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C O M P U T E R  S C I E N C E

AI Feynman: A physics-inspired method for  
symbolic regression
Silviu-Marian Udrescu1 and Max Tegmark1,2*

A core challenge for both physics and artificial intelligence (AI) is symbolic regression: finding a symbolic expression 
that matches data from an unknown function. Although this problem is likely to be NP-hard in principle, functions 
of practical interest often exhibit symmetries, separability, compositionality, and other simplifying properties. In 
this spirit, we develop a recursive multidimensional symbolic regression algorithm that combines neural network 
fitting with a suite of physics-inspired techniques. We apply it to 100 equations from the Feynman Lectures on Physics, 
and it discovers all of them, while previous publicly available software cracks only 71; for a more difficult physics-
based test set, we improve the state-of-the-art success rate from 15 to 90%.

INTRODUCTION
In 1601, Johannes Kepler got access to the world’s best data tables 
on planetary orbits, and after 4 years and about 40 failed attempts to 
fit the Mars data to various ovoid shapes, he launched a scientific 
revolution by discovering that Mars’ orbit was an ellipse (1). This 
was an example of symbolic regression: discovering a symbolic ex-
pression that accurately matches a given dataset. More specifically, 
we are given a table of numbers, whose rows are of the form {x1,…, 
xn, y} where y = f(x1, …, xn), and our task is to discover the correct 
symbolic expression for the unknown mystery function f, optionally 
including the complication of noise.

Growing datasets have motivated attempts to automate such 
regression tasks, with notable success. For the special case where the 
unknown function f is a linear combination of known functions 
of {x1, …, xn}, symbolic regression reduces to simply solving a system 
of linear equations. Linear regression (where f is simply an affine 
function) is ubiquitous in the scientific literature, from finance to 
psychology. The case where f is a linear combination of monomials 
in {x1, …, xn} corresponds to linear regression with interaction terms, 
and to polynomial fitting more generally. There are countless other 
examples of popular regression functions that are linear combina-
tions of known functions, ranging from Fourier expansions to wavelet 
transforms. Despite these successes with special cases, the general 
symbolic regression problem remains unsolved, and it is easy to see 
why: If we encode functions as strings of symbols, then the number 
of such strings grows exponentially with string length, so if we simply 
test all strings by increasing length, it may take longer than the age 
of our universe until we get to the function we are looking for.

This combinatorial challenge of an exponentially large search 
space characterizes many famous classes of problems, from code 
breaking and Rubik’s cube to the natural selection problem of find-
ing those genetic codes that produce the most evolutionarily fit or-
ganisms. This has motivated genetic algorithms (2, 3) for targeted 
searches in exponentially large spaces, which replace the above-
mentioned brute-force search by biology-inspired strategies of 
mutation, selection, inheritance, and recombination; crudely speak-
ing, the role of genes is played by useful symbol strings that may 

form part of the sought-after formula or program. Such algorithms 
have been successfully applied to areas ranging from design of 
antennas (4, 5) and vehicles (6) to wireless routing (7), vehicle routing 
(8), robot navigation (9), code breaking (10), discovering partial 
differential equations (11), investment strategy (12), marketing (13), 
classification (14), Rubik’s cube (15), program synthesis (16), and 
metabolic networks (17).

The symbolic regression problem for mathematical functions 
(the focus of this paper) has been tackled with a variety of methods 
(18–20), including sparse regression (21–24) and genetic algorithms 
(25, 26). By far, the most successful of these is, as we will see in 
Results, the genetic algorithm outlined in (27) and implemented in 
the commercial Eureqa software (26).

The purpose of this paper was to further improve on this state of 
the art, using physics-inspired strategies enabled by neural networks. 
Our most important contribution is using neural networks to dis-
cover hidden simplicity such as symmetry or separability in the 
mystery data, which enables us to recursively break harder problems 
into simpler ones with fewer variables.

The rest of this paper is organized as follows. In Results, we present 
the results of applying our algorithm, which recursively combines 
six strategies, finding major improvements over the state-of-the-art 
Eureqa algorithm. In Discussion, we summarize our conclusions and 
discuss opportunities for further progress.

RESULTS
In this section, we present our results and the algorithm by which 
they were obtained.

Overall algorithm
Generic functions f(x1, …, xn) are extremely complicated and near 
impossible for symbolic regression to discover. However, functions 
appearing in physics and many other scientific applications often 
have some of the following simplifying properties that make them 
easier to discover:

(1) Units: f and the variables upon which it depends have known 
physical units.

(2) Low-order polynomial: f (or part thereof) is a polynomial of 
low degree.

(3) Compositionality: f is a composition of a small set of elementary 
functions, each typically taking no more than two arguments.
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(4) Smoothness: f is continuous and perhaps even analytic in 
its domain.

(5) Symmetry: f exhibits translational, rotational, or scaling sym-
metry with respect to some of its variables.

(6) Separability: f can be written as a sum or product of two parts 
with no variables in common.

The question of why these properties are common remains contro-
versial and not fully understood (28, 29). However, as we will see 
below, this does not prevent us from discovering and exploiting these 
properties to facilitate symbolic regression.

Property (1) enables dimensional analysis, which often transforms 
the problem into a simpler one with fewer independent variables. 
Property (2) enables polynomial fitting, which quickly solves the 
problem by solving a system of linear equations to determine the 
polynomial coefficients. Property (3) enables f to be represented as 
a parse tree with a small number of node types, sometimes enabling 
f or a subexpression to be found via a brute-force search. Property 
(4) enables approximating f using a feed-forward neural network 
with a smooth activation function. Property (5) can be confirmed 
using said neural network and enables the problem to be transformed 
into a simpler one with one independent variable less (or even fewer 
for n > 2 rotational symmetry). Property (6) can be confirmed using 
said neural network and enables the independent variables to be parti-
tioned into two disjoint sets and the problem to be transformed into 
two simpler ones, each involving the variables from one of these sets.

The overall algorithm (available at https://github.com/SJ001/
AI-Feynman) is schematically illustrated in Fig. 1. It consists of a 
series of modules that try to exploit each of the above-mentioned 
properties. Like a human scientist, it tries many different strategies 
(modules) in turn, and if it cannot solve the full problem in one fell 
swoop, it tries to transform it and divide it into simpler pieces that 
can be tackled separately, recursively relaunching the full algorithm 
on each piece. Figure 2 illustrates an example of how a particular 
mystery dataset (Newton’s law of gravitation with nine variables) is 
solved. Below, we describe each of these algorithm modules in turn.

Dimensional analysis
Our dimensional analysis module exploits the well-known fact that 
many problems in physics can be simplified by requiring the units 
of the two sides of an equation to match. This often transforms the 
problem into a simpler one with a smaller number of variables that 
are all dimensionless. In the best-case scenario, the transformed 
problem involves solving for a function of zero variables, i.e., a con-
stant. We automate dimensional analysis as follows.

Table 3 show the physical units of all variables appearing in our 
100 mysteries, expressed as products of the fundamental units (meter, 
second, kilogram, kelvin, and volt) to various integer powers. We, 
thus, represent the units of each variable by a vector u of five integers 
as in the table. For a mystery of the form y = f(x1, …, xn), we define 
the matrix M whose ith column is the u vector corresponding to the 
variable xi, and define the vector b as the u vector corresponding to 
y. We now let the vector p be a solution to the equation Mp = b, and 
the columns of the matrix U form a basis for the null space, so that 
MU = 0, and define a new mystery y′ = f ′ (x′ 1, …, x′n) where

	​ x ​'​ i​​ ≡ ​ ∏ 
i=j

​ 
n
  ​​ ​​x​ j​​​​ ​U​ ij​​​, y' ≡ ​  

y
 ─ ​y​ *​​ ​, ​y​ *​​  ≡ ​ ∏ 

i=1
​ 

n
  ​​ ​​x​ i​​​​ ​p​ i​​​.​	 (1)

By construction, the new variables xi′ and y′ are dimensionless, 
and the number n′ of new variables is equal to the dimensionality of 

the null space. When n′ > 0, we have the freedom to choose any basis 
we want for the null space and also to replace p by a vector of the 
form p + Ua for any vector a; we use this freedom to set as many 
elements as possible in p and U equal to zero, i.e., to make the new 
variables depend on as few old variables as possible. This choice is 
useful because it typically results in the resulting powers of the 
dimensionless variables being integers, making the final expression 
much easier to find than when the powers are fractions or irrational 
numbers.

