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Diabetes represents a major threat to public health and the number of patients is increasing
alarmingly in the global scale. Particularly, the diabetic kidney disease (nephropathy, DN)
together with its cardiovascular complications cause immense human suffering, highly
increased risk of premature deaths, and lead to huge societal costs. DN is first detected
when protein appears in urine (microalbuminuria). As in other persisting proteinuric dis-
eases (like vasculitis) it heralds irreversible damage of kidney functions up to non-functional
(end-stage) kidney and ultimately calls for kidney replacement therapy (dialysis or kidney
transplantation). While remarkable progress has been made in understanding the genetic
and molecular factors associating with chronic kidney diseases, breakthroughs are still
missing to provide comprehensive understanding of events and mechanisms associated.
Non-invasive diagnostic tools for early diagnostics of kidney damage are badly needed.
Exosomes – small vesicular structures present in urine are released by all cell types along
kidney structures to present with distinct surface assembly. Furthermore, exosomes carry
a load of special proteins and nucleic acids.This “cargo” faithfully reflects the physiological
state of their respective cells of origin and appears to serve as a new pathway for down-
stream signaling to target cells. Accordingly, exosome vesicles are emerging as a valuable
source for disease stage-specific information and as fingerprints of disease progression.
Unfortunately, technical issues of exosome isolation are challenging and, thus, their full
potential remains untapped. Here, we review the molecular basis of exosome secretion
as well as their use to reveal events along the nephron. In addition to novel molecular
information, the new methods provide the needed accurate, personalized, non-invasive,
and inexpensive future diagnostics.

Keywords: exosomes, extracellular vesicles, urine, diabetic nephropathy, podocyte

BACKGROUND
Diabetes, chronic kidney disease (CKD), and cardiovascular dis-
ease (CVD), [DCC] are significant causes of morbidity and excess
mortality and with an alarmingly increasing global trend. Together,
they constitute the DCC-disease complex that accounts for major

Abbreviations: Alix, ALG-2 interacting protein; AMBP, alpha-1-micro-
globulin/bikunin precursor; CHAPS, 3-[(3-cholamidopropyl)dimethylammonio]
-1-propanesulfonic; CHMP4C, charged multivesicular body protein 4C; CKD,
chronic kidney disease; CR1, complement receptor 1; CVD, cardiovascular diseases;
DCC, diabetes chronic complications; DN, diabetic nephropathy; DNA, deoxyri-
bonucleic acid; DPPIV, dipeptidyl peptidase IV; DTT, dithiothreitol; ESCRT, endo-
somal sorting complex required for transport; EV, extracellular vesicles; GPI, gly-
cosylphosphatidylinositol; HD, hydrostatic dialysis; HRS, hepatocyte growth factor-
regulated tyrosine kinase substrate; HSA, human serum albumin; ILV, intraluminal
vesicles; LBPA – lysobisphosphatidic acid; miRNA, micro ribonucleic acids; MLL3,
histone-lysine N-methyltransferase; MVB, multivesicular body; MWCO, molecular
weight cutoff; NEP, nephrilysin; Oli-neu cells, oligodendroglial cell line; PLP, prote-
olipid protein; Pmel17,melanosomal protein; RCF,g – relative centrifugal force; SEC,
size exclusion chromatography; siRNA, silencing ribonucleic acids; STAM1, sig-
nal transducing adapter molecule 1; THP, Tamm–Horsfall protein; TSG101, tumor
susceptibility gene 101; UMOD, uromodulin; VDAC1, voltage-dependent anion-
selective channel protein 1; VPS4B, vacuolar protein sorting 4 homolog B; VTA1,
vacuolar protein sorting-associated protein; WT-1, Wilm’s tumor-1 protein.

human suffering and already more than 15% of the economic bur-
den on all Healthcare systems (1, 2) Consequently, there are ever
increasing academic, industrial, and societal investment needs in
combating this worsening epidemic.

The DCC complex shares key symptoms (e.g., microalbumin-
uria, high cholesterol, and elevated blood pressure) and risk factors
(e.g., genetic traits, exercise, and dietary deficiencies) (3, 4). Many
lines of evidence show that an early common denominator for
DCC diseases is malfunction of the kidney (glomerular) filtration
barrier and, particularly, its epithelial component, the podocyte.
Recent milestone discoveries have revealed molecules, mecha-
nisms, and pathways of the podocyte, which associate directly with
in the onset and progression of the disease (5, 6).

The alarming statistics of DCC highlights the importance
of understanding the molecular and cellular pathways thereof.
Important advances in understanding the mechanisms leading to
the loss of kidney function have been made. Accordingly, abnor-
mal glucose level is known to distort several molecular pathways
like the renin–angiotensin system (RAS), inflammatory cytokines
(transforming growth factor β (TGF-β) and tumor necrosis factor-
α (TNF-α)), protein kinase C (PKC), and the Janus kinase pathway
and, oxidative stress mediators, such as nicotinamide adenine
dinucleotide phosphate oxidase (NADPH oxidase). All of these
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have been associated with pathogenesis of diabetic nephropa-
thy (DN) [for dedicate review see Ref. (7–9)] while, the clinical
management of patients to protect the kidney function in dia-
betes are not satisfactory (10, 11). Therefore, more accurate early
diagnostics and better disease management is needed.

A key consideration relates to the availability of clinically rel-
evant biomarkers for personalized disease management. Notably,
the value of albumin excretion rate to urine, presently an impor-
tant indication of CKD, is decreased by the following observations.
First, diabetic patients presenting with microalbuminuria already
show advanced damage in kidney filtration barrier associated with
disease progression (10, 11). Second, one-third of diabetic patients
developed diabetic kidney damage (nephropathy; DN) soon after
the onset of microalbuminuria, and this was not dependent on
the presence of relevant proteinuria (12). Finally, the albumin
assay methodology in use has shown serious flaws for the presence
of fragmented and biochemically modified albumin (12). Fur-
thermore, up to 10% of general public shows occasional albumin
leakage into urine.

