our team work on different

directions, one team work on different features and one team work on different machine learning tools,

since we got to know the xgboost apparently outperforms other methods, we together work on features

selected from various angles. For case 1: data obtained when children are at age 9 and only consider

the continuous variables. Case 2: data obtained when children are at age 9, use categorical variables.

Then we bag them by using the weighted average. We use the same strategy to other continuous

outcomes (grit, material hardship).

• Jeremy Freese (jeremyfreese)

I did two things. More seriously but less time-consumingly, I just fit models that seemed to make

some intuitive sense to me as models. I did not do anything fancy here, nor did I have any illusions

that these would rise to the top, but I was using the challenge for pedagogical purposes. Also, as a

lark, I played around with generating a bunch of prediction sets with small differences and seeing if I

could infer the values of outcomes in the quiz set. This worked for the rare outcome. I thought this
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might provide some great advantage–basically it would allow me to generate predictions using both

the testing + quiz set–but after the challenge I was informed by MS that there was something that

they had done (I forget exactly what) that thwarted this strategy.

• Josh Gagné (jgagne)

GLM with mean imputation and predictions shrunk toward the training set mean.

• Sonia P. Hashim and Viola Mocz (shashim)

We worked as a team to predict gpa, grit, and materialHardship. We experimented with multiple

models, using ordinary linear regression, lasso regression and ridge regression after conducting imputa-

tion, feature engineering, and feature selection on the expanded feature set. To impute missing values,

we tested median single imputation, K-Nearest Neighbors single imputation, and multiple imputation

using the Amelia package in R. Also, if there were columns with one value in addition to NA we

converted these into binary variables where 0 indicated missing data and 1 indicated present data. We

engineered features by taking the mean of matching inputs and by using maximum pooling in order

to combine features using similar questions asked across years. We also conducted feature selection

by removing features with a low frequency of observations and low variance, features that were highly

correlated with each other, and features with low random forest importance. Five-fold cross-validation

was used to evaluate the efficacy of our models on the available training data. Our final submission

used ordinary linear regression with median imputation, missing data indicators, engineered features,

and feature selection using variance.

• Sonia Hausen (shausen)

I cleaned and recoded the data, experimenting with all 6 outcomes using OLS and logit. Coming from

a sociology background and studying well-being, I looked for an all-encompassing variable, like overall

life satisfaction, which would capture many of the other variables within it (like abuse, income, job

status, mental health etc.). I hypothesized that the variable “mother’s overall life satisfaction at year 9,

self-reported” might be a good predictor given the strong influence mothers have on child outcomes. I

used MSE performance on the leaderboard as a guide; my best performing models included the variable

mom sat.

• Kimberly Higuera (khiguera)

Initially, I started by focusing on how long seeded childhood characteristics could predict long term

outcomes by using low birth weight as the main dependent variable. I had attended a talk on low

birthweight and it’s links to test scores when I was undergraduate and I wanted to investigate whether
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the link was robust with the fragile family data. When the link based on the coefficients and t scores

did not seem statistically or socially significant across different model types and different covariates

and outcomes, I decided to shift into looking at factors that were arguably even more deeply seeded

than birthweight: mother’s characteristics. I considered these more deeply seeded because they existed

before the birth and also because they had long term interaction and thus potential long term effects

on the respondents. Plus mothers seem much more impactful in that they are seem less likely to be

missing from the raising of a child than a father. Following that I ended up looking at how mother’s

characteristics affected the likelihood of getting laid off.

• Ilana M. Horwitz (ihorwitz)

I looked at all 6 outcomes. Based on my prior knowledge, I chose the following explanatory variables:

whether the mother received welfare, the length of time the mother looked for a job, whether the home

had peeling paint, frequency of drinking alcohol, the father’s influence on school, a child’s sense of

belonging in school, and whether the child saw his father in the last year. In some cases, I converted

the variable into a binary outcome. The explanatory variable I used varied based on the outcome of

interest. I then ran logits and OLS models to predict outcomes.