Polynomial fit
Many functions f(x1, …, xn) in physics and other sciences either are 
low-order polynomials, e.g., the kinetic energy ​K  = ​ m _ 2 ​(​v​x​ 2​ + ​v​y​ 2​ + ​v​z​ 
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Fig. 1. Schematic illustration of our AI Feynman algorithm. It is iterative as de-
scribed in the text, with four of the steps capable of generating new mystery data-
sets that get sent to fresh instantiations of the algorithm, which may or may not 
return a solution.

https://github.com/SJ001/AI-Feynman
https://github.com/SJ001/AI-Feynman
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or have parts that are, e.g., the denominator of the gravitational force 

​F = ​  ​Gm​ 1​​ ​m​ 2​​  ___________________  
​(​x​ 1​​ − ​x​ 2​​)​​ 2​ + ​(​y​ 1​​ − ​y​ 2​​)​​ 2​ + ​(​z​ 1​​ − ​z​ 2​​)​​ 2​

​​. We therefore include a module that tests 
whether a mystery can be solved by a low-order polynomial. Our 
method uses the standard method of solving a system of linear equa-
tions to find the best-fit polynomial coefficients. It tries fitting the 
mystery data to polynomials of degree 0, 1,..., dmax = 4 and declares 
success if the best-fitting polynomial gives root mean square (rms) 
fitting error ≤ p (we discuss the setting of this threshold below).

Brute force
Our brute-force symbolic regression model simply tries all possible 
symbolic expressions within some class, in order of increasing com-

plexity, terminating either when the maximum fitting error drops 
below a threshold ϵp or after a maximum runtime tmax has been 
exceeded. Although this module alone could solve all our mysteries 
in principle, it would, in many cases, take longer than the age of our 
universe in practice. Our brute-force method is, thus, typically most 
helpful once a mystery has been transformed/broken apart into 
simpler pieces by the modules described below.

We generate the expressions to try by representing them as strings 
of symbols, trying first all strings of length 1, then all of length 2, 
etc., saving time by only generating those strings that are syntactically 
correct. The symbols used are the independent variables as well a 
subset of those listed in Table 1, each representing a constant or a 
function. We minimize string length by using reverse Polish notation, 
so that parentheses become unnecessary. For example, x + y can be 
expressed as the string “xy+”, the number −2/3 can be expressed 
as the string “0<<1>>/”, and the relativistic momentum formula 
​mv / ​√ 
_

 1 − ​v​​ 2​ / ​c​​ 2​ ​​ can be expressed as the string “mv*1vv*cc*/−R/”.
Inspection of Table 1 reveals that many of the symbols are redun-

dant. For example, “1” = “0>” and “x∼” = “0x−”.  = 2 arcsin 1, so 
if we drop the symbol “P”, mysteries involving  can still get solved 
with P replaced by “1N1>*”—it just takes longer.

Since there are sn strings of length n using an alphabet of s symbols, 
there can be a substantial cost both from using too many symbols 
(increasing s) and from using too few symbols (increasing the required 
n or even making a solution impossible). As a compromise, our 
brute-force module tries to solve the mystery using three different 
symbol subsets as explained in the caption of Table 1. To exploit the 
fact that many equations or parts thereof have multiplicative or addi-
tive constants, our brute-force method comes in two variants that auto-
matically solves for such constants, thus allowing the algorithm to 
focus on the symbolic expression and not on numerical constants.

Although the problem of overfitting is most familiar when 
searching a continuous parameter space, the same phenomenon can 
occur when searching our discrete space of symbol strings. To mitigate 
this, we follow the prescription in (30) and define the winning function 
to be the one with rms fitting error ϵ < ϵb that has the smallest total 
description length

	​​ DL  ≡ ​ log​ 2​​ N + λ ​log​ 2​​ [ max​(​​1, ​ ϵ ─ ​ϵ​ d​​ ​​)​​]​​	 (2)

where ϵd = 10−15, and N is the rank of the string on the list of all 
strings tried. The two terms correspond roughly to the number of 
bits required to store the symbol string and the prediction errors, 
respectively, if the hyperparameter  is set to equal the number of 
data points Nd. We use ​ = ​ N​d​ 1/2​​ in our experiments below to prioritize 
simpler formulas. If the mystery has been generated using a neural 
network (see below), we set the precision threshold ϵb to 10 times 
the validation error, otherwise we set it to 10−5.

Neural network–based tests and transformations
Even after applying the dimensional analysis, many mysteries are 
still too complex to be solved by the polyfit or brute-force modules 
in a reasonable amount of time. However, if the mystery function 
f(x1, …, xn) can be found to have simplifying properties, it may be 
possible to transform it into one or more simpler mysteries that can 
be more easily solved. To search for such properties, we need to be 
able to evaluate f at points {x1, …, xn} of our choosing where we 
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Fig. 2. Example: How our AI Feynman algorithm discovered mystery Equation 5. 
Given a mystery table with many examples of the gravitational force F together 
with the nine independent variables G, m1, m2, x1,..., z2, this table was recursively 
transformed into simpler ones until the correct equation was found. First, dimensional 
analysis generated a table of six dimensionless independent variables a = m2/m1,..., 
f = z1/x1 and the dimensionless dependent variable ​ℱ ≡  F ÷ ​Gm​1​ 2​ / ​x​1​ 2​​. Then, a neural net-
work was trained to fit this function, which revealed two translational symmetries 
(each eliminating one variable, by defining g ≡ c−d and h ≡ e − f) as well as multi-
plicative separability, enabling the factorization ​ℱ​(a, b, g, h) = G(a) H (b, g, h), thus 
splitting the problem into two simpler ones. Both G and H then were solved by 
polynomial fitting, the latter after applying one of a series of simple transformations 
(in this case, inversion). For many other mysteries, the final step was instead solved 
using brute-force symbolic search as described in the text.
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typically have no data. For example, to test whether a function f has 
translational symmetry, we need to test if f(x1, x2) = f(x1 + a, x2 + a) 
for various constants a, but if a given data point has its two variables 
separated by x2 − x1 = 1.61803, we typically have no other examples 
in our dataset with exactly that variable separation. To perform our 
tests, we thus need an accurate high-dimensional interpolation be-
tween our data point.
Neural network training
To obtain such an interpolating function for a given mystery, we 
train a neural network to predict the output given its input. We train 
a feed-forward, fully connected neural network with six hidden layers 
with soft plus activation functions, the first three having 128 neurons 
and the last three having 64 neurons. For each mystery, we generated 
100,000 data points, using 80% as the training set and the remainder 
as the validation set, training for 100 epochs with learning rate 0.005 
and batch size 2048. We use the rms error loss function and the 
Adam optimizer with a weight decay of 10−2. The learning rate and 
momentum schedules were implemented as described in (31, 32) 
using the FastAI package (33), with a ration of 20 between the maximum 
and minimum learning rates, and using 10% of the iterations for the 
last part of the training cycle. For the momentum, the maximum 1 
value was 0.95 and the minimum 0.85, while 2 = 0.99.

If the neural network were expressive enough to be able to per-
fectly fit the mystery function, and the training process would never 
get stuck in a local minimum, then one might naively expect the rms 
validation error ​​ϵ​NN​ 0 ​​  to scale as ​​f​ rms​​ ϵ / ​N​d​ 1/2​​ in the limit of ample data, 
with a constant prefactor depending on the number of function ar-
guments and the function’s complexity. Here, frms is the rms of the f 

values in the dataset, Nd is the number of data points, and ϵ is the 
relative rms noise on the independent variable as explored in the 
“Dependence on noise level” section. For realistic situations, one 
expects limited expressibility and convergence to keep ​​ϵ​NN​ 0 ​​  above 
some positive floor even as Nd → ∞ and ϵ → 0. In practice, we 
obtained ​​ϵ​NN​ 0 ​​  values between 10−3frms and 10−5frms across the range 
of tested equations.
Translational symmetry and generalizations
We test for translational symmetry using the neural network as de-
tailed in Algorithm 1. We first check if the f(x1, x2, x3,…) = f(x1 + a, 
x2 + a, x3…) to within a precision ϵsym. If that is the case, then f de-
pends on x1 and x2 only through their difference, so we replace these 
two input variables by a single new variable x1′ ≡ x2 − x1. Otherwise, 
we repeat this test for all pairs of input variables and also test whether 
any variable pair can be replaced by its sum, product, or ratio. The 
ratio case corresponds to scaling symmetry, where two variables can 
be simultaneously rescaled without changing the answer. If any of 
these simplifying properties is found, the resulting transformed 
mystery (with one fewer input variables) is iteratively passed into a 
fresh instantiation of our full AI Feynman symbolic regression algo-
rithm, as illustrated in Fig. 1. After experimentation, we chose the pre-
cision threshold ϵsym to be seven times the neural network validation 
error, which roughly optimized the training set performance. (If the 
noise were Gaussian, even a cut at 4 rather than 7 standard devia-
tions would produce negligible false positives.)
Separability
We test for separability using the neural network as exemplified in 
Algorithm 2. A function is separable if it can be split into two parts 
with no variables in common. We test for both additive and multi-
plicative separability, corresponding to these two parts being added 
and multiplied, respectively (the logarithm of a multiplicatively sep-
arable function is additively separable).