EXTRACELLULAR VESICLES: BIOGENESIS, CLASSIFICATION,
AND FUNCTIONS
Extracellular vesicles (see Figure 1) are spherical structures com-
posed with a lipid bilayer carrying a cargo of proteins and nucleic
acids, released by cells into extracellular space. This term comprises

different classes of particles, which had been assigned by van der
Pol and colleagues into three major groups: exosomes, microvesi-
cles (MV), and apoptotic bodies (13). This classification subjects
all membrane derived vesicles (shed vesicles, exosome-like vesi-
cles, membrane particles, ectosomes, and retrovirus vesicles) into
one group and endosomal pathway derived exosomes into other
group. The distinction is not perfect as viruses can hijack Multi-
vesicular Body (MVB) pathway and occur also inside of exosomes
(14). Apoptotic blebs constitute a separate class as their presence is
not associated with a continuously living cell, but with programed
cell death process. Although more comprehensive classification
based e.g., on size, density, sedimentation force, or vesicle-group
specific biomarkers exists, these properties also overlap between
EVs populations (15).

Biogenesis of exosomes includes inward budding of vesicles into
endosomal lumen to become MVBs fusing with the cell mem-
brane and simultaneously releasing exosomes into extracellular
space (Figure 1) (16). Unlike the vesicles shedding directly from
cell membrane, exosomes contain distinct cargo, closely mirroring
the inner compartments of their cells of origin.

Frequently presented exosome diameter ranges from 40 to
100 nm and up to 150 nm (13, 15, 17). Unfortunately, this wide
range includes a variety of other EV classes and cannot be con-
sidered as a solid identifier. The well-characterized pathway of
exosome biogenesis includes proteins of the ESCRT complex (the

FIGURE 1 | Exosomes biogenesis; (A) multivesicular body formation; intraluminal vesicles formation pathway based on: (B) ESCRT complex
involvement, (C) transformation of sphingomyelin into ceramide, and (D) triggered by phospholipid lysobisphosphatidic acid (LBPA) in acidic pH.
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endosomal sorting complex required for transport), which is also
shared by lysosomal pathway of degradation. Ubiquitinated pro-
teins are recruited by proteins of this complex and clustered in
intraluminal vesicles (ILV, future exosomes) within an endosome
to yield MVB (16).

Proteins associated with this pathway are grouped into four
main complexes (ESCRT-0, -I, -II, and -III) and a class of accessory
components (ALIX). ESCRT-0 is built by STAM1 and Hrs, which
recognize the clathrin presence on the surface of early endosome as
well as the ubiquitin on degradation-directed proteins. Hrs inter-
act with Tumor susceptibility gene 101 (TSG101), an ESCRT-I
protein and thus hires this complex. Together with ESCRT-II,
ESCRT-I is responsible for membrane deformation into buds,
whereas, ESCRT-III recruited by ALIX is required for scission of
the bud neck. For more detailed description, the recent compre-
hensive reviews of ESCRT machinery and role of each protein (16,
18, 19) should be consulted.

This pathway clearly describes the mechanism of directing and
anchoring protein cargo into ILV as well as the vesicle formation.
Interestingly, considering importance of ESCRT machinery in exo-
some biogenesis, only 7 from 23 of ESCRT genes after silencing
in HeLa-CIITA-OVA cells presented significant influence on this
pathway. Furthermore, knock-down of four of these (ESCRT-III
complex proteins CHMP4C, VPS4B, VTA1, and ALIX) induced
increase in exosome release (20). Thus, alternative pathways of
ILV formation have been proposed. Trajkovic and colleagues
described a ceramide-dependent process of ILV inward budding
in mouse oligodendroglial cell line (Oli-neu cells) (21). In these
cells, ceramide is taken from microdomains of early endosomal
membranes by the action of sphingomyelinases and lead to fusion
of microdomains into larger domains favoring a domain-induced
budding. However, the study was focused on membrane traffick-
ing of the proteolipid protein (PLP) and thus do not describe the
mechanism of cargo entrapping in ILVs. This pathway seems to
yield the vesicles for extracellular release as the PLP is found in exo-
somes. Alternative pathway suggests a role for lysobisphosphatidic
acid (LBPA) in ILV formation. However, lack of LBPA in released
vesicles may indicate the determination of lysosomal degrada-
tion pathway or different mechanism of ILV formation in which
LBPA is involved indirectly (18, 22). Another ESCRT-independent
pathway is suggested by Theos et al. (23). In their publication,
a ubiquitin-independent mechanism of directing cargo into ILV
was postulated using the melanosomal protein Pmel17 as a thus
contrasting the proposed ceramide or LBPA pathway.

In the literature, there is disagreement over the next steps
after ILV formation within the MVBs. Accordingly, fusion with
lysosome/proteasome before directing the MVB to the plasma
membrane has been proposed. This could explain the presence
of a variety of lysosome specific proteins (proteasome subunits,
cathepsin E and B, kallikrein 1, DPPIV, lipoprotein lipase, prolyl
4-hydroxylase, transmembrane protease, serine carboxypeptidase
I, and lysosomal-associated membrane protein 1 and 2) within
EVs. On the other hand, urinary extracellular vesicle (UEV) pro-
tein databases contain a number of molecules of apoptotic blebs
(e.g., histones) and MV in general (e.g., cholesterol and diacyl-
glycerol) (24, 25). This suggests that any EV populations may
in fact be highly heterogeneous. This raises a real need to better

define exosomes as those in diameter <100 nm recovered in pellet
200,000 g.