• Lisa M. Hummel (Bumblebee2023)

I relied on knowledge from sociology and psychology about what factors impact outcomes for children

and families and attempted to capture those in the models to predict the results.

• Naman Jain and Ahmed Musse (amusse)

In this work we build machine learning models to predict the 6 key outcomes in the children’s develop-

ment: GPA, grit, material hardship, eviction, layoffs, and job training. We first imputed the missing

values from the survey by replacing the missing values with the mode for that category. Then, to pre-

dict the 3 binary outcomes, we performed chi-squared feature selection to get the 1000 best features.

We use various binary classifiers such as Logistic Regression, K-nearest neighbors, Random Forest and

other ensemble methods to predict eviction, layoffs and job training. For these outcomes, we found

a tuned Random Forest Classifier to perform best given its ensemble nature and enhanced ability to

restrict over-fitting. To predict the 3 continuous outcomes, we first did chi-squared feature selection to

get the 1000 best features. To predict GPA, grit and material hardship, we conduct Support Vector,

Lasso, Ridge and Gaussian Process regressions. Here, the simplicity (and run-time efficiency) of Lasso

regression and its in-built ability to conduct model selection made it the preferred method. Our re-

sults corroborate past research showing that children in stable two parent households fare better but

establish correlations with more novel features as well. We see that housing conditions in early years
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especially in years 1, 3 and 5 after birth are particularly predictive for all 6 outcomes. Therefore, an

appropriate policy response might be to focus efforts to promote better access to housing for families

with young children.

• Kun Jin and Xiafei Wang (aprilfeifei)

We worked as a group. During the data pre-processing, we deleted variables with 70% missing values

and imputed the missing values of the rest variables with the mean value. For our best model, we

conducted lasso regression with L1 regularization upon 4574 variables for all six outcomes to select

features. To be specific, we first obtained the coefficients of the regression model using 5-fold cross-

validation and the elastic method with α = 0.5; further determined the largest regularization coefficients

such that the mean saqured error (MSE) is within one standard error of the minimum MSE; finally,

corresponding features with larger coefficients are selected and used to train the regression model.

Feature normalization by scaling was followed by feature selection. Prior to our final model, we also

fit linear regression, SVM and Linear Discriminant Analysis model, but neither of them yielded better

results than lasso regression.

• David Jurgens (davidj)

My approach used a Random Forest (RF) classifier for categorical attributes and RF regressor for

numeric attributes. All categorical features were one-hot encoded. During the initial design phase,

I tested using PCA and SVD transformations of the features, which worsened performance and were

left out of the final model. Similarly, I also examined using mean-value imputation of missing data,

which also led to worse performance with the RF models. Both design choices were tested using 5-

fold cross-validation within the training data. Since the categorical tasks had imbalanced numbers

of instances for each label, I used SMOTE to oversample rare classes using synthetic instances until

all classes had an equal number of instances. This oversampling lowered the error in all of my cross-

validation tests on the training data. Finally, I optimized the hyperparameters of the model using

a sweep across multiple values; ultimately, the only two hyperparameters that substantially affected

performance was the minimum number of instances per leaf in the decision tree and the total number

of decision trees. Ultimately, I chose a minimum of 10 instances per the leaf, which I suspect prevents

the model from overfitting by identifying more robust predictors that apply to multiple subjects, and

an unnecessarily-large number of trees (10,000) to account for the large number of possible feature

combinations.

• E. H. Kim (ehk02004)

Matthew Desmond, according to his talk on his book Eviction, argued that having children was posi-
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tively related to being evicted, implying that the disruptiveness/chaos that comes with having children

and the inherent lack of calm in the household was responsible for a family being evicted. As such,

in addition to looking at how ratings of how calm the atmosphere of the house is when the child is

9, I include an index variable of the child exhibiting appropriate behavior at age 9 (as our continuous

variable) and I include the binary variable for whether or not a childÍs behavioral/social problems was

discussed with the teacher during the last school year when the child is 9, as both seemed likely to shed

light on the disruptiveness/chaos in the household that might be affiliated with eviction. In addition,

it was assumed that the father’s race (thinking of race literature), the mother’s age at childbirth, and

how often the children had a tendency to move were affiliated with layoff - the latter variables included

based off of intuitive assumptions.