For example, to test whether a function of two variables is multi-
plicatively separable, i.e., of the form f(x1, x2) = g(x1)h(x2) for some 
univariate functions g and h, we first select two constants c1 and c2; for 
numerical robustness, we choose ci to be the means of all the values 
of xi in the mystery dataset, i = 1,2. We then compute the quantity

	​​ ​ sep​​(​x​ 1​​, ​x​ 2​​ )  ≡ ​ f​rms​ 
−1 ​  ∣ f(​x​ 1​​, ​x​ 2​​ ) − ​ 

f(​x​ 1​​, ​c​ 2​​ ) f(​c​ 1​​, ​x​ 2​​)
  ─ f(​c​ 1​​, ​c​ 2​​)  ​ ∣​	 (3)

for each data point. This is a measure of nonseparability, since it 
vanishes if f is multiplicatively separable. The equation is considered 
separable if the rms average sep over the mystery dataset is less than 
an accuracy threshold ϵsep, which is chosen to be N = 10 times the 
neural network validation error. [We also check whether the func-
tion is multiplicatively separable up to an additive constant: f(x1, x2) = 
a + g(x1)h(x2), where a is a constant. As a backup, we retain the 
above-mentioned simpler test for multiplicative separability, which 
proved more robust when a = 0.]

If separability is found, we define the two new univariate mysteries 
y′ ≡ f(x1, c2) and y′′ ≡  f(c1, x2)/f(c1, c2). We pass the first one, y′, back 
to fresh instantiations of our full AI Feynman symbolic regression 
algorithm, and if it gets solved, we redefine y′′ ≡ y/y′cnum, where cnum 
represents any multiplicative numerical constant that appears in y′. 
We then pass y′′ back to our algorithm, and if it gets solved, the final 
solution is y = y′y′′/cnum. We test for additive separability analogously, 
simply replacing * and / by + and − above; also, cnum will represent 

Table 1. Functions optionally included in brute-force search. The 
following three subsets are tried in turn: “+−*/><~SPLICER”, “+−*/> 0~” 
and “+−*/><~REPLICANTS0”. 

Symbol Meaning Arguments

+ Add 2

* Multiply 2

− Subtract 2

/ Divide 2

> Increment 1

< Decrement 1

∼ Negate 1

0 0 0

1 1 0

R sqrt 1

E exp 1

P  0

L ln 1

I invert 1

C cos 1

A abs 1

N arcsin 1

T arctan 1

S sin 1
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an additive numerical constant in this case. If we succeed in solving 
the two parts, then the full solution to the original mystery is the 
sum of the two parts minus the numerical constant. When there are 
more than two variables xi, we are testing all the possible subsets of 
variables that can lead to separability and proceed as above for the 
newly created two mysteries.
Setting variables equal
We also exploit the neural network to explore the effect of setting 
two input variables equal and attempting to solve the corresponding 
new mystery y′ with one fewer variable. We try this for all variable 
pairs, and if the resulting new mystery is solved, we try solving the 
mystery y′′ ≡ y/y′ that has the found solution divided out.

As an example, this technique solves the Gaussian probability dis-
tribution mystery I.6.2. After making  and  equal and dividing the 
initial equation by the result, we are getting rid of the denominator, 
and the remaining part of the equation is an exponential. After taking 
the logarithm of this (see the below section), the resulting expression 
can be easily solved by the brute-force method.

Extra transformations
In addition, several transformations are applied to the dependent 
and independent variables, which proved to be useful for solving 
certain equations. Thus, for each equation, we ran the brute force 
and polynomial fit on a modified version of the equation in which 
the dependent variable was transformed by one of the following 
functions: square root, raise to the power of 2, log, exp, inverse, sin, 
cos, tan, arcsin, arccos, and arctan. This reduces the number of symbols 
needed by the brute force by one, and in certain cases, it even 
allows the polynomial fit to solve the equation, when the brute 
force would otherwise fail. For example, the formula for the dis-
tance between two points in the three-dimensional (3D) Euclidean 
space: ​​√ 

___________________________
   ​(​x​ 1​​ − ​x​ 2​​)​​ 2​ + ​(​y​ 1​​ − ​y​ 2​​)​​ 2​ + ​(​z​ 1​​ − ​z​ 2​​)​​ 2​ ​​, once raised to the power 

of 2 becomes just a polynomial that can be easily discovered by the 
polynomial fit algorithm. The same transformations are also applied 
to the dependent variables, one at a time. In addition, multiplication 
and division by 2 were added as transformations in this case.

It should be noted that, like most machine-learning methods, the 
AI Feynman algorithm has some hyperparameters that can be 
tuned to optimize performance on the problems at hand. They were 
all introduced above, but for convenience, they are also summarized 
in Table 2.

The Feynman Symbolic Regression Database
To facilitate quantitative testing of our and other symbolic regression 
algorithms, we created the 6-gigabyte Feynman Symbolic Regression 
Database (FSReD) and made it freely available for download at 
https://space.mit.edu/home/tegmark/aifeynman.html. For each 
regression mystery, the database contains the following:

1) Data table: A table of numbers, whose rows are of the form 
{x1, x2, …, y}, where y = f(x1, x2, …); the challenge is to discover the 
correct analytic expression for the mystery function f.

2) Unit table: A table specifying the physical units of the input 
and output variables as 6D vectors of the form seen in Table 3.

3) Equation: The analytic expression for the mystery function f, 
for answer checking.

To test an analytic regression algorithm using the database, its task 
is to predict f for each mystery taking the data table (and optionally 
the unit table) as input. Of course, there are typically many symbolically 
different ways of expressing the same function. For example, if the 

mystery function f is (u + v)/(1 + uv/c2), then the symbolically dif-
ferent expression (v + u)/(1 + uv/c2) should count as a correct solution. 
The rule for evaluating an analytic regression method is therefore 
that a mystery function f is deemed correctly solved by a candidate 
expression f ′ if algebraic simplification of the expression f′ − f (say, 
with the Simplify function in “Mathematica” or the simplify 
function in the Python SymPy package) produces the symbol “0. ”

To sample equations from a broad range of physics areas, the 
database is generated using 100 equations from the seminal Feynman 
Lectures on Physics (34–36), a challenging three-volume course cover-
ing classical mechanics, electromagnetism, and quantum mechanics 
as well as a selection of other core physics topics; we prioritized the 
most complex equations, excluding ones involving derivatives or 
integrals. The equations are listed in Tables 4 and 5 and can be seen 
to involve between one and nine independent variables as well as the 
elementary functions +, −, ∗, /, sqrt, exp, log, sin, cos, arsin, and tanh. 
The numbers appearing in these equations are seen to be simple 
rational numbers as well as e and .

We also included in the database a set of 20 more challenging 
“bonus” equations, extracted from other seminal physics books: 
Classical Mechanics by Goldstein et al. (37); Classical Electrodynamics 
by Jackson (38); Gravitation and Cosmology: Principles and Applications 
of the General Theory of Relativity by Weinberg (39); and Quantum 
Field Theory and the Standard Model by Schwartz (40). These equa-
tions were selected for being both famous and complicated.

The data table provided for each mystery equation contains 
105 rows corresponding to randomly generated input variables. 
These are sampled uniformly between one and five. For certain 
equations, the range of sampling was slightly adjusted to avoid 
unphysical result, such as division by zero, or taking the square root 
of a negative number. The range used for each equation is listed 
in the FSReD.

Table 2. Hyperparameters in our algorithm and the setting we use in 
this paper.  

Symbol Meaning Setting

ϵbr Tolerance in brute-force 
module

10−5

ϵpol Tolerance in polynomial 
fit module

10−4

​​ϵ​NN​ 0 ​​ Validation error 
tolerance for neural 
network use

10−2

ϵsep Tolerance for 
separability

10 ϵNN

ϵsym Tolerance for symmetry 7 ϵNN

​​ϵ​bf​ 
sep​​ Tolerance in brute-force 

module after 
separability

10 ϵNN

​​ϵ​pol​ 
sep​​ Tolerance in polynomial 

fit module after 
separability

10 ϵNN

 Importance of accuracy 
relative to complexity ​​N​d​ 1/2​​

https://space.mit.edu/home/tegmark/aifeynman.html
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Table 3. Unit table used for our automated dimensional analysis.  