Term “microvesicles” includes all structures budding directly
from the cell membrane by rearrangement of the lipid bilayer,
especially in phospholipid distribution and with help of cytoskele-
tal proteins (26). Full mechanism of vesicles budding from plasma
membrane is not well known. Nonetheless, direct involvement of
some ESCRT machinery proteins like TSG101 into process of vesi-
cle shedding not related with hijack performed by viruses has been
presented. Those results are coming from mammalian cell cultures
(HeLa, HEK293T, and A549) and from C. elegans embryos, sug-
gesting more wide-spread mechanism (22, 27). This once again
raises the question whether TSG101 is suitable as exosome-specific
marker.

Apoptotic bodies are released into extracellular space as the con-
sequence of apoptosis – the programed cell death. Their diameter
range varies from 20–500 nm to 1,000–5,000 nm (15, 28). In this
biological process, activated by p53 and caspases, the apoptotic cell
is splitting into multiple apoptotic blebs, which are autolyzed by
release of lysosomal content or phagocytozed without inflamma-
tory reaction (29). DNA degradation in the nucleus is characteris-
tic for this process and, thus, histones associated with nucleic acid
can be used as biomarkers for apoptotic blebs. However, a great
number of histone fragments have also been found in exosomes
(24, 25).

International Society for extracellular vesicles (EVs) empha-
sized in 2012 that most EV preparations are heterogeneous and
also contain membrane budding vesicles and apoptotic bodies.
Thus, an urge for standardized protocol has been expressed (30).

Importance of exosomes increased after discover of their role
in cell-to-cell communication. Although it is a function reserved
for exosomes, there are also publications describing membrane
derived vesicles as a special type of messengers (15) Thus, vesi-
cles released by one cell, can be taken up by other distal cell (31)
and the respective contents recognized as useful and important
message (32). Of special note is that microRNAs of vesicle cargo
can directly affect processes in the target cell by silencing specific
genes. Moreover, vesicles can transport not only to neighboring
cells but also on relatively long distance (33). It is intriguing to
speculate that in the special case of kidney nephrons, substantial
distant communication between the epithelial cells can take place
(see Figure 2). This distant signaling is used by healthy donor-cells
as well as cancer cells, making it an efficient benefit for cancer pro-
gression and tumor expansion (32). On the other hand, promising
data are presented on using vesicles as treatment of human cells
in vitro. Silencing RNAs (siRNAs) were thus introduced into recov-
ered exosomes, and exposed to HeLa and HT1080 cells in vitro,
efficiently silencing targeted genes (34).

Thus, being EVs carrier of information a relative long list of
functions has been attributed to them depending on the cell
(tissue) type specificity. Characterization of exosomes secreted
from B-lymphocytes and dendritic cells showed that these vesicles
may carry the full set of proteins to induce an immunoresponse
(35–37). Moreover, EVs isolated from various body fluids and
stored blood can induce the production in vitro of inflammatory
cytokines like interleukin (IL)-1, tumor necrosis factor α (TNF-α),
IL-23a for example (38, 39). In addition to exosomes, also MV have
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FIGURE 2 | Schematic picture of the urogenital route with one nephron
and bladder. Bowman’s capsule (BC), proximal convoluted tubule (PCT), loop
of Henle (LH), distal convoluted tubule (DCT), collecting duct (CD), and
bladder (BL). List of specific biomarkers for each nephron segment are

presented in frames. WT-1, Wilm’s tumor 1; CR1, complement receptor 1;
AQP1, aquaporin 1; SGLT2, sodium-glucose linked transporter 2; CA-IV,
carbonic anhydrase IV; THP, Tamm-Horsfall protein; KSP-cadherin, kidney
specific cadherin; AQP2, aquaporin 2.

been proposed to serve as mediators of inflammation (40). Inter-
estingly, MV concentration increases in diseases involving vascular
and microvascular organ injury like diabetes (41–43). In addition
to inflammation, MVs may regulate e.g., the endothelial produc-
tion of reactive oxygen species as mediated by NADPH oxidase (44,
45). Conversely, exosomes released by cells under oxidative stress
can induce neighboring cells to have a higher resistance to ROS,
therefore becoming more tolerant to the damage of oxidative stress
(46). Interestingly, very recently Gildea and colleagues (47) showed
that in their in vitro model of exosomes, cell communication
between proximal and distal tubules, proximal exosomes could
induce distal and proximal duct cells to limit ROS production after
stimulation with a dopamine receptor agonist. Thus, not only this
report reinforces the concept of cell-to-cell communication and
consequently modulator of signal pathway but also extends it to a
new level: nephron segment-to-segment communication.

URINARY VESICLES AS POTENTIAL SOURCE FOR
BIOMARKERS
One of the first publications describing vesicles in the urine dates
back to 1987 when Wiggins et al. described the presence of lipid
MV with procoagulant activity (48) in urine of rabbits in nephro-
toxic nephritis. This was followed by series of reports by Scher-
berich (49) to describe shedding of membrane – bound enzymes
in a vacuolar membrane morphology (50–500 nm in diameter)
from the proximal tubule in patients with kidney injury after

administration of potentially nephrotoxic drugs. Later on Pascual
et al. characterized vesicles carrying complement receptor 1 (CR1)
in urine unequivocally shown to originate from the podocyte
(50). Consequently, these were proposed as markers of podocyte
injury. However, the interest and follow-up remained low until
the first comprehensive description of exosomes in healthy urine
by Pisitkun et al. (51). This publication can be considered the
milestone in the UEV field, opening possibilities for accurate cell
type-specific molecular changes in nephrology and urology.