• Ben Leizman and Catherine Wu (bleizman)

In this dataset, we imputed values for missing data by using the feature’s highest frequency positive

value and then normalized all values. We created datasets for each of the six outcomes, using only

sample where the outcome is not NA. We reduced the feature set of each dataset from 12,805 to 100

using mutual information-based feature selection. To predict continuous outcomes such as GPA, Grit,

and Material Hardship, we trained LASSO, Ridge, and Elastic Net regression models. To predict

categorical outcomes such as Job Layoff, Job Training, and Eviction, we trained Ridge, K-Nearest

Neighbors, and Multi-layer Perceptron classification models. We used default hyperparameters and

selected an optimal model using k-fold cross validation. The regression models were evaluated on

mean squared error and R2, while the classification models were evaluated on precision, recall, and F1

score.

• Naijia Liu (NaijiaLiu)

We developed an iterative feature selection method using Ridge regression.

• Andrew E. Mack (aemack)

We trained random forest, gradient boosting and LASSO regression models using various hyper-

parameters. We also used F-statistics to screen variables, with the number of variables used counting

as an additional hyper-parameter. In total, we had 9 potential models for each outcome. For each of

the 6 outcomes, we selected the best model using 10-fold cross-validation.

• Mayank Mahajan (kapoor)

Feature selection was performed using a combination of randomized LASSO and RFE algorithms. For

the continuous variable outcomes, OLS, ridge regression, LASSO, and Elastic Net models were all
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tested for their training and test accuracy for predicting grit, GPA, and material hardship. For the

binary outcomes, regularized logistic regression, AdaBoost regression, and Multinomial NB classifers

were tested for their classification accuracy.

• Noah Mandell (nmandell)

For a dataset as large and raw as this one, how the data is processed and cleaned can be crucial.

We immediately dropped all feature columns with zero variance, along with any column containing

strings. We also dropped columns with more than 30% of the data missing. This reduces the number

of columns significantly, but it also reduces the ratio of missing to non-missing data, which is the goal

of this step. We choose the threshold of 30% missing per column because this produces a dataset

with only 20% of the data missing across all columns. We then attempted to distinguish categorical

variables from continuous ones by noting that the numerical coding for the categorical variables used

only integers and did not use values in the range 20-99. This resulted in 90% of the variables being

labeled categorical. We then used a one-hot encoding for the categorical data, and we filtered out

one-hot-encoded columns with low variance. We then used Ridge regression to simultaneously predict

all six outcomes. We used a nested cross-validation procedure, with an inner cross-validation loop for

fitting hyper-parameters, and an outer loop for evaluating model performance.

• Malte Möser (malte)

For preprocessing, I removed highly correlated features as well as those with low variance. Then, I

added indicator variables for questions that were skipped or where the respondents refused to answer.

I imputed all missing values in the dataset, with mean imputation for numerical features and mode

imputation for categorical features, and standardized the numerical features. For prediction, I used a

generalized linear model as provided by the R package ‘glmnet‘, with hyperparameter tuning based on

repeated cross-validation using the R package ‘caret‘.

• Katariina Mueller-Gastell (katamg)

I used existing sociological theory to identify features that would plausibly be correlated with other

parental characteristics. I then included these features in simple OLS and logit models, taking care

not to overfit the training data by using my own train/test split. For example, I found that whether

the mother had breastfed any of her children was a fairly good predictor of child outcomes.