Variables Units m s kg T V

a, g Acceleration 1 −2 0 0 0

h, ℏ, L, Jz Angular momentum 2 −1 1 0 0

A Area 2 0 0 0 0

kb Boltzmann constant 2 −2 1 −1 0

C Capacitance 2 −2 1 0 −2

q, q1, q2 Charge 2 −2 1 0 −1

j Current density 0 −3 1 0 −1

I, I0 Current Intensity 2 −3 1 0 −1

, 0 Density −3 0 1 0 0

, 1, 2, , n Dimensionless 0 0 0 0 0

g_, kf, , , ,  Dimensionless 0 0 0 0 0

p, n0, , f,  Dimensionless 0 0 0 0 0

n0, , f, , Z1, Z2 Dimensionless 0 0 0 0 0

D Diffusion coefficient 2 −1 0 0 0

drift Drift velocity 
constant

0 −1 1 0 0

pd Electric dipole 
moment

3 −2 1 0 −1

Ef Electric field −1 0 0 0 1

ϵ Electric permitivity 1 −2 1 0 −2

E, K, U Energy 2 −2 1 0 0

Eden Energy density −1 −2 1 0 0

FE Energy flux 0 −3 1 0 0

F, Nn Force 1 −2 1 0 0

, 0 Frequency 0 −1 0 0 0

kG Grav. coupling 
(Gm1m2)

3 −2 1 0 0

H Hubble constant 0 −1 0 0 0

Lind Inductance −2 4 −1 0 2

nrho Inverse volume −3 0 0 0 0

x, x1, x2, x3 Length 1 0 0 0 0

y, y1, y2, y3 Length 1 0 0 0 0

z, z1, z2, r, r1, r2 Length 1 0 0 0 0

, d1, d2, d, ff, af Length 1 0 0 0 0

I1, I2, I*, I*0 Light intensity 0 −3 1 0 0

B, Bx, By, Bz Magnetic field −2 1 0 0 1

m Magnetic moment 4 −3 1 0 −1

M Magnetization 1 −3 1 0 −1

m, m0, m1, m2 Mass 0 0 1 0 0

e Mobility 0 1 −1 0 0

p Momentum 1 −1 1 0 0

G Newton’s constant 3 −2 −1 0 0

P* Polarization 0 −2 1 0 −1

P Power 2 −3 1 0 0

continued on next page
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Algorithm comparison
We reviewed the symbolic regression literature for publicly available 
software against which our method could be compared. To the best of our 
knowledge, the best competitor by far is the commercial Eureqa software 
sold by Nutonian Inc. at https://www.nutonian.com/products/eureqa, 
implementing an improved version of the generic search algorithm 
outlined in (27).

We compared the AI Feynman and Eureqa algorithms by apply-
ing them both to the Feynman Database for symbolic regression, 
allowing a maximum of 2 hours of central processing unit (CPU) 
time per mystery. Tables 4 and 5 show that Eureqa solved 71% of 
the 100 basic mysteries, while AI Feynman solved 100%.

For this comparison, the AI Feynman algorithm was run using 
the hyperparameter settings in Table 2. For Eureqa, each mystery was 
run on four CPUs. The symbols used in trying to solve the equations 
were +, −, *, /, constant, integer constant, input variable, sqrt, exp, 
log, sin, and cos. To help Eureqa gain speed, we included the addi-
tional functions arcsin and arccos only for those mysteries requiring 
them, and we used only 300 data points (since it does not use a neural 
network, adding additional data does not help much). The time taken 
to solve an equation using our algorithm, as presented in Tables 4 
and 5, corresponds to the time needed for an equation to be solved 
using a set of symbols that can actually solve it (see Table 1). Equations 
I.15.3t and I.48.2 were solved using the second set of symbols, so the 
overall time needed for these two equations is 1 hour longer than 
the one listed in the tables. Equations I.15.3x and II.35.21 were 
solved using the third set of symbols, so the overall time taken is 
2 hours longer than the one listed here.

Closer inspection of these tables reveals that the greatest improve-
ment of our algorithm over Eureqa is for the most complicated 

mysteries, where our neural network enables eliminating variables 
by discovering symmetries and separability. The neural network 
becomes even more important when we rerun AI Feynman without 
the dimensional analysis module: It now solves 93% of the mysteries 
and makes very heavy use of the neural network to discover separa-
bility and translational symmetries. Without dimensional analysis, 
many of the mysteries retain variables that appear only raised to some 
power or in a multiplicative prefactor, and AI Feynman tends to 
recursively discover them and factor them out one by one. For example, 
the neural network strategy is used six times when solving

	​ F  = ​   ​Gm​ 1​​ ​m​ 2​​  ───────────────────   
​(​x​ 2​​ − ​x​ 1​​)​​ 2​ + ​(​y​ 2​​ − ​y​ 1​​)​​ 2​ + ​(​z​ 2​​ − ​z​ 1​​)​​ 2​

 ​​	

without dimensional analysis: three times to discover translational 
symmetry that replaces x2 − x1, y2 − y1, and z2 − z1 by new variables, 
once to group together G and m1 into a new variable a, once to group 
together a and m2 into a new variable b, and one last time to discover 
separability and factor out b. This shows that although dimensional 
analysis often provides major time savings, it is usually not necessary 
for successfully solving the problem.

Inspection of how AI Feynman and Eureqa make progress over 
time reveals interesting differences. The progress of AI Feynman 
over time corresponds to repeatedly reducing the number of inde-
pendent variables, and every time this occurs, it is virtually guaranteed 
to be a step in the right direction. In contrast, genetic algorithms 
such as Eureqa make progress over time by finding successively better 
approximations, but there is no guarantee that more accurate symbolic 
expressions are closer to the truth when viewed as strings of symbols. 
Specifically, by virtue of being a genetic algorithm, Eureqa has the 

Variables Units m s kg T V

pF Pressure −1 −2 1 0 0

R Resistance −2 3 −1 0 2

S Shear modulus −1 −2 1 0 0

Lrad Spectral radiance 0 −2 1 0 0

kspring Spring constant 0 −2 1 0 0

den Surface charge 
density

0 −2 1 0 −1

T, T1, T2 Temperature 0 0 0 1 0

 Thermal conductivity 1 −3 1 −1 0

t, t1 Time 0 1 0 0 0

 Torque 2 −2 1 0 0

Avec Vector potential −1 1 0 0 1

u, v, v1, c, w Velocity 1 −1 0 0 0

V, V1, V2 Volume 3 0 0 0 0

c, c0 Volume charge 
density

−1 −2 1 0 −1

Ve Voltage 0 0 0 0 1

k Wave number −1 0 0 0 0

Y Young modulus −1 −2 1 0 0

https://www.nutonian.com/products/eureqa
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Table 4. Tested Feynman equations, part 1. Abbreviations in the “Methods used” column: da, dimensional analysis; bf, brute force; pf, polyfit; ev, set two 
variables equal; sym, symmetry; sep, separability. Suffixes denote the type of symmetry or separability (sym–, translational symmetry; sep*, multiplicative 
separability; etc.) or the preprocessing before brute force (e.g., bf-inverse means inverting the mystery function before bf). 

Feynman Eq. Equation Solution Time (s) Methods Used Data Needed Solved By Eureqa Solved W/o 
da

Noise 
Tolerance

I.6.20a ​f  = ​ e​​ −​​​ 2​/2​ / ​√ 
_

 2 ​​ 16 bf 10 No Yes 10−2

I.6.20 ​f  = ​ e​​ −​ ​​​ 2​ _ 
2​​​ 2​

​​ / ​√ 
_

 2 ​​​ 2​ ​​ 2992 ev, bf-log 102 No Yes 10−4

I.6.20b ​f  = ​ e​​ −​​(−​​ 1​​)​​ 2​ _ 
2​​​ 2​

 ​​ / ​√ 
_

 2 ​​​ 2​ ​​ 4792 sym–, ev, bf-log 103 No Yes 10−4

I.8.14 ​d  = ​ √ 
__________________

   ​(​x​ 2​​ − ​x​ 1​​)​​ 2​ + ​(​y​ 2​​ − ​y​ 1​​)​​ 2​ ​​ 544 da, pf-squared 102 No Yes 10−4

I.9.18 ​F  = ​   G ​m​ 1​​ ​m​ 2​​  ___________________   
​(​x​ 2​​ − ​x​ 1​​)​​ 2​ + ​(​y​ 2​​ − ​y​ 1​​)​​ 2​ + ​(​z​ 2​​ − ​z​ 1​​)​​ 2​