The unprecedented characterization of the vesicle associated
proteins and protein fractions (apparently due to enzymatic degra-
dation within urine) using especially advanced mass spectrometry
certainly laid a solid basis for their potential applications in clini-
cal diagnostics and disease follow-up and, consequently, brought
UEVs to a wider public awareness. Since then the number of publi-
cations exploring urinary exosomes and/or other MV have rapidly
and exponentially increased. Furthermore, in addition to focus
strictly on exosomes, other types of vesicles have been described
in urine including, among others, exosome-like vesicles (52) and
shedding vesicles (53). Notably, all the UEV subsets have their dis-
tinct intracellular secretory pathways. These are also reflected in
the more or less carefully defined isolation protocols, respectively,
while their distinct potential for diagnostics-disease management
largely overlaps. This emphasizes the need to establish robust
protocols to enable UEVs isolation and analysis in toto for such
purposes.
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Proteomic profiling of UEVs has identified a surprising num-
ber, abundance, and distinct character of proteins originated from
cells all along the nephron epithelium: from the visceral glomeru-
lar epithelial cell (podocyte) to the proximal tubule, thick ascend-
ing limb of Henle, distal convoluted tubule, and the collecting duct
(54–58). Additionally, mass spectrometry analysis has described
amino acid sequences originating of proteins of the lower part of
the genitourinary path including the urinary bladder and prostate
gland (51, 52, 54–58).

Consequently, analysis of urinary exosomes has proven to be
an attractive, non-invasive approach to the physiological state
of epithelial cells of distinct origin. This clearly offers a true
opportunity for future “fluid biopsy” to complement – or up
to replacing – information from the invasive kidney biopsies or
cystoscopy.

Accordingly, Prunotto et al. (59) were recently able to pinpoint
biomarkers and follow the physio-pathological state of specific
cell types by enriching and characterizing vesicles released specif-
ically from the podocyte. Interestingly, their almost 1,200 protein
identifications discovered 14 previously unidentified urinary pro-
teins. Many of these were subsequently classified (by gene ontology
analysis) as brain-specific proteins whose expression in the kidney
was then confirmed. Unless these specific proteins are from vesi-
cles gaining direct passage through the kidney glomerular filter,
this evidence highlights, once again, similarities between podocyte
and set of neuron specific proteins (60). Thus, it seems obvious
that exosomes (together with the other vesicular structures found
in the urine) will genuinely offer an interesting new approach
to dig into the distinct nephron segment-specific molecules and
detect changes induced by disease processes (61).

In addition to proteins, UEVs carry a wide range of genetic
information molecules like mRNA – encoding proteins native to all
nephron regions and, especially small RNA (62, 63) species. While
the few targeted methods may show promise of better RNA yields
(64–66), in general methods for RNA isolation also need serious
optimization. Interestingly, the lipid-bilayered UEVs appear to be
protected of the ubiquitous RNases, suggesting that UEVs do have
a true physiological role in downstream signaling.

While the finding of the variety of viable RNA species in UEVs is
intriguing, the full meaning of this needs to be better understood.
It is interesting to speculate again a role for special downstream
modulation as a form for distant cell-to-cell communication and,
hence, for biomarkers and targets for treatment.

Recently, CD2AP (of the podocyte) specific mRNA has been
proposed as biomarker of kidney disease (67). Among the 194
microRNA species thus far reported from exosomes, 45 had
appeared to present with significant association to blood pressure
modulation (68). Similarly, microRNA-29c in UEVs correlates
with renal function and degree of general fibrosis thus emerg-
ing as a potential urinary marker of renal fibrosis. Barutta and
colleagues recently showed that the expression of miR-130, miR-
145, miR-155, and miR-424 were significantly alterated in type 1
diabetic patients with incipient DN (69). This result deserves full
validation and additional studies. Finally, in addition to RNA and
miRNa, UEVs may serve as carriers of mitochondrial DNA, which
has shown to be significantly decreased in DN patients (70) to sug-
gest that an altered bioenergy supply of kidney cells may promote

ROS production and localized inflammation both contributing to
progress of renal damage [reviewed in Ref. (71)].

For DN, considerable advances have been achieved with bio-
markers derived from UEVs. Accordingly, Wilm’s tumor-1 (WT-1)
protein expression appears to increase with the decline of the
renal function in DN (72). Interestingly, urinary WT-1, most likely
derived from the podocyte, may thus qualify as a simple marker of
podocyte injury rather then a specific marker of DN (73–75).

The amount and activity of dipeptidyl peptidase IV
(DPPIV/CD26) in urinary MV coming from proximal tubule cells
was shown to positively correlate with progression of DN in type
2 diabetic patients (76) suggesting an early tubular impairment,
which may be considered an early marker of renal damage even
before the onset of albuminuria.

Zubiri and colleagues (77) carried out a proteomic quanti-
tative analysis on urine samples from DN patients in advanced
disease stages (CKD stages III–V). A panel of three poten-
tial proteins were included: protein fragment of alpha-1-
microglobulin/bikunin precursor (AMBP), isoform 1 of histone-
lysine N-methyltransferase (MLL3), and voltage-dependent
anion-selective channel protein 1 (VDAC1). These showed dif-
ferential expression in the samples studied. If verified in larger
sample sets, this represents still another promising finding of UEVs
as biomarkers.

Finally, very recently in the animal models of DN an increase
of MVs secreted from podocytes before the onset of albuminuria
(78) was reported. This finding highlights the potential of MV and
other UEVs as early markers of glomerular injury.