• Qiankun Niu and Kengran Yang (hty)

In this project, we first explored the data from the survey with large feature sets. We observed that there

are many missing values in the data so we first cleaned the data according to missing value, constant
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values and perfect co-linearity. Then we explored different imputation methods. After cleaning and

imputing the data, we adopted various regression and classification methods and chose random forest

due to the high dimensionality and complexity of variable relationship.

• William Nowak (wnowak)

Built ensemble models using only independent features from mother, father, and other individual

contributors.

• Hamidreza Omidvar (hamidrezaomidvar)

First we used MICE imputation method to fill missing data. In the next step, we calculated the

correlation of all features for each outcome. After this step, we selected top correlated features (either

negative or positive correlation) as the main features. Finally, we used linear (for continuities outputs)

and logistic (for binary outputs) regressions to predict the outputs.

• Karen Ouyang and Julia Wang (kouyang)

At the time of our submission, the Fragile Families dataset was the largest and sparsest with which

we had worked, so we focused on sanitizing the dataset and engineering useful features. In addition to

imputing missing data, we iteratively tested different Pearson correlation coefficient thresholds to select

features. Of the six models that we trained and tuned, the elastic net regression model consistently

made the most accurate predictions.

• Katy M. Pinto (Katy P)

In the submissions, my approach to the Challenge was to focus on established relationships between

variables to create models for the six outcomes based on prior research. I focused mainly on constructed

variables. I focused on parental background (e.g. parent’s education, race/ethnicity), household struc-

ture (e.g. marital status, income, number of children) and child’s individual characteristics (e.g hours

spent on homework, gifted) as predictors of GPA, Grit, Material Hardship, Eviction, Job Loss, and

Job Training. The attempts included OLS for the continuous outcome variables, logistic regression for

the binary outcome variables. I attempted one multiple imputation technique that did not provide

better fit in my model compared to recoding missing variables to mean/median/mode and including

a flag for missing in models. In the end, the final models submitted were much simpler in approach,

compared to some of the early models I attempted with more predictor variables. I also compared my

submissions based on the leadership board and the simpler models with fewer predictors seemed to

perform better than models I submitted with more predictors.

• Ethan Porter (lennyc)
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I only included variables for which I had a substantive reason to believe might affect the outcome.

• Kristin E. Porter and Tejomay Gadgil (mdrc)

MDRC applied several analytic steps in our predictive analytics framework to the Fragile Families

Challenge (FFC). Those focused on data processing, creating and curating measures, and modeling

methods. The following describes the underlying premises that guided our analyses: (1) Invest deeply in

measure creation, combining both substantive knowledge and automated approaches. (2) “Missingness”

is informative and should not be “imputed away.” (3) Eliminate unhelpful measures (those with very

little variation, those that are redundant and those that did not apply to the primary care giver). (4)

Evaluate “learners” based on out-of-sample performance, using cross-validation. In MDRC’s predictive

analytics framework, we define a “learner” as some combination of (a) a set of predictors, (b) a modeling

method or machine learning algorithm, and (c) any tuning parameters for the corresponding machine

learning algorithm. (5) Combine results from different learners with ensemble learning.

• Crystal Qian and Jonathan D. Tang (cjqian)

We preprocessed the Fragile Families data through pruning based on answer ratio (i.e., features that

were missing more often were regarded as less important) and mapping all string-based features to

integers to make them suitable for regression. We performed imputation by training a regressor on

the labeled data, with no missing values, assigned to corresponding training classes. To address and

take advantage of data sparsity (approx. 17% of cells in the dataframe were empty), we eliminated

approximately 25% of the 13,000 features that had the lowest ratio of non-NA responses to total re-

sponses, encoded string responses, and used mean value/regression-based imputation to further prune

NA responses. Afterwards, we used it to predict the missing values within the training set, as well

as predicting the values for the entirety of the test classes. We concatenated the now-filled training

classes and test classes, making a final prediction array. Then, we applied regression-based predic-

tion techniques (LASSO, etc) for both the discrete and continuous predictors, in part incentivised by

