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Abstract

Human sensory and motor systems provide the natural means for the exchange of information between individuals, and,
hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an
important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are
now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be
combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects
(hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the
intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding
words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the
realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B
communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes
with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial
magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a
critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully
developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the
scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on
the social structure of our civilization and raise important ethical issues.
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Introduction

The evolution of civilization points to a progressive increase of

the interrelations between human minds, where by ‘‘mind’’ we

mean a set of processes carried out by the brain [1]. Until recently,

the exchange of communication between minds or brains of

different individuals has been supported and constrained by the

sensorial and motor arsenals of our body. However, there is now

the possibility of a new era in which brains will dialogue in a more

direct way [2]. Previous attempts to realize this vision include

demonstrations of bidirectional computer-brain communication

[3–5] and cortical-spinal communication [6] in the monkey, and

hippocampus-to-hippocampus [7] or social communication [8] in

the rat – all of invasive nature. Despite these and other significant

advances with human subjects [9–10], invasive methods in

humans remain severely limited in their practical usefulness.

Pioneering research in the 60’s using non-invasive means already

demonstrated the voluntary control of alpha rhythm de-synchro-

nization to send messages based on Morse code [11]. Over the last
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15 years, technologies for non-invasive transmission of information

from brains to computers have developed considerably, and today

brain-computer interfaces embody a well-established, innovative

field of study with many potential applications [12–16]. Recent

work has demonstrated fully non-invasive human to rat B2B

communication by combining motor imagery driven EEG in

humans on the BCI side with ultrasound brain stimulation on the

CBI-rat side [17]. However, the realization of non-invasive CBI in

humans remains elusive, and adequate methodologies to provide

computer-mediated non-invasive brain conscious interventions are

lacking. Here we show how to link two human minds directly by

integrating two neurotechnologies – BCI and CBI –, fulfilling

three important conditions, namely a) being non-invasive, b)

cortically based, and c) consciously driven (Fig. 1). In this

framework we provide the first demonstration of non-invasive

direct communication between human minds.

Materials and Methods

Human Subjects
Four healthy participants (age range 28–50) were recruited, and

their informed written consent was obtained. Of the four subjects,

one was assigned to the BCI branch (the emitter - Subject 1) and

the other three to the CBI branch of the experiments (i.e., as

receivers - Subjects 2, 3 and 4).

Ethics Statement
The Ethics Committee of the University of Barcelona, following

the Ethical Principles for Medical Research Involving Human

Subjects of the WMA Declaration of Helsinki, approved this study.

The TMS part of the experiments was conducted according to

TMS safety guidelines [18]. The individuals in this manuscript

gave their written informed consent (as outlined in the PLOS

consent form) to publish these case details.

Methods Summary
The computer-mediated brain-to-brain transmission from

Thiruvananthapuram (Kerala state, India) (BCI side) to Stras-

bourg, France (CBI) was realized using internet-linked EEG and

TMS technologies respectively. On the CBI side, three informa-

tion receiver subjects were stimulated with biphasic TMS pulses at

a subject-specific occipital cortex site. The intensity of pulses was

adjusted for each subject so that a) one particular orientation of the

TMS-induced electric field produced phosphenes [19] (represent-

ing the ‘‘active direction’’ and coding the bit value ‘‘1’’), and b) the

orthogonal direction did not produce phosphenes (representing the

‘‘silent direction’’ and coding the bit value ‘‘0’’). Subjects reported

verbally whether or not they perceived phosphenes on stimulation.

A fourth subject acted as emitter of information using a BCI system

based on motor imagery (of moving feet or hands) to select two

kinds of states in EEG spectral power in the motor cortex (coding

for the bit values of ‘‘0’’ and ‘‘1’’). We ensured that receiver

subjects were not relying on peripheral nervous system (PNS) cues

(visual, tactile and auditory sensations produced by the TMS

device) to decode the information by blocking sensory cues: we

used a force sensor on the coil to maintain a constant contact

pressure on the scalp, implemented a coil rotation information

encoding strategy (as opposed to one relying on coil location), and

had subjects wear eye mask and earplugs. We verified the

effectiveness of these means in series of d-prime control exper-

iments [20–22] comparing pairs of stimuli delivered either with the

same or different orientations of the coil. Finally, as performance

measures for the BCI, CBI and B2B system we analyzed error

transmission rates and transmission speed (bits per minute).