Furthermore, changes in WT-1 were seen in DN (72), focal
segmental glomerulosclerosis, and in minimal change nephropa-
thy (73, 74). Studies performed in other kidney diseases like IgA
nephropathy and thin basement membrane nephropathy (TBMN)
(79) have identified four candidate proteins (aminopeptidase N,
vasorin, ceruloplasmin, and α1 anti-trypsin) associated to UEVs,
which appear differently expressed in disease. Among the four
protein candidates ceruloplasmin showed highest sensitivity and
specificity to distinguish IgA from TBMN. However, for full
verification more samples are needed.

Several candidate biomarkers proposed have not followed yet.
For example, Fetuin-A has been proposed as predictive biomarkers
for acute kidney injury (80) while no further evidence to validate
the original finding has been presented. Similarly, aquaporin-1
(AQP-1) was presented as a novel specific urinary biomarker to
follow-up ischemia reperfusion injury (81) while further studies
are needed for validation.

METHODS FOR EXTRACELLULAR VESICLE AND URINARY
EXTRACELLULAR VESICLE ISOLATION
Although the number of publications describing a variety of pro-
tein and RNA based potential disease biomarkers is still increasing,
there is no consensus of standard protocols for EV isolation.

In most studies of UEVs, the method of differential centrifu-
gation is used for their isolation with the aim to obtain enriched
exosomal fraction. However, minor technical variability is often
described, which may lead to significant impact on final results
(82). Notably, there is no agreement in cell and cell debris removal
from either cell culture media or from biofluids. Some studies use
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centrifugations with low different relative centrifugal forces (RCF)
(lower than 10,000 g ) whereas, others prefer direct approach with
force over 16,000 g for cell debris and apoptotic bleb removal
(29, 37). Unfortunately, little systematic analytics of the discarded
fractions have been published.

Still another point of inconsistency is the ultracentrifugation
step in which forces achieved may vary from 100,000 g up to
200,000 g. In this respect, it is important to note that Thery and
colleagues could show that sedimentation point for most types of
vesicles may range between 100,000 and 200,000 g and highlighted
that obtained fractions are heterogeneous (37).

Relative centrifugal force (g ) given in most publications is
describing only force applied on the bottom of vial. Lack of tech-
nical information like type of rotor (fixed angle or swing bucket),
diameter, volume, and viscosity of the sample do not allow esti-
mated the force affecting upper part of media/biofluid. This leads
to variable yield obtained from similar type of samples, which may
cause challenges in downstream applications (83) of the material
isolated.

In some studies, ultrafiltration is applied between differential
centrifugation steps. Here also lack of standardization leads to use
special filter device with varying porous filter from 0.1 or 0.2 µm
up to 0.8 µm (26, 29, 30) and the appropriate moment for use
(after low force centrifugation step or directly before ultracen-
trifugation). Additionally, little systematics has been devoted to
lost yield caused by clogs of the filter membrane or variability of
exosome size (82). In terms of membrane-derived vesicles, removal
at this step is questionable as size of these structures vary from 20
up to 1,000 nm (30, 37), and we do not know if particular disease
can have impact on their size distribution.

Lately, commercial products for exosome enrichment have been
released (ExoQuick®System Biosciences and Total exosome isola-
tion reagent ®Invitrogen), which allow to omit the ultracentrifuga-
tion step (84). It is worth to emphasize that regardless the product
names, they are enriching heterogeneous populations of vesicles
but their use carry also disadvantages. They are cost-efficient only
for very concentrated samples like plasma and, furthermore, these
methods are poorly applicable for diluted biofluids (e.g., urine).
Additionally, they may cause co-precipitation of most abundant
soluble proteins in media/biofluid and thus are not suitable for
protein profiling using Mass Spectrometry.

Methods for isolation of UEV are mainly based on differential
centrifugation with some modification due to the intrinsic and
peculiar characteristics of urine as sample. The first subfraction
was reported by Pisitkun et al. (51) while detailed analysis of their
efficiency, specificity for the targeted fractions has not been sys-
tematically studied. Moreover, efficiency of these methods so as
not to lose valuable UEV fractions remains to be defined. Further-
more, as stated above, the true practical importance of obtaining
highly pure subpopulations still remains elusive. A major reason
for this is that while the intracellular pathways in the formation of
various vesicle classes have been well established (20), their con-
tents indiscriminately reflect events interior of the cell. Thus, from
the applications point of view to reflect cell type-specific changes,
the whole variety of UEVs may be more important to harvest
for analysis. As an example, CR1, among the full array of com-
plement pathway-specific proteins has been recognized among

the 1,195 protein identifications with the method used (pullout
by podocyte-specific antibody) (59). Presently available methods,
furthermore, do not distinguish abundance of each of the pro-
tein species among the full UEV repertoire leaving opportunity
for method improvement. Likewise, the same problem of cross-
contamination with UEV subspecies, loss of substantial fractions
of specific target vesicles usually occurs when the separation is
made on physical characteristics of the vesicles e.g., by their density
buoyancy (52, 79, 85–87).

The most abundant proteins in the UEVs include e.g., human
serum albumin (or, more precisely, its fragments) and Tamm–
Horsfall Protein (THP) (produced in cells of ascending limb
of the loop of Henle), Aquaporin-1 (of the proximal tubulus),
Aquaporin-2 (distal tubulus and collecting duct), uroplakin (uri-
nary bladder) in addition to apolipoproteins, immunoglobulins,
and other soluble proteins (54, 88, 89). Their presence in the whole
UEV proteome has been well established and thus, already provide
source for nephron segment-specific detailing.