Brier score leaderboard scoring. We tested various regressors, including Lasso, Lasso with Least An-

gle Regression, Elastic net, and Ridge regression, for effectiveness in predicting GPA, Grit, Material

Hardship, Eviction, Layoff, and Job Training. We did k-folds cross validation (k=5) in order to locally

evaluate our different models. Ultimately, we found that Lasso regression performed the best for us

on this dataset (the questions asked in this study could be highly correlated, explaining the success

of Lasso regression). Using imputation in order to generate our own value-completed training data

was extremely helpful. Interestingly, the three most predictive features to our models included the

questions, “In past year, you shouted, yelled, or screamed at child.”, “Is there someone you could
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count on to co-sign bank loan for $5000?”, and “There were problems with neighborhood safety.”

• Tamkinat Rauf (Tamkinat)

I predicted GPA, grit, material hardship, eviction, job training, and layoff. I drew on past research

for initially selecting predictors, and then used MSE as well as leaderboard positions to tweak my

models. In general, I used the most parsimonious models possible. I used logit models for binary

outcomes and OLS for continuous outcomes. My participation in the Fragile Families Challenge was

part of an exercise for a statistical methods course. While I independently conducted and submitted

my predictions, this was really a joint effort with my professor, Jeremy Freese, and 15 other colleagues

who took the course. We shared code for constructing variables and frequently discussed our modeling

strategies.

• Thomas Schaffner and Andrew Or (t.f.schaffner and andrewor)

This submission consists of work by two participants. We evaluated multiple data imputation strategies

and predictive models, learning predictors for each outcome variable separately. After evaluating

several indicative measurements (R2, MSE, precision, recall, accuracy, and F1 scores), we selected an

imputation strategy that replaced missing data and removed string-valued variables in conjunction

with random forest predictors. We then programmatically tuned the random forest hyperparameters

to arrive at our final predictions.

• Landon Schnabel (lpschnab)

I produced individual predictions and also worked with a group (the IU Sociology team). Initially, I

developed more complex models using a large number of variables driven largely by what seemed to

matter in the training data. I ultimately decided, however, to use a simpler and more theoretically-

driven approach with just a few variables and basic methods. In my final submission, I used just the

following variables and linear regression to predict GPA: parental education at baseline, the child’s

earlier score on a Woodcock-Johnson test, and the child’s earlier grit.

• Bryan Schonfeld (signoret)

We read through the literature to find substantively important variables. We divided the data into

a test set and training set, and used a variety of regression and statistical learning tools (logistic

regression, linear regression, LASSO, etc) to find the best predictors.

• Ben Sender (sender)

Our study leveraged seven prediction models: Linear Regression, Lasso Regression, Ridge Regression,

Logistic Regression, Random Forest, Neural Network, and Naive Bayes. We imputed missing features
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using the mode from other years, and selected features for each outcome using chi-squared. To tune

and evaluate the models we created a test set with 10% of the families from the original training set.

We evaluated binary models based on accuracy, and continuous models on mean squared error and

R-squared. The results for our test set were similar to the results for our Fragile Families submission.

• Emma Tsurkov (ETsurkov)

My approach to the Fragile Families Challenge was based on utilizing my background in law to try

and create parsimonious but effective model, focusing on the eviction outcome. Although eviction is a

mostly exogenous shock, I wanted to examine it as an outcome of an institutional process. Eviction,

more than the other outcomes in the Fragile Families Challenge is a result of legal action. Accordingly,

I have conducted research into eviction law. I found that smoking is prohibited in public housing

and that smoking even inside one’s housing unit without causing a fire or any damage can serve as

grounds for eviction. Additionally, I found that many states and localities have strict anti-smoking

laws in multi-unit buildings, and that even if there is no law prohibiting smoking in the unit, landlords

can prohibit smoking and use smoking as grounds for eviction. This led me to believe that mother’s

smoking, might be a good predictor of eviction, whether as a genuine reason or a pretext used by

landlords trying to remove undesirable tenants. I tested different model specifications and chose the

best performing model, with basic covariates of the mother’s education and race.