Brain-Computer Interface
The BCI communication subsystem used in our experiments

converted conscious voluntary motor imagery into brain activity

changes that could be captured non-invasively as physical signals

Figure 1. Brain-to-brain (B2B) communication system overview. On the left, the BCI subsystem is shown schematically, including electrodes
over the motor cortex and the EEG amplifier/transmitter wireless box in the cap. Motor imagery of the feet codes the bit value 0, of the hands codes
bit value 1. On the right, the CBI system is illustrated, highlighting the role of coil orientation for encoding the two bit values. Communication
between the BCI and CBI components is mediated by the internet.
doi:10.1371/journal.pone.0105225.g001
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conveying information. To monitor EEG activity related with

motor imagery tasks we used a wireless (500 S/s, 24 bit) EEG

recording system [23] (Starstim tCS/EEG system, by Neuro-

electrics, http://www.neuroelectrics.com). Eight Ag/AgCl elec-

trodes were placed at F3, F4, T7, C3, Cz, C4, T8 and Fz scalp

sites (10–20 EEG positioning system) and electrically referenced to

a clip electrode placed in the right ear lobe. A spatial filter was

applied to the electrodes of interest (C3, Cz and C4) by referencing

them to the average potential of their neighboring electrodes. To

transform EEG signals into binary information we used the BCI-

2000 platform [24] implementing the detection of anatomically

localized changes in EEG related with voluntary motor imagery.

The emitter subject was sequentially shown on the screen a

representation of the bits to be transmitted (the message). Each bit

was represented either by a target cue in the downright part of the

screen (bit value 0) or in the upright part (bit value 1) (Figs. 1 and

2). If the bit to be transmitted was a 1 (0), the emitter was to

encode it through motor imagery of the hands (feet). These motor

imagery tasks controlled the vertical movement of a ball appearing

on the screen from the left with a constant horizontal speed. If the

ball hit the displayed target on the right of the screen, the

transmitted bit was then correctly encoded. Whatever the outcome

the BCI encoded bits were then automatically sent via email to the

CBI subsystem. Following a training period, the emitter subject

was able to regularly achieve an accuracy of well over 90% in BCI

encoding.

Computer-Brain Interface
For the CBI subsystem, we relied on biphasic TMS pulses to

encode information. For each receiver subject, we identified first a

TMS phosphene-producing hotspot in the right visual occipital

cortex (approximately 2 cm anterior and 2 cm right from inion,

the precise location depending on the subject), which was used for

the active condition (to encode the bit value ‘1’). We achieved the

required high precision in relocation and reorientation of the TMS

target by using a neuronavigated [25–28], robotized TMS system

(Axilum Robotics TMS-Robot, http://www.axilumrobotics.com,

piloted by Localite 2.8 Neuronavigation system using the

MagVenture MagPro R30 TMS Stimulator with a ‘‘butterfly’’

coil of type Cool-B65-RO). Subjects went through a familiariza-

tion period in which we administered several TMS pulses to the

chosen right occipital cortex site using various rotations of the coil,

and identified the intensity of TMS pulses (range 57–90% of

maximum intensity of the coil) that optimally discriminated active
(i.e., producing phosphenes) from silent (not producing phos-

phenes) orientations (Fig. 3). Subjects described the sensations of

light produced by TMS pulses of the active orientation as having a

strong, clear and reliable nature, and located at the bottom of the

visual field contralateral to the stimulation site [29]. They were

instructed to report verbally the presence of phosphenes imme-

diately after TMS pulse delivery. TMS pulses were administered

by the robotized TMS system controlled by a researcher sitting

away from the visual field of the subject, or directly programmed

into the neuronavigation computer by the BCI message sequence

received via email (Fig 2). Sequences of two or three redundant

TMS pulses were delivered with an inter-stimulus interval of 2

seconds.