​​ 5975 da, sym–, sym–, 
sep∗, pf-inv 106 No Yes 10−5

I.10.7 ​m  = ​   ​m​ 0​​ _ 
​√ 
_

 1 − ​​v​​ 2​ _ 
​c​​ 2​

 ​ ​
​​ 14 da, bf 10 No Yes 10−4

I.11.19 A = x1y1 + x2y2 + x3y3 184 da, pf 102 Yes Yes 10−3

I.12.1 F = Nn 12 da, bf 10 Yes Yes 10−3

I.12.2 ​F  = ​  ​q​ 1​​ ​q​ 2​​ _ 
4ϵ ​r​​ 2​

​​ 17 da, bf 10 Yes Yes 10−2

I.12.4 ​​E​ f​​  = ​  ​q​ 1​​ _ 
4ϵ ​r​​ 2​

​​ 12 da 10 Yes Yes 10−2

I.12.5 F = q2Ef 8 da 10 Yes Yes 10−2

I.12.11 F = q(Ef + Bv sin ) 19 da, bf 10 Yes Yes 10−3

I.13.4 ​K  = ​ 1 _ 2​ m(​v​​ 2​ + ​u​​ 2​ + ​w​​ 2​)​ 22 da, bf 10 Yes Yes 10−4

I.13.12 ​​U  =  G ​m​ 1​​ ​m​ 2​​​(​​ ​ 1 _ ​r​ 2​​​ − ​ 1 _ ​r​ 1​​​​)​​​​ 20 da, bf 10 Yes Yes 10−4

I.14.3 U = mgz 12 da 10 Yes Yes 10−2

I.14.4 ​U  = ​ ​k​ spring​​ ​x​​ 2​ _ 2  ​​ 9 da 10 Yes Yes 10−2

I.15.3x ​​x​ 1​​  = ​   x − ut _ 
​√ 
_

  1 − ​u​​ 2​ / ​c​​ 2​ ​
​​ 22 da, bf 10 No No 10−3

I.15.3t ​​t​ 1​​  = ​  t − ux / ​c​​ 2​ _ 
​√ 
_

  1 − ​u​​ 2​ / ​c​​ 2​ ​
​​ 20 da, bf 102 No No 10−4

I.15.10 ​p  = ​   ​m​ 0​​ v _ 
​√ 
_

  1 − ​v​​ 2​ / ​c​​ 2​ ​
​​ 13 da, bf 10 No Yes 10−4

I.16.6 ​​v​ 1​​  = ​   u + v _ 
1 + uv / ​c​​ 2​

​​ 18 da, bf 10 No Yes 10−3

I.18.4 ​r  = ​ ​m​ 1​​ ​r​ 1​​ + ​m​ 2​​ ​r​ 2​​  _ ​m​ 1​​ + ​m​ 2​​  ​​ 17 da, bf 10 Yes Yes 10−2

I.18.12  = rF sin  15 da, bf 10 Yes Yes 10−3

I.18.16 L = mrv sin  17 da, bf 10 Yes Yes 10−3

I.24.6 ​E  = ​ 1 _ 4​ m(​​​ 2​ + ​​0​ 2​ ) ​x​​ 2​​ 22 da, bf 10 Yes Yes 10−4

I.25.13 ​​V​ e​​  = ​  q _ C​​ 10 da 10 Yes Yes 10−2

continued on next page
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Feynman Eq. Equation Solution Time (s) Methods Used Data Needed Solved By Eureqa Solved W/o 
da

Noise 
Tolerance

I.26.2 1 = arcsin (n sin 2) 530 da, bf-sin 102 Yes Yes 10−2

I.27.6 ​​f​ f​​  = ​   1 _ 
​ 1 _ ​d​ 1​​​ + ​ n _ ​d​ 2​​​

​​ 14 da, bf 10 Yes Yes 10−2

I.29.4 ​k  = ​  _ c ​​ 8 da 10 Yes Yes 10−2

I.29.16 ​x  = ​ √ 
______________________

    ​x​1​ 2​ + ​x​2​ 2​ − 2 ​x​ 1​​ ​x​ 2​​ cos (​​ 1​​ − ​​ 2​​) ​​ 2135 da, sym–, 
bf-squared 103 No No 10−4

I.30.3 ​​I​ *​​  = ​ I​ ​*​ 0​​​​ ​​sin​​ 2​(n / 2) _ 
​sin​​ 2​( / 2)

 ​​ 118 da, bf 102 Yes Yes 10−3

I.30.5 ​​  =  arcsin ​(​​ ​  _ nd​​)​​​​ 529 da, bf-sin 102 Yes Yes 10−3

I.32.5 ​P  = ​  ​q​​ 2​ ​a​​ 2​ _ 
6ϵ ​c​​ 3​

​​ 13 da 10 Yes Yes 10−2

I.32.17 ​​P  = ​ (​​ ​1 _ 2​ ϵ ​cE​f​ 
2​​)​​(8 ​r​​ 2​ / 3 ) (​​​ 4​ / ​

(​​​ 2​ − ​​0​ 2​)​​ 
2
​)​​

698 da, bf-sqrt 10 No Yes 10−4

I.34.8 ​  = ​ qvB _ p ​​ 13 da 10 Yes Yes 10−2

I.34.10 ​  = ​   ​​ 0​​ _ 1 − v / c​​ 13 da, bf 10 No Yes 10−3

I.34.14 ​  = ​  1 + v / c _ 
​√ 
_

  1 − ​v​​ 2​ / ​c​​ 2​ ​
​ ​​ 0​​​ 14 da, bf 10 No Yes 10−3

I.34.27 E = ℏ 8 da 10 Yes Yes 10−2

I.37.4 ​​I​ *​​  = ​ I​ 1​​ + ​I​ 2​​ + 2 ​√ 
_

 ​I​ 1​​ ​I​ 2​​ ​ cos ​ 7032 da, bf 102 Yes No 10−3

I.38.12 ​r  = ​ 4ϵ ​ℏ​​ 2​ _ 
m ​q​​ 2​

 ​​ 13 da 10 Yes Yes 10−2

I.39.10 ​E  = ​ 3 _ 2​ ​p​ F​​ V​ 8 da 10 Yes Yes 10−2

I.39.11 ​E  = ​  1 _  − 1​ ​p​ F​​ V​ 13 da, bf 10 Yes Yes 10−3

I.39.22 ​​P​ F​​  = ​ n ​k​ b​​ T _ V ​​ 16 da, bf 10 Yes Yes 10−4

I.40.1 ​n  = ​ n​ 0​​ ​e​​ −​mgx _ ​k​ b​​T ​​​ 20 da, bf 10 No Yes 10−2

I.41.16 ​​L​ rad​​  = ​   ℏ ​​​ 3​ _  
​​​ 2​ ​c​​ 2​​(​​ ​e​​ ​ 

ℏ _ ​k​ b​​T​​ − 1​)​​
​​ 22 da, bf 10 No No 10−5

I.43.16 ​v  = ​ ​​ drift​​ q ​V​ e​​ _ d  ​​ 14 da 10 Yes Yes 10−2

I.43.31 D = ekbT 11 da 10 Yes Yes 10−2

I.43.43 ​  = ​  1 _  − 1​ ​​k​ b​​ v _ A ​​ 16 da, bf 10 Yes Yes 10−3

I.44.4 ​​E  =  n ​k​ b​​ Tln ​(​​ ​​V​ 2​​ _ ​V​ 1​​ ​​)​​​​ 18 da, bf 10 Yes Yes 10−3

I.47.23 ​c  = ​ √ 
_

 ​pr _  ​ ​​ 14 da, bf 10 Yes Yes 10−2

continued on next page
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advantage of not searching the space of symbolic expressions blindly 
like our brute-force module, but rather with the possibility of a net 
drift toward more accurate (“fit”) equations. The flip side of this is 
that if Eureqa finds a fairly accurate yet incorrect formula with a 
quite different functional form, it risks getting stuck near that local 
optimum. This reflects a fundamental challenge for genetic approaches 
symbolic regression: If the final formula is composed of separate parts 
that are not summed but combined in some more complicated way 
(as a ratio, say), then each of the parts may be useless fits on their 
own and unable to evolutionarily compete.

Dependence on data size
To investigate the effect of changing the size of the dataset, we re-
peatedly reduced the size of each dataset by a factor of 10 until our AI 
Feynman algorithm failed to solve it. As seen in Tables 4 and 5, most 
equations are discovered by the polynomial fit and brute-force methods 
using only 10 data points. One hundred data points are needed in some 
cases because the algorithm may otherwise overfit when the true equa-
tion is complex, “discovering” an incorrect equation that is too simple.

As expected, equations that require the use of a neural network 
to be solved need substantially more data points (between 102 and 
106) for the network to be able to learn the mystery function accu-
rately enough (i.e., obtaining rms accuracy better than 10−3). Note 
that expressions requiring the neural network are typically more 
complex, so one might intuitively expect them to require larger data-
sets for the correct equation to be discovered without overfitting, 
even when using alternate approaches such as genetic algorithms.