• Austin van Loon (Alpaca CultureAsAWoolkit)

I used background knowledge to select a small set of variables that seemed likely to matter for the

outcomes. I would iteratively (a) predict missing values of the dependent variable using my set of

variables (b) find which of the remaining independent variables had the most missing values (c) remove

that variable from my set of variables and (d) repeat.

• Onur Varol (ovarol)

My approach consists of feature categorization and model selection. First, I parsed all codebooks to

extract information about the panel, survey respondents, and keyword-based labels. Later I selected

different feature groups and evaluated their performance on cross-validated random-forest models.

Both feature imputation and filtering missing values are tested, and removal of the missing values are

performed for all of the analysis. Features having high importance score and models having success on

the leaderboard kept for the next iteration of model construction.

• Samantha Weissman (samantha malte)

We took a systematic approach towards identifying relevant features for predicting outcomes in the
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Fragile Families Challenge, using a combination of imputation, feature selection, and cross-validated

model selection. To impute the data we code skipped and refused answers through new binary feature

vectors, replaced categorical values with the mode and numerical values with the mean of each feature,

removed low variance and highly correlated features (based on Spearman correlation), converted all

categorical values into indicator variables and scaled continuous variables to have a mean of 0 and unit

variance. To further reduce the dimensionality of the data we used Lasso regression and elastic net

regression with cross-validation to find the best hyperparameters, as well as cross-validated recursive

feature elimination (RFE) based on a support vector machine with a linear kernel and a step size of 5.

We implemented 5 different classifiers and regressors (AdaBoost, Gaussian Process, Linear regression,

random forest, and SVM). Finally for cross-validation and hyperparameter tuning we employed different

techniques per classifier/regressor, including 10-fold cross-validation and grid search, and evaluate both

a linear and a Gaussian kernel.

• Yue Gao, Jingwen Yin and Chenyun Zhu (aurora1994)

We first solved the missing data issue by making NA a special level in categorical features and imputing

the missing value with median in continuous features. After data cleaning and missing data imputing,

we separated the features into categorical variables and continuous variables. We used random forest

based feature selection method to select a few significant features for each outcome. We used Boruta

Package to conduct feature selection which works as wrapper algorithm around Random Forest. Various

machine learning algorithms were evaluated based on the selected features and the best algorithm for

each outcome was selected using MSE. We tried a series of models including linear regression, full

tree, pruned tree, random forest, conditional inference trees, stochastic gradient boosting, support

vector machine, linear bagging, ensemble linear regression and random forest, ensemble support vector

and random forest, linear discriminant analysis, C5.0, and KNN. Based on the root mean squared

error metric for continuous outcome variables and accuracy metric for binary outcome variables, we

predicted the final results by using random forest for GPA, eviction, job training, using stochastic

gradient boosting for grit, material hardship, and doing LDA for layoff. Finally we retrained the

models using full dataset and submitted to the leaderboard.

• Bingyu Zhao, Kirstie Whitaker, Maria K Wolters, and Bernie Hogan (bz247)

The submission of our team adopted a few simple steps to make predictions. First, basic data cleaning

was carried out, which involved selecting only the continuous variables as the predictors (removing all

categorical variables), imputing the empty entries by the mean and removing constant (0 variance)

columns. This left 1,771 variables remaining in the dataset. In the second step, Principle Component
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Analysis was conducted and the top 50 principle components were kept as the model covariates. In

the last step, multi-variable linear regression was used to model the continuous dependent variables

and logistic regression to model the binary outcomes. In the end, our submission performed better

than the benchmark data in two out of the six outcome variables, including the material hardship and

GPA, while both are continuous outcomes.
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S5 Specificity and generality of the Fragile Families Challenge

The predictability of life outcomes observed in the Fragile Families Challenge is specific to this prediction

task. We expect that predictability would have been higher if the Fragile Families study had 1) more families,

2) more predictors, 3) less measurement error, or 4) data in a format that was easier to use [15]. Likewise, we

expect that predictability would have been lower if the Fragile Families study had 1) fewer families, 2) fewer

predictors, 3) more measurement error, or 4) data in a format that was harder to use. We do not know the

size of the changes that would be needed to produce a qualitative change in predictability. Further, these

same four issues would arise, in varying degrees, in research using any high-quality, longitudinal survey data,

because these studies all use similar data collection techniques and face similar budget constraints.