Tamm–Horsfall glycoprotein represents a special case among
UEV proteins as it actively forms urinary protein meshworks to
entrap a variety of vesicles (89). This may reflect a physiolog-
ical role for THP to modulate UEV abundance. Consequently,
adherence to THP may result in huge differences in the UEV sub-
type yields if the THP “contaminant” is not removed from urine
at the early steps of UEV isolation. It is interesting to note that
our recent observations clearly show high fluctuations of daily,
intraindividual THP levels in the urine (unpublished data). As
THP is secreted mainly from the distal parts of nephron, this
could reflect the proposed physiological role of THP to modu-
late UEV access to more downstream targets. Interestingly, UEVs
are known to display a distinct surface proteome (as opposed to
their respective “cargo”) consisting of specific proteins also capa-
ble for receptor binding. Thus, modulating the UEV availability
may be constantly in control by other secreted urinary proteins
like THP.

The conventional isolation protocol of UEVs starts with a
pre-concentration step, followed by series of differential cen-
trifugations or direct ultrafiltration (mostly to reduce the final
volume). For density gradients to distinguish UEV subclasses,
the same density layer proteins “characteristic” of exosomes (i.e.,
with marker protein TSG101), MV (marker prominin-1), apop-
totic markers (marker histone proteins) along with matrix proteins
(collagens, fibronectin fractions), soluble proteins (THP/HSA), or
apolipoproteins (E, D, A1, AIV) can be found indiscriminately. Up
to now no study has evaluated the possibility of vesicle–matrix,
vesicle–soluble protein, vesicle–vesicle, and vesicle–lipoprotein
interaction or whether this is a technical artifact caused by the
pre-enrichment step. For comprehensive evaluation of UEV use-
fulness for physiological analytics and not to cross-contaminate
them in different density gradient layers, systematics to yield opti-
mized protocols should be achieved. Moreover, no studies have
carefully addressed the localization of UEV protein contents them-
selves: are they present on outer surface or inside the vesicles is
important to understand their possible role in distant signaling
along the nephron. Our recent results indicate considerable dif-
ferences in these two UEV domains to suggest of distinct “address
tag” and/or effector functions, respectively. Notably, one report
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has shown that in urine of patients with light chain amyloido-
sis, multiple myeloma, and monoclonal gammopathy of unde-
termined significance (MGUS), light chains were found on the
exosome surfaces (90).

BOTTLENECKS OF UEV ISOLATION AND FUTURE ASPECTS
As reported previously, one of the factors limiting wide implemen-
tation of UEVs includes the ambiguity of the isolation methods in
use. The current golden standard method initially established by
Pisitkun et al. (51) includes differential centrifugations followed by
treatment of the yield either with a reducing agent (like dithiothre-
itol) followed by a second ultracentrifugation step (9, 51, 54, 55, 61,
63, 77, 91) or/and by centrifugation in density cushion/gradient
(52, 88, 92, 93) or/and by size exclusion chromatography (94)
or/and by ultrafiltration devices (9, 62, 64) or/and ExoQuick pre-
cipitation reagent (7, 54). All these protocols have their advantages
and limitations (Table 1) while aim to obtain pure population of
vesicles, especially exosomes. At the same time these protocols
attempt to eliminate the undesirable interference from THP also
known as uromodulin (UMOD). THP forms polymers in urine
that sediment during centrifugation and easily entraps vesicles
(95). Our results fully recapitulate this problem and call for bet-
ter solutions to avoid it (manuscript in submission). The most
commonly used and fast approach uses a reduction step by dithio-
threitol (DTT) to reduce the 24 disulfide bonds of THP in order
to increase the yield of vesicles after ultracentrifugation. Unfortu-
nately, this extra step further complicates the UEV isolation process
and, despite the de-folding of THP, this still co-sediments with
UEVs. In fact such a denaturation step can cause aggregation due to
the exposure of hydrophobic domains in an aqueous environment.
Furthermore, this leads to alterations in the three-dimensional
structure of THP to minimize its free energy by optimized hid-
ing of hydropobic groups and, conversely, exposing as many polar
residues as possible in the unnatural, non-urine environment. The
hydrophobic groups can also interact with each other to form
intermolecular hydrophobic bonds further catalyzing aggregation
and co-precipitation with abundant UEVs attached. This mech-
anism is plausible and was recently exploited to deplete plasma
from high abundant disulfide-rich proteins for mass spectrometry
analysis (96).

Factors in UEV isolation conditions such as variable pH, tem-
perature, and ionic strength can further influence the ratio of
the interaction between hydrophobic residues themselves and/or
interaction with the solvent (97). These evidences may directly
explain the differences in results obtained and call for better
standardized isolation protocols. Our hydrostatic dialysis (HD)
method (manuscript in submission) utilizes simple dialysis with
defined cut-off membrane directly for the whole void urine and
achieves a superior yield of UEVs while simultaneously elim-
inating THP contamination and, furthermore, standardizes the
electrolyte content of the sample. By additionally eliminating the
need for ultracentrifugation steps and yielding reasonable volumes
e.g., for biobanking purposes at low cost, a very high throughput
of samples can be obtained easily.

We have also replaced DTT treatment with a more gentle zwitte-
rionic detergent, 3-[(3-cholamidopropyl)dimethylammonio]-1-
propanesulfonic (CHAPS) to better preserve the tertiary structure

stabilized by disulfide bonds (98). CHAPS is a non-denaturating
detergent designed to disrupt non-specific protein interactions
and preserving protein conformation (99). Moreover, the aver-
age size of CHAPS derived micelles is ~6 kDa and, therefore, it
can easily be removed by a simple dialysis step. With the intro-
duction of CHAPS we also manage to preserve the activity of
two indicator enzymes associated to UEVs-dipeptidyl dipepti-
dase IV (DPPIV) and nephrilysin (NEP) (99). Especially, NEP
activity benefits of the replacement of DTT to CHAPS. As an
obvious explanation for these results, the extracellular domain of
NEP contains 12 cysteine residues, forming 6 disulfide bridges.
Four of these are located within the catalytic domain while
the other two participate in maintaining the structure consist-
ing of two multiply connected folding domains embracing a
central cavity containing the active site (100). Evaluation the
proteolytic activity of NEP after reduction and re-oxidation
of disulfide bridges during dialysis highlights that an incor-
rect re-folding of the enzyme could have happened leading to
an impairment of NEP activity. Therefore, for the aforemen-
tioned reasons, CHAPS can be considered an optimized substitute
of DTT if remaining physiological activity in the sample is of
importance.