Our first robotized CBI experiments (subject 1) used a position-

dependent encoding with the TMS hotspot representing the active

condition (bit = 1) and another scalp location (displaced about

2 cm from the first) representing the silent condition (bit = 0). This

strategy was used for CBI transmissions of 60 bit messages with a

low error rate. An associated first B2B experiment (Barcelona to

Strasbourg) – carried out offline (i.e., with the BCI and CBI

branches of transmission separated in time by buffering the data

after BCI transmission) – resulted in a 15% transmission error rate

(5% in the BCI segment and 11% in the CBI one). However, we

identified the possibility that the receiver subject at the CBI end

was being cued on the (active or silent) stimulation condition by

PNS sensory inputs (tactile, auditory or visual) related to the

repositioning of the coil at different scalp sites. In order to rule this

out, we implemented a series of measures on the next experiments

Figure 2. View of emitter and receiver subjects with non-invasive devices supporting, respectively, the BCI based on EEG changes
driven by motor imagery (left) and the CBI based on the reception of phosphenes elicited by a neuronavigated TMS (right)
components of the B2B transmission system. The successfully transmitted code in the particular scenario shown is a ‘0’: the target and ball are
at the bottom of the screen (correctly encoding a 0 through motor imagery of the feet) and the TMS coil is in the orientation not producing
phosphenes for this particular participant (subject 2, see Figure 3), with the handle pointing upwards.
doi:10.1371/journal.pone.0105225.g002
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– including the final B2B transmissions described below. First, to

avoid contact related cues and taking advantage of the anisotropic

response of the visual cortex to TMS [30], we adopted the strategy

of encoding bits through rotation of the TMS coil: the location and

‘‘active’’ orientation of the coil (producing phosphenes in most

trials) were chosen with the condition that a 90u rotation of the coil

on the same location did not produce phosphenes (Fig. 2). The

robot was programmed to move the coil away from the scalp after

the delivery of each triad of TMS pulses. A force sensor on the coil

surface was used to maintain a constant contact force with the

scalp in all conditions. The cable holder on the robot was adjusted

to keep the coil’s cable at a good distance from the subject’s

shoulders and back, preventing contact during coil rotation.

Second, to avoid identification of coil orientation from auditory

information, subjects wore earplugs and the robot moved the coil

between each pair or triads of TMS pulses towards a parking site

located approximately 1 cm away from the scalp with an

intermediate rotation of 45u. This forced the robot to realize a

movement of similar duration and with equal noise levels for all bit

transmission events, irrespective of coil orientation. Lastly, we

blocked visual cues on stimulation configuration by having subjects

close their eyes and wear an eye mask.

To assess the effectiveness of these measures, we carried out a

series of control studies using the sensitivity index (or d-prime)

statistic [20–22]. The first control studied TMS noise induced

auditory cueing and had subjects (2 and 3) wear an eye mask and

earplugs and receive a sequence of 32 balanced pairs of three

TMS stimuli randomly interspersed over silent and active

conditions. We mimicked the contact of the coil but eliminated

the production of phosphenes by interposing, between coil and

scalp, a single piece of foam slightly displacing (,1 cm) the center

of the coil orthogonally away from the head. After the

administration of each pair (of triads) of stimuli, subjects were

asked if they were delivered with the equal or different

orientations. Then, we performed a second control experiment

to evaluate cues from (tactile) skin contact, based on another

sequence of 32 balanced pairs, without foam on the coil but setting

a null intensity in the magnetic stimulator. Results from these tests

indicated with high confidence that, after correct blinding of

auditory, visual or tactile cues, the subjects were unable to

distinguish coil orientations in the absence of actual phosphene-

inducing TMS pulses (Subject 2: d9 = 0.0 in the auditory task,

d9 = 20.1 in the skin contact task; Subject 3: d9 = 0.6 in the

auditory task, d9 = 0.1 in the skin task).

Results

The final round of experiments targeted the demonstration of

online brain-to-brain transmission of information between re-

motely located subjects. On March 28th, 2014, 140 bits were

encoded by the BCI emitter in Thiruvananthapuram and

automatically sent via email to Strasbourg, where the CBI receiver

(subject 3) was located. There, a program parsed incoming emails

to navigate the robot and deliver TMS pulses precisely over the

selected site and with the appropriate coil orientation. A similar

transmission with receiver subject 2 took place on April 7th, 2014.