Despite the broad similarity between the Fragile Families study and other longitudinal survey studies,

we speculate that two specific features of the Fragile Families study may lead to lower predictability: study

timing and study population. Three aspects of timing may decrease predictability: the six year gap between

waves 5 and 6, a large social disruption (the Great Recession [10]) during this gap, and the collection of

wave 6 data when the child was 15 years old, which may be a particularly turbulent time for children and

families. Further, the Fragile Families study population—a largely urban and disadvantaged group living in

the contemporary United States—may have more unpredictable lives than other groups.

In addition to the characteristics of the Fragile Families study, the results of the Challenge may also

depend in part on the decisions we made when designing the prediction task. For example, it is possible

that the results of the Challenge would have been qualitatively different if we selected different outcomes

from wave 6 (age 15). In fact, we did observe that some outcomes (e.g., material hardship and GPA) were

more predictable than others (e.g., grit, eviction, job training, layoff). It is also possible that the results

of the Challenge would have been qualitatively different if we picked a different evaluation metric [13] or if

we made different decisions in our privacy and ethics audit [18]. Ultimately, we think that these and other

questions about the specificity and generality of the results of the Challenge are important questions for

future empirical research.
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S6 Fragile Families Challenge provides building blocks for future

research

The open-sourced submissions to the Challenge provide important building blocks for future research about

the predictability of life outcomes. Here we sketch just two examples of such research.

First, researchers may wonder whether the results of the Challenge would have been qualitatively

different if we selected different outcomes from wave 6 (age 15), if we picked a different evaluation metric

[13], or if we made different decisions in our privacy and ethics audit [18] (see Sec. S5). These questions

could be addressed empirically by re-purposing participants’ code and techniques to predict all outcomes in

wave 6 (age 15). Further, this analysis could be expanded to include predictors we chose not to share in the

context of a mass collaboration for privacy reasons (e.g., geographic information) [18].

In addition to establishing robustness to our design choices, the submissions to the Challenge can also

be used to focus the search for important, unmeasured predictors. The predictions made by each team can

be used to identify families that are especially difficult to predict, given existing data and methods (Eq. S7 in

Sec. S3). Researchers can then conduct in-depth interviews with these especially difficult-to-predict families

in order to search for important variables that if collected might improve predictive performance [26]. These

examples provide just two ways that we imagine that the open-sourced submissions can be used to advance

future research on the predictability of life outcomes.
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S7 Computing environment

The results in this paper were generated by code written in R (v 3.5.1) [21] using a number of packages:

Amelia (v 1.7.4) [14], broom (v 0.4.2) [23], corrr (v 0.4.0) [24], dplyr (v 0.8.3) [35], forcats (v 0.4.0) [34],

foreach (v 1.4.3) [1], foreign (v 0.8.67) [20], ggplot2 (v 2.2.1.9000) [30], ggridges (v 0.4.1) [39], grid (v

3.3.3) [21], gridExtra (v 2.2.1) [2], haven (v 1.1.0) [38], here (v 0.1) [19], magrittr (v 1.5) [3], mvtnorm (v

1.0.6) [11], quadprog (v 1.5.5) [28], ranger (v 0.9.0) [41], readr (v 1.1.1) [37], readstata13 (v 0.8.5) [9],

reshape2 (v 1.4.3) [29], scales (v 0.5.0) [31], stargazer (v 5.2) [12], stringr (v 1.2.0) [32], tidyr (v 0.7.2)

[36], tidytext (v 0.1.7) [27], tidyverse (v 1.2.1) [33].