Dependence on noise level
Since real data are almost always afflicted with measurement errors 
or other forms of noise, we investigated the robustness of our algo-
rithm. For each mystery, we added independent Gaussian random 
noise to its dependent variable y, of standard deviation ϵ yrms, where 
yrms denotes the rms y value for the mystery before noise has been 
added. We initially set the relative noise level ϵ = 10−6 and then re-
peatedly multiplied ϵ by 10 until the AI Feynman algorithm could 
no longer solve the mystery. As seen in Tables 4 and 5, most of the 
equations can still be recovered exactly with an ϵ value of 10−4 or less, 
while almost half of them are still solved for ϵ = 10−2.

For these noise experiments, we adjusted the threshold for the 
brute-force and polynomial fit algorithms when the noise level 
changed, such that not finding a solution at all was preferred over 
finding an approximate solution. These thresholds were not optimized 
for each mystery individually, so a better choice of these thresholds 
might allow the exact equation to be recovered with an even higher 
noise level for certain equations. In future work, it will also be 
interesting to quantify performance of the algorithm on data with 

noise added to the independent variables, as well as directly on 
real-world data.

Bonus mysteries
The 100 basic mysteries discussed above should be viewed as a train-
ing set for our AI Feynman algorithm, since we made improvements 
to its implementation and hyperparameters to optimize performance. 
In contrast, we can view the 20 bonus mysteries as a test set, since 
we deliberately selected and analyzed them only after the AI Feynman 
algorithm and its hyperparameter settings (Table 2) had been final-
ized. The bonus mysteries are interesting also by virtue of being 
substantially more complex and difficult in order to better identify 
the limitations of our method.

Table 6 shows that Eureqa solved only 15% of the bonus mysteries, 
while AI Feynman solved 90%. The fact that the success percentage 
differs more between the two methods for the bonus mysteries than 
for the basic mysteries reflects the increased equation complexity, 
which requires our neural network–based strategies for a larger frac-
tion of the cases.

To shed light on the limitations of the AI Feynman algorithm, it 
is interesting to consider the two mysteries for which it failed. The 
radiated gravitational wave power mystery was reduced to the form 
​y =  − ​32 ​a​​ 2​(1 + a) _ 

5 ​b​​ 5​
 ​​  by dimensional analysis, corresponding to the string 

“aaa > * * bbbbb * * * * /” in reverse Polish notation (ignoring the 
multiplicative prefactor ​− ​32 _ 5 ​​). This would require about 2 years for 
the brute-force method, exceeding our allotted time limit. The Jackson 
2.11 mystery was reduced to the form ​a − ​ 1 _ 4​ ​ 

a _ b ​(1 − ​a​​ 
2
​)​​ 

2
​
​​ by dimensional 

analysis, corresponding to the string “aP0 > > > > * \abaa * < aa * < * * / 
* −” in reverse Polish notation, which would require about 100 times 
the age of our universe for the brute-force method.

It is likely that both of these mysteries can be solved with relatively 
minor improvements of our algorithm. The first mystery would have 
been solved had the algorithm not failed to discover that a2(1 + a)/b5 
is separable. The large dynamic range induced by the fifth power in 
the denominator caused the neural network to miss the separability 
tolerance threshold; potential solutions include temporarily limiting 
the parameter range or analyzing the logarithm of the absolute value 
(to discover additive separability).

If we had used different units in the second mystery, where 1/4ϵ 
was replaced by the Coulomb constant k, the costly 4 factor (requir-
ing seven symbols “PPPP + + +” or “P0 > > > > *”) would have dis-
appeared. Moreover, if we had used a different set of function symbols 
that included “Q” for squaring, then brute force could quickly have 

discovered that ​a − ​  a _ b ​(1 − ​a​​ 
2
​)​​ 

2
​
​​ is solved by “aabaQ < Q */ −”. Similarly, 

introducing a symbol ∧ denoting exponentiation, enabling the string 

Feynman Eq. Equation Solution Time (s) Methods Used Data Needed Solved By Eureqa Solved W/o 
da

Noise 
Tolerance

I.48.20 ​E  = ​   m ​c​​ 2​ _ 
​√ 
_

  1 − ​v​​ 2​ / ​c​​ 2​ ​
​​ 108 da, bf 102 No No 10−5

I.50.26 x = x1[ cos (t) +  cos (t)2] 29 da bf 10 Yes Yes 10−2
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Table 5. Tested Feynman equations, part 2 (same notation as in Table 4).  

Feynman Eq. Equation Solution Time 
(s)

Methods Used Data Needed Solved By 
Eureqa

Solved W/o da Noise 
Tolerance

II.2.42 ​P  = ​ (​T​ 2​​ − ​T​ 1​​ ) A _ d  ​​ 54 da, bf 10 Yes Yes 10−3

II.3.24 ​​F​ E​​  = ​  P _ 
4 ​r​​ 2​

​​ 8 da 10 Yes Yes 10−2

II.4.23 ​​V​ e​​  = ​  q _ 4ϵr​​
10 da 10 Yes Yes 10−2

II.6.11 ​​V​ e​​  = ​  1 _ 4ϵ​ ​
​p​ d​​ cos  _ 

​r​​ 2​
  ​​ 18 da, bf 10 Yes Yes 10−3

II.6.15a ​​E​ f​​  = ​  3 _ 4ϵ​ ​
​p​ d​​ z _ 
​r​​ 5​

 ​ ​√ 
_

 ​x​​ 2​ + ​y​​ 2​ ​​ 2801 da, sm, bf 104 No Yes 10−3

II.6.15b ​​E​ f​​  = ​  3 _ 4ϵ​ ​
​p​ d​​ _ 
​r​​ 3​

 ​ cos sin ​ 23 da, bf 10 Yes Yes 10−2

II.8.7 ​E  = ​ 3 _ 5​ ​ ​q​​ 2​ _ 4ϵd​​ 10 da 10 Yes Yes 10−2

II.8.31 ​​E​ den​​  = ​ ϵ ​E​f​ 
2​ _ 2 ​​ 8 da 10 Yes Yes 10−2

II.10.9 ​​E​ f​​  = ​ ​​ den​​ _ ϵ  ​ ​ 1 _ 1 + ​​ 13 da, bf 10 Yes Yes 10−2

II.11.3 ​x  = ​   ​qE​ f​​ _ 
m(​​0​ 2​ − ​​​ 2​)

​​ 25 da, bf 10 Yes Yes 10−3

II.11.17 ​​n  = ​ n​ 0​​​(​​1 + ​​p​ d​​ ​E​ f​​ cos  _ ​k​ b​​ T  ​​)​​​​ 28 da, bf 10 Yes Yes 10−2

II.11.20 ​​P​ *​​  = ​ ​n​ ​​ ​p​d​ 2​ ​E​ f​​ _ 3 ​k​ b​​ T ​​ 18 da, bf 10 Yes Yes 10−3

II.11.27 ​​P​ *​​  = ​   n _ 1 − n / 3​ ϵ ​E​ f​​​ 337 da bf-inverse 102 No Yes 10−3

II.11.28 ​  =  1 + ​  n _ 1 − (n / 3)​​
1708 da, sym*, bf 102 No Yes 10−4

II.13.17 ​B  = ​   1 _ 
4ϵ ​c​​ 2​

​ ​2I _ r ​​ 13 da 10 Yes Yes 10−2

II.13.23 ​​​ c​​  = ​   ​​ ​c​ 0​​​​ _ 
​√ 
_

  1 − ​v​​ 2​ / ​c​​ 2​ ​
​​ 13 da, bf 102 No Yes 10−4

II.13.34 ​j  = ​   ​​ ​c​ 0​​​​ v _ 
​√ 
_

  1 − ​v​​ 2​ / ​c​​ 2​ ​
​​ 14 da, bf 10 No Yes 10−4

II.15.4 E = − MB cos  14 da, bf 10 Yes Yes 10−3

II.15.5 E = − pdEf cos  14 da, bf 10 Yes Yes 10−3

II.21.32 ​​V​ e​​  = ​   q _  4ϵr(1 − v / c)​​
21 da, bf 10 Yes Yes 10−3

II.24.17 ​k  = ​ √ 
_

 ​​​​ 2​ _ 
​c​​ 2​

 ​ − ​ ​​​ 2​ _ 
​d​​ 2​

​ ​​ 62 da bf 10 No Yes 10−5

II.27.16 ​​F​ E​​  =  ϵ ​cE​f​ 
2​​ 13 da 10 Yes Yes 10−2

II.27.18 ​​E​ den​​  =  ϵ ​E​f​ 
2​​ 9 da 10 Yes Yes 10−2

continued on next page



Udrescu and Tegmark, Sci. Adv. 2020; 6 : eaay2631     15 April 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

12 of 16

for ab to be shortened from “aLb * E” to “ab ∧ , ” would enable brute 
force to solve many mysteries faster, including Jackson 2.11.