However, both UEV treatments, with DTT and CHAPS, did not
completely remove the THP interference from the pellet recovered.
It is, however, to remember that THP is a glycosylphosphatidyli-
nositol (GPI) anchor protein synthetized exclusively by the epithe-
lial cells at the ascending limb of Henle’s loop. It is transported to
the apical side of the plasma membrane and released in the tubular
lumen by a still undefined protease action [see Rampoldi et al. for
more details, (101)].

As a GPI-anchored protein and in such abundance in the urine,
THP may be involved in the formation of membrane cargo vesi-
cles and, perhaps, also in the signal transduction by providing a
receptor structure for ligands like cytokines (102–105). In sup-
port of its involvement as receptor and vesicle trafficking, THP
was recently found in basolateral translocation process followed
by secretion in the circulation. This was, interestingly, associ-
ated with recovery of kidney function in a murine model of
ischemic acute kidney injury (106). Thus it should not come
as a surprise if THP, as a GPI-anchored protein, is a key con-
stituent of MV shed in the tubular lumen by direct budding of
plasma membrane or as secreted through the endosomal pathway.
More detailed studies to elucidate these proposed functions are
warranted.

Although differential centrifugation is widely used to recover
UEVs it has several shortcomings. One major drawback is the less-
optimal efficiency of recovery in the distinct pellet fraction (107)
but also in the final supernatant. Rotor type, g-forces applied,
and centrifugation time significantly affect the final yield (108).
Moreover, such a methodology does not allow high throughput of
samples.

Alternative methods proposed to avoid these limitations are
the use of customized nano-membrane concentrators and micro-
filtration disk membranes (57, 59, 62, 76, 77, 89, 91, 109, 110).
Exosomes and abundant soluble protein fractions bind to the
membrane surfaces of these device non-selectively and irrespec-
tive of the chemical composition of the filters. This leads to
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Table 1 | Overview of the main methods to isolate urinary vesicles.

Reference Short method description Advantages Disadvantages

Barutta et al. (69) Differential centrifugation Vesicles enrichment as a

pellet

No fixed conditions for: 1.

number of centrifugations; 2.

relative centrifugation force; 3.

time; 4. rotor type; 5. sample

volume; 6. temperature during

centrifugation; and 7.

presence/absence of protease

inhibitors

Not applicable for large volume

of samples and not suitable for

large cohort of patients.

Expensive equipment like

ultracentrifuge and HPLC are

necessary to implement UEVs

enrichment

Gildea et al. (47) Differential centrifugation

Kalani et al. (72) Differential centrifugation

Lv et al. (65) Differential centrifugation

Musante et al. (98) Differential centrifugation +

CHAPS treatment

Protein activity prevention Labor intensive

Gonzales et al. (54) Differential centrifugation +

DTT treatment

Increase of the exosomal

yield in the

ultracentrifugation pellet

from THP interference

Not suitable for protein activity

assessment designated

samples. Incomplete removal

of THP from the

ultracentrifugation pellet

Fernandez-Llama

et al. (95)

Differential centrifugation +

DTT treatment

Wang et al. (55) Differential centrifugation +

DTT treatment

Cheng et al. (63) Differential centrifugation +

DTT treatment

Rood et al. (91) Differential centrifugation +

SEC

Vesicle separation

according to size

Labor intensive

Rood et al. (91) Nano-membrane filtration Concentration and removal

of soluble proteins

Differences in removal of

bigger (>0.22 µm or more)

vesicles without assessment of

their importance for biomarkers

screening. Adsorption of

vesicles on the surface of

ultrafiltration membrane

Merchant et al. (89) Differential centrifugation +

microfiltration

Miranda et al. (62) Differential centrifugation +

nanofiltration

Principe et al. (57) Differential centrifugation +

ultrafiltration

Prunotto et al. (59) Differential centrifugation +

ultrafiltration

Hogan et al. (52) Differential centrifugation +

sucrose gradient

Vesicle separation

according to density

Extremely labor intensive

Raimondo et al. (116) Differential centrifugation +

sucrose gradient

Ramirez-Alvarado

et al. (90)

Ultrafiltration + differential

centrifugation

Vesicle separation

according to density

Extremely labor intensive

Zubiri et al. (77) Exoquick No need of

ultracentrifugation step.

Suitable for extraction of

RNA and DNA

Precipitation solution is

expensive especially when

applied for large volumes of

urine and number of samples.

For proteomic analysis, extra

steps are necessary to remove

the interference from

precipitating agent

Alvarez (64) Exoquick

Musante et al.

(unpublished)

Hydrostatic dialysis Inexpensive, large volume

of urine

excessive obstruction of the nano-membrane. Thus, only smallish
volumes of urine can be processed and, therefore, centrifugation
still remains the preferential method to enrich and isolate UEVs.