Automated function extraction from code submissions was performed in Python 3 using the Pyg-

ments (http://pygments.org/) syntax highlighting library and the rpy2 (https://rpy2.readthedocs.io/

en/version_2.8.x/) package. Computations were done on a machine running Mac OSX 10.13.3.
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S8 Author information

S8.1 Authorship

We offered participants in the Fragile Families Challenge two opportunities to publish their results based on

an authorship policy set at the beginning of the Challenge. First, two us (Salganik and McLanahan) were

guest editors of a Special Collection of the journal Socius where all participants could submit a manuscript

describing their approach to the Challenge. These manuscripts were all peer-reviewed and evaluated indepen-

dently of the predictive performance of the approach they described. Second, we promised participants who

made a meaningful contribution to the Challenge that they would have the opportunity to be a co-author

of this paper, if they wished. We operationalized this promise by offering co-authorship to participants if

they were part of an account that made a qualifying submission for one or more outcomes. There were 115

such accounts, and these are the accounts that are presented in Figure 4 of the main text. Participants who

wished to be a co-author needed to fill out an online feedback form that collected information about their

submission and their overall assessment of the manuscript. The online feedback form also offered participants

the opportunity to upload detailed feedback about the manuscript.

Our outreach to the participants in the Challenge about co-authorship of this paper proceeded in

two stages. In the first stage, we invited all 31 authors of papers in the Socius Special Collection to be

co-authors of this paper. All of these authors were part of an account that made a qualifying submission.

25 authors representing 16 accounts initially agreed and completed the feedback form. For the 6 authors

that did not respond, we sent them one or more follow-up emails as part of the second stage of outreach

(described more below). Of these 6, 2 completed the feedback form, and 4 did not respond.

In the second stage, we invited all other participants. Because the application process and the

Challenge scoring process were run on different platforms (Google Forms, Qualtrics, and CodaLab), we do

not have a precise mapping between participants and accounts. Further, for each submission, we do not

have a list of all participants who created the submission (we began asking for this information in the middle

of the Challenge). Therefore, we emailed all 429 applicants who were not authors of papers in the Socius

Special Collection, and we offered them a chance to be a co-author of this paper if they contributed to the

submission from one of the qualifying accounts. Of these emails, 55 bounced back to us, and we attempted

to reach these participants through other means (e.g., other email addresses, social media, former employers,

etc.). We received 77 completed feedback forms by the deadline in our email. We also received a number of

other kinds of responses: 8 people responded that they did not wish to be a co-author; 14 responded that

they were not eligible to be co-authors; 1 was deceased; 7 responded to our email in some way but did not
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complete the feedback form (e.g., asking a question). We sent a follow-up message to 332 participants (those

that responded in some way but did not complete the form or those that did not respond) with an extended

deadline. In response to the follow-up emails, we received 18 additional completed feedback forms. Of the

92 completed responses3 to the feedback form in the second stage, 75 responses corresponded to one of the

qualifying accounts. These 75 responses cover 53 accounts. Some of the invalid responses on the feedback

form were caused by participants associated with accounts that did not qualify and some were caused by a

coding error on our part that led us to initially use an incorrect (and overly large) list of qualifying accounts.

Overall, across both stages, we received feedback from 100 co-authors describing 69 accounts.

During this process of inviting co-authors, we also identified 5 people who contributed to a submis-

sion, but for whom we do not have a record of them applying for data access. This could occur for a variety

of reasons, such as participating in a large team (which might not require direct data access) or an error in

our records. We investigated these 5 cases and found that in each case, the co-author participated as part of

a team with at least one other person who had applied for and been granted data access. Further, in each

case, we would have granted data access if the person had applied. We emailed these co-authors with an

update about this situation and explained the reasons behind our application process.

3This count excludes 2 opt-outs and 1 erroneous submission.
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