Last, a powerful strategy that could ameliorate both of these fail-
ures would be to add symbols corresponding to parameters that are 

numerically optimized over. This strategy is currently implemented 
in Eureqa, but not AI Feynman, and could make a useful upgrade as 
long as it is done in a way that does not unduly slow down the sym-
bolic brute-force search. In summary, the two failures of the AI 

Feynman Eq. Equation Solution Time 
(s)

Methods Used Data Needed Solved By 
Eureqa

Solved W/o da Noise 
Tolerance

II.34.2a ​I  = ​  qv _ 2r​​ 11 da 10 Yes Yes 10−2

II.34.2 ​​​ M​​  = ​ qvr _ 2 ​​ 11 da 10 Yes Yes 10−2

II.34.11 ​  = ​ ​g​ _​​ qB _ 2m ​​ 16 da, bf 10 Yes Yes 10−4

II.34.29a ​​​ M​​  = ​  qh _ 4m​​ 12 da 10 Yes Yes 10−2

II.34.29b ​E  = ​ ​g​ _​​ ​​ M​​ B ​J​ z​​ _ ℏ  ​​ 18 da, bf 10 Yes Yes 10−4

II.35.18 ​n  = ​   ​n​ 0​​  ______________________    exp (​​ m​​ B / (​k​ b​​ T ) ) + exp (− ​​ m​​ B / (​k​ b​​ T ) )​​
30 da, bf 10 No Yes 10−2

II.35.21 ​​M  = ​ n​ ​​ ​​ M​​ tanh ​(​​ ​​​ M​​ B _ ​k​ b​​ T ​​)​​​​ 1597 da, halve-input, 
bf 10 Yes No 10−4

II.36.38 ​f  = ​ ​​ m​​ B _ ​k​ b​​ T ​ + ​ ​​ m​​ M _ 
ϵ ​c​​ 2​ ​k​ b​​ T

​​ 77 da bf 10 Yes Yes 10−2

II.37.1 E = M(1 + )B 15 da, bf 10 Yes Yes 10−3

II.38.3 ​F  = ​ YAx _ d ​​ 47 da, bf 10 Yes Yes 10−3

II.38.14 ​​​ S​​  = ​   Y _ 2(1 + )​​ 13 da, bf 10 Yes Yes 10−3

III.4.32 ​n  = ​   1 _ 
​e​​ ​ 

ℏ _ ​k​ b​​T​​ − 1
​​ 20 da, bf 10 No Yes 10−3

III.4.33 ​E  = ​   ℏ _ 
​e​​ ​ 

ℏ _ ​k​ b​​T​​ − 1
​​ 19 da, bf 10 No Yes 10−3

III.7.38 ​  = ​ 2 ​​ M​​ B _ ℏ  ​​ 13 da 10 Yes Yes 10−2

III.8.54 ​​p​ ​​  =  sin ​​(​​ ​Et _ ℏ ​​)​​​​ 
2
​​ 39 da, bf 10 No Yes 10−3

III.9.52 ​​p​ ​​  = ​ ​p​ d​​ ​E​ f​​ t _ ℏ ​ ​sin ​(( − ​​ 0​​ ) t / 2)​​ 2​  ___________  
​(( − ​​ 0​​ ) t / 2)​​ 2​

 ​​ 3162 da, sym–, sm, bf 103 No Yes 10−3

III.10.19 ​E  = ​ ​ M​​ ​√ 
_

  ​B​x​ 2​ + ​B​y​ 2​ + ​B​z​ 2​ ​​ 410 da, bf-squared 102 Yes Yes 10−4

III.12.43 L = nℏ 11 da, bf 10 Yes Yes 10−3

III.13.18 ​v  = ​ 2E ​d​​ 2​ k _ ℏ  ​​ 16 da, bf 10 Yes Yes 10−4

III.14.14 ​I  = ​ I​ 0​​(​e​​ ​
q​V​ e​​ _ ​k​ b​​T ​​ − 1)​ 18 da, bf 10 No Yes 10−3

III.15.12 E = 2U(1 − cos (kd)) 14 da, bf 10 Yes Yes 10−4

III.15.14 ​m  = ​  ​ℏ​​ 2​ _ 
2E ​d​​ 2​

​​ 10 da 10 Yes Yes 10−2

III.15.27 ​k  = ​ 2 _ nd ​​ 14 da, bf 10 Yes Yes 10−3

III.17.37 f = (1 + cos ) 27 bf 10 Yes Yes 10−3

III.19.51 ​E  = ​  − m ​q​​ 4​ _ 
2 ​(4ϵ)​​ 2​ ​ℏ​​ 2​

​ ​ 1 _ 
​n​​ 2​

​​ 18 da, bf 10 Yes Yes 10−5

III.21.20 ​j  = ​ − ​​ ​c​ 0​​​​ ​qA​ vec​​ _ m  ​​ 13 da 10 Yes Yes 10−2
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Table 6. Tested bonus equations. Goldstein 8.56 is for the special case where the vectors p and A are parallel. 

Source Equation Solved Solved by Eureqa Methods used

Rutherford scattering ​A  = ​​ (​​ ​ ​Z​ 1​​ ​Z​ 2​​ αℏc _ 
4E ​sin​​ 2​​(​​ ​ θ _ 2​​)​​

​​)​​​​ 
2
​​ Yes No da, bf-sqrt

Friedman equation ​H  = ​ √ 
_

  ​8G _ 3 ​  − ​​k​ f​​ ​c​​ 2​ _ 
​a​f​ 

2​
 ​ ​​ Yes No da, bf-squared

Compton scattering ​U  = ​   E _  
1 + ​ E _ 

m ​c​​ 2​
​(1 − cos )

​​ Yes No da, bf

Radiated gravitational wave 
power ​P  =  − ​32 _ 5 ​ ​​G​​ 4​ _ 

​c​​ 5​
 ​ ​​(​m​ 1​​ ​m​ 2​​)​​ 2​(​m​ 1​​ + ​m​ 2​​)  ___________ 

​r​​ 5​
  ​​ No No –

Relativistic aberration ​​​​ 1​​  =  arccos ​(​​ ​ cos ​​ 2​​ − ​v _ c ​ _ 1 − ​v _ c ​ cos ​​ 2​​​​)​​​​ Yes No da, bf-cos

N-slit diffraction ​I  = ​ I​ 0​​ ​​[​​ ​sin ( / 2) _  / 2  ​ ​sin (N / 2) _ sin ( / 2) ​​]​​​​ 
2
​​ Yes No da, sm, bf

Goldstein 3.16 ​v  = ​ √ 
______________

  ​ 2 _ m​​(​​E − U − ​ ​L​​ 2​ _ 
2m ​r​​ 2​

​​)​​ ​​ Yes No da, bf-squared

Goldstein 3.55
​​k  = ​ m ​k​ G​​ _ 

​L​​ 2​
 ​​(​​1 + ​√ 

_
 1 + ​2E ​L​​ 2​ _ 

m ​k​G​ 2 ​
 ​ ​ cos ​(​​ ​​ 1​​ − ​​ 2​​​)​​​)​​​​

Yes No da, sym–, bf

Goldstein 3.64 (ellipse) ​r  = ​   d(1 − ​​​ 2​)  ___________  1 + cos (​​ 1​​ − ​​ 2​​)​​
Yes No da, sym–, bf

Goldstein 3.74 (Kepler) ​t  = ​   2 ​d​​ 3/2​ _  
​√ 
_

  G(​m​ 1​​ + ​m​ 2​​) ​
​​ Yes No da, bf

Goldstein 3.99 ​  = ​ √ 
___________

  1 + ​  2 ​ϵ​​ 2​ E ​L​​ 2​ _  m ​(​Z​ 1​​ ​Z​ 2​​ ​q​​ 
2
​)​​ 

2
​
​ ​​ Yes No da, sym*, bf

Goldstein 8.56 ​E  = ​ √ 
___________________

   ​(p − q ​A​ vec​​)​​ 2​ ​c​​ 2​ + ​m​​ 2​ ​c​​ 4​ ​ + q ​V​ e​​​ Yes No da, sep+, bf-squared

Goldstein 12.80 ​​E  = ​  1 _ 2m​ [ ​p​​ 2​ + ​m​​ 2​ ​​​ 2​ ​x​​ 2​​(​​1 +  ​x _ y​​)​​]​​ Yes Yes da, bf