However, independently from the method used some common
problems remain. First, the volume of urine to be processed is
limited while the time required is excessive.
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Musante et al. Extracellular vesicles from podocytes

FIGURE 3 | Hydrostatic dialysis systems set up for large (0.5–1 l)
medium (200–600 ml) and small volume (10–100 ml) of urine. The
dialysis membrane tube (MWCO 1,000 kDa) is connected to the
separating funnel and/or a normal funnel. The bottom end is sealed with a
universal dialysis tube closure. The separating funnel is filled in with
supernatant from 2,000 g centrifugation (A). The hydrostatic pressure of
urine in funnel pushes the solvent (water) trough the meshwork of
dialysis membrane and liquid below the MWCO, which fells to the bottom

of the cylinder (B). When urine is concentrated up to 7–8 ml (C) the funnel
is re-filled with milliQ water (~200 ml equivalent to 25 volumes of
concentrated urine), which flushes away all analytes left inside the tube
(D). This dialysis step is kept going until the solution is completely clear
from yellow pigments (as internal natural control) and concentrated to a
desired final volume (E). The whole process has been named hydrostatic
dialysis. Finally, it is possible to observe the diffusion of urine from the
tube and precipitation at the bottom of the cylinder (E).

We propose that most direct benefit emerging from under-
standing of EV biology will come from individualized measure-
ments: personalized datasets of efficiency, side-effects, and general
performance of medications. Furthermore, it is easy to specu-
late that simple measurements based on non-invasive sampling
of biofluids like urine will prove to be very important in disease
progression, prognostics, and disease management in general.

Among the main limitation of working on UEV we would like
to emphasize the dilution of the sample, limited amount of starting
material (biobanking) and the extreme range of reference interval
for analytes (urine is a waste product) responsible of a massive
intra- and inter-individual analytical variability (111) In order to
overcome such limitations, we recently designed and characterized
an alternative approach for vesicle enrichment using basic, cost-
efficient laboratory equipment we named our system HD from its
operating principle (Figure 3).

In HD, urine samples are initially centrifuged at a RCF of 2,000 g
to remove cells, bacteria, cellular casts, and the bulk of the preva-
lent THP macropolymers. Thereafter, the resulting supernatant is
poured in the dialysis system consisting of a funnel connected
with simple dialysis membrane with molecular weight cut-off
(MWCO) of 1,000 kDa. The cut-off mol weight is easy to modify
if needed for special purposes.

The hydrostatic pressure created by the sheer column of urinary
solution is strong enough to push the solvent through the mesh of
dialysis membrane together with all constituents, often containing
unnecessary contaminants below the selected MWCO. This step
simultaneously concentrates the sample, while the funnel is re-
filled with deionized water and/or buffer of choice to rinse away
all the analytes below the selected MWCO. This step optimizes and
standardizes both sample concentration, electrolyte content, and
sample volume to be suitable directly e.g., to biobanking of urine
even from large volumes of starting material.

Full characterization of this methods revealed that it can enrich
UEVs with far superior efficiency and minimal loss of vesicles on
the dialysis membrane and in a short time compared to serial
centrifugations.

We established that the filtration rate in HD is proportional to
the volume of urine contained in the funnel with an average of
75 ml per hour of urine filtrate which takes also into consideration

the fact that for large volume of urine (>200 ml) the system may
loose some of its efficiency due the adsorption of soluble protein
and/or vesicles in the dialysis. We found, however, that for the vol-
ume of 200 ml of urine, up to 18% of TSG101 and 45% of THP
signal, respectively is adsorbed in the dialysis membrane. However,
this method is a gentle way to concentrate first and then dialyze
samples. In fact, urinary concentration already takes place at 1 g
gravity at atmospheric pressure of sea level with respect to the
3,000 g RCF needed for the nano-membrane concentrator with
60 psi of special atmosphere of nitrogen pressure (64, 89, 91).

As urine is by far the simplest biofluid to collect in large quan-
tities for biobanking purposes, our method vastly simplifies the
process and practical volumes can easily be achieved for storaging.

However, it is worth to notice that urine in normal condition is
a diluted solution and membrane protein most likely associated to
UEVs represents an estimated 3% of the urinary proteome (112).
Thus, by using HD the void urine can be collected and the whole
volume processes soon after the first centrifugation. We have thus
far handled up to 500 ml of urine within 24 h without changing in
the protein pattern obtained. Moreover, several HD device can be
run simultaneously and with minimal costs.

Notably, this new approach also allows normalizing the physical
and chemical parameters of the retained solutions by eliminating
all the urinary constituents’ analytes below the chosen MWCO.
As recently reported, different sample compositions have an effect
on the viscosity of the samples, which distorts the recovery of
vesicles as obtained by differential centrifugation (113). Although
urine is a diluted solution with a density and viscosity close to
water we noticed that when the tip of the dialysis bag is immersed
in water the stream of urine flowing from the tube sank on the
bottom of the cylinder. Factors affecting the viscosity of urine
include temperature, protein content (114), and hydration status
(115). These are of pivotal importance when a comparative analy-
sis between different subjects and patients’ samples with different
grade of hydration and proteinuria are compared and a differential
centrifugation protocol is employed.

In conclusion, although more than a decade has passed, inter-
est and number of publications have been soaring, the simple
UEV isolation still meets several challenges to overcome. Urine
collection and methodology to enrich vesicles need to be optimized
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especially for clinical settings of sample collection and storaging.
One particular challenge to overcome includes definition of suit-
able housekeeping genes and proteins to yield comparable results.
Large scale validation of biomarkers derived from UEVs similarly
remains to be accomplished. However, it is apparent that com-
prehensive understanding of the role of UEVs, both their surface
proteome and internal cargo molecules and respective roles in
distant addressing and cell-to-cell communication even to distant
downstream location has started while careful future optimization
of protocols and methods as well as standardization are needed.
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