In both cases, the transmitted pseudo-random sequences carried

encrypted messages encoding a word – ‘‘hola’’ (‘‘hello’’ in Catalan

or Spanish) in the first transmission, ‘‘ciao’’ (‘‘hello’’ or ‘‘goodbye’’

in Italian) in the second. Words were encoded using a 5-bit Bacon

cipher [31] (employing 20 bits) and replicated for redundancy 7

times (for a total of 140 bits). The resulting bit streams were then

randomized using random cyphers selected to produce balanced

pseudo-random sequences of 0’s and 1’s (for subject blinding and

proper statistical analysis purposes in addition to providing word-

coding). On reception, de-cyphering and majority voting from the

copies of the word were used to decode the message.

In these experiments, the individual BCI and CBI segments as

well as the complete B2B link provided transmission of pseudo-

random information with excellent integrity. In the first experi-

ment the transmission error rates were of 6%, 5% and 11% for the

BCI, CBI and the combined B2B components respectively, and in

the second, error rates were of 2%, 1% and 4% respectively. We

note that the probability of transmission of lists of 140 items having

occurred with the low observed error rates or less by chance is

negligible (p,10222). For example, the probability of guessing

correctly 140 random, balanced bits with an error rate of 20% (28

errors out of 140) or less is extremely low, this being equivalent to

obtaining 112 heads or more after 140 tosses of a fair coin (p,

10213).

BCI and CBI transmission rates were of 3 and 2 bits per minute

respectively. The overall B2B transmission speed was of 2 bits per

minute (limited by the CBI branch). The encoded words were

transmitted with full integrity by all links – BCI, CBI and B2B.

Discussion

In these experiments we demonstrated the feasibility of direct

brain-to-brain communication in human subjects, with special

care taken to ensure the non-participation of sensory or motor

systems in the exchange of information (Figure 1). Streams of

pseudo-random bits representing the words ‘‘hola’’ and ‘‘ciao’’

were successfully transmitted mind-to-mind between human

Figure 3. Location and orientation of hot spot for phospene production overlaid on MRI image of the head of subject 2 (see
Figure 2). The active direction producing phospenes is highlighted in orange (in red, the orthogonal direction not producing phosphenes).
doi:10.1371/journal.pone.0105225.g003
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subjects separated by a great distance, with a negligible probability

of this happening by chance.

We believe these experiments represent an important first step

in exploring the feasibility of complementing or bypassing

traditional language-based or other motor/PNS mediated means

in interpersonal communication. Although certainly limited in

nature (e.g., the bit rates achieved in our experiments were modest

even by current BCI standards, mostly due to the dynamics of the

precise CBI implementation), these initial results suggest new

research directions, including the non-invasive direct transmission

of emotions and feelings or the possibility of sense synthesis in

humans, that is, the direct interface of arbitrary sensors with the

human brain using brain stimulation, as previously demonstrated

in animals with invasive methods [2].

The main differences of this work relative to previous brain-to

brain research are a) the use of human emitter and receiver

subjects, b) the use of fully non-invasive technology and c) the

conscious nature of the communicated content. Indeed, we may

use the term mind-to-mind transmission here as opposed to brain-
to-brain, because both the origin and the destination of the

communication involved the conscious activity of the subjects.

Our findings strengthen the relevance of integrating the CBI

branch in human-computer communication using precision

technologies for high performance (i.e., a robotized, neuronavi-

gated TMS system). Importantly, we demonstrated the use of

rotation-encoding TMS induced phosphenes as a reliable CBI

solution, providing methods and controls to exclude PNS

involvement.

The proposed technology could be extended to support a bi-

directional dialogue between two or more mind/brains (namely,

by the integration of EEG and TMS systems in each subject). In

addition, we speculate that future research could explore the use of

closed mind-loops in which information associated to voluntary

activity from a brain area or network is captured and, after

adequate external processing, used to control other brain elements

in the same subject. This approach could lead to conscious

synthetically mediated modulation of phenomena best detected

subjectively by the subject, including emotions, pain and

psychotic, depressive or obsessive-compulsive thoughts.

Finally, we anticipate that computers in the not-so-distant future