Jackson 2.11 ​​F  = ​   q _ 
4ϵ ​y​​ 2​

​​[​​4ϵ ​V​ e​​ d − ​  qd ​y​​ 3​ _ 
​(​y​​ 

2
​ − ​d​​ 

2
​)​​ 

2
​
​​]​​​​ No No –

Jackson 3.45 ​​V​ e​​  = ​   q ____________  
​(​r​​ 2​ + ​d​​ 2​ − 2drcos )​​ 

​1 _ 2​
​
​​ Yes No da, bf-inv

Jackson 4.60 ​​​V​ e​​  = ​ E​ f​​ cos ​(​​ ​ − 1 _  + 2​ ​​d​​ 3​ _ 
​r​​ 2​

 ​ − r​)​​​​ Yes No da, sep*, bf

Jackson 11.38 (Doppler) ​​​ 0​​  = ​  
​√ 
_

 1 − ​​v​​ 2​ _ 
​c​​ 2​

 ​ ​
 _ 1 + ​v _ c ​ cos ​ ​ Yes No da, cos-input, bf

Weinberg 15.2.1 ​​  = ​  3 _ 8G​​(​​ ​​c​​ 2​ ​k​ f​​ _ 
​a​f​ 

2​
 ​ + ​H​​ 2​​)​​​​ Yes Yes da, bf

Weinberg 15.2.2 ​​​p​ f​​  =  − ​ 1 _ 8G​​[​​ ​​c​​ 4​ ​k​ f​​ _ 
​a​f​ 

2​
 ​ + ​c​​ 2​ ​H​​ 2​(1 − 2 ) ​]​​​​ Yes Yes da, bf

Schwarz 13.132 (Klein-Nishina) ​​A  = ​ π ​α​​ 2​ ​ℏ​​ 2​ _ 
​m​​ 2​ ​c​​ 2​

 ​ ​​(​​ ​​ω​ 0​​ _ ω ​​)​​​​ 2​​[​​ ​​ω​ 0​​ _ ω ​ + ​ ω _ ​ω​ 0​​​ − ​sin​​ 2​ θ​]​​​​ Yes No da, sym/, sep*, sin-input, bf
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Feynman algorithm signal not unsurmountable obstacles, but 
motivation for further work.

In addition, we tested the performance of our algorithm on the 
mystery functions presented in (41) (we wish to thank the anonymous 
reviewer who brought this dataset to our attention). Some equations 
appear twice; we included them only once. Our algorithm again 
outperformed Eureqa, discovering 66.7% of the equations, while 
Eureqa discovered 48.9%. The fact that the AI Feynman algorithm 
performs less well on this test set than on genuine physics formulas 
traces back to the fact that most of the equations presented in (41) 
are rather arbitrary compositions of elementary functions unlikely to 
occur in real-world problems, thus lacking the symmetries, separa-
bility, etc., that the neural network part of our algorithm is able 
to exploit.

DISCUSSION
We have presented a novel physics-inspired algorithm for solving 
multidimensional analytic regression problems: finding a symbolic 
expression that matches data from an unknown algebraic function. 
Our key innovation lies in combining traditional fitting techniques 
with a neural network–based approach that can repeatedly reduce a 
problem to simpler ones, eliminating dependent variables by dis-
covering properties such as symmetries and separability in the un-
known function. To facilitate quantitative benchmarking of our and 
other symbolic regression algorithms, we created a freely downloadable 
database with 100 regression mysteries drawn from the Feynman 
Lectures on Physics and a bonus set of an additional 20 mysteries 
selected for difficulty and fame.

Key findings
The preexisting state-of-the-art symbolic regression software Eureqa 
(26) discovered 68% of the Feynman equations and 15% of the bonus 
equations, while our AI Feynman algorithm discovered 100 and 90%, 
respectively, including Kepler’s ellipse equation mentioned in the 
Introduction (third entry in Table 6). Most of the 100 Feynman 
equations could be solved even if the data size was reduced to merely 
102 data points or had percent-level noise added, but the most complex 
equations needing neural network fitting required more data and 
less noise.

Compared with the genetic algorithm of Eureqa, the most inter-
esting improvements are seen for the most difficult mysteries where 
the neural network strategy is repeatedly deployed. Here, the progress 
of AI Feynman over time corresponds to repeatedly reducing the 
problem to simpler ones with fewer variables, while Eureqa and other 
genetic algorithms are forced to solve the full problem by exploring 
a vast search space, risking getting stuck in local optima.

Opportunities for further work
Both the successes and failures of our algorithm motivate further 
work to make it better, and we will now briefly comment on promis-
ing improvement strategies. Although we mostly used the same 
elementary function options (Table 1) and hyperparameter settings 
(Table 2) for all mysteries, these could be strategically chosen based 
on an automated preanalysis of each mystery. For example, observed 
oscillatory behavior could suggest including sin and cos, and lack 
thereof could suggest saving time by excluding them.

Our code could also be straightforwardly integrated into a larger 
program discovering equations involving derivatives and integrals, 

which frequently occur in physics equations. For example, if we sus-
pect that our formula contains a partial differential equation, then 
the user can simply estimate various derivatives from the data (or its 
interpolation, using a neural network) and include them in the AI 
Feynman algorithm as independent variables, thus discovering the 
differential equation in question.

We saw how, even if the mystery data have very low noise, substantial 
de facto noise was introduced by imperfect neural network fitting, 
complicating subsequent solution steps. It will therefore be valuable 
to explore better neural network architectures, ideally reducing fitting 
noise to the 10−6 level. This may be easier than in many other con-
texts, since we do not care whether the neural network generalizes 
poorly outside the domain where we have data: As long as it is highly 
accurate within this domain, it serves our purpose of correctly factor-
ing separable functions, etc.

Our brute-force method can be better integrated with a neural net-
work search for hidden simplicity. Our implemented symmetry search 
simply tests whether two input variables a and b can be replaced by 
a bivariate function of them, specifically +, −, *, or /, corresponding 
to length 3 strings “ab+”, “ab−”, “ab*”, and “ab/”. This can be readily 
generalized to longer strings involving two or more variables, for 
example, bivariate functions ab2 or ea cos b.

A second example of improved brute-force use is if the neural 
network reveals that the function can be exactly solved after setting 
some variable a equal to something else (say zero, one, or another 
variable). A brute-force search can now be performed in the vicinity 
of the discovered exact expression: For example, if the expression is 
valid for a = 0, the brute-force search can insert additive terms that 
vanish for a = 0 and multiplicative terms that equal unity for a = 0, 
thus being likely to discover the full formula much faster than an 
unrestricted brute-force search from scratch.

Last but not least, it is likely that marrying the best features 
from both our method and genetic algorithms can spawn a method 
that outperforms both. Genetic algorithms such as Eureqa per-
form quite well even in the presence of substantial noise, whether 
they output not merely one hopefully correct formula, but rather 
a Pareto frontier, a sequence of increasingly complex formulas 
that provide progressively better accuracy. Although it may not 
be clear which of these formulas is correct, it is more likely that 
the correct formula is one of them than any particular one that 
an algorithm might guess. When our neural network identifies 
separability, a so generated Pareto frontier could thus be used to 
generate candidate formulas for one factor, after which each one 
could be substituted back and tested as above, and the best solu-
tion to the full expression would be retained. Our brute-force 
algorithm can similarly be upgraded to return a Pareto frontier 
instead of a single formula.

In summary, symbolic regression algorithms are getting better 
and are likely to continue improving. We look forward to the day 
when, for the first time in the history of physics, a computer, just 
like Kepler, discovers a useful and hitherto unknown physics formula 
through symbolic regression!

MATERIALS AND METHODS
The materials used for the symbolic regression tests are all in 
the FSReD, available at https://space.mit.edu/home/tegmark/
aifeynman.html. The method by which we have implemented our 
algorithm is as a freely available software package made available at 

https://space.mit.edu/home/tegmark/aifeynman.html
https://space.mit.edu/home/tegmark/aifeynman.html
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https://github.com/SJ001/AI-Feynman; pseudocode is provided below 
for symmetry and separability exploitation.

Algorithm 1 AI Feynman: Translational symmetry

Require Dataset D = {(x, y)}.
Require net: trained neural network
Require NNerror: the neural network validation error
a = 1
for i in len(x) do:

for j in len(x) do:
if i < j:

xt = x
xt[i] = xt[i] + a
xt[j] = xt[j] + a
error = RMSE(net(x),net(xt))
error = error/RMSE(net(x))
if error <7 × NNerror:

xt[i] = xt[i] − xt[j]
xt = delete(xt,j)
return xt, i, j

Algorithm 2 AI Feynman: Additive separability

Require Dataset D = {(x, y)}
Require net: trained neural network
Require NNerror: the neural network validation error
xeq = x
for i in len(x) do:

xeq[i] = mean(x[i])
for i in len(x) do:

c = combinations([1,2,...,len(x)],i)
for idx1 in c do:

x1 = x
x2 = x
idx2 = k in [1,len(x)] not in idx1
for j in idx1:

x1[j] = mean(x[j])
for j in idx2:

x2[j] = mean(x[j])
error = RMSE(net(x),net(x1) + net(x2)-net(xeq))
error = error/RMSE(net(x))
if error <10 × NNerror:

x1 = delete(x1,index2)
x2 = delete(x2,index1)
return x1, x2, index1, index2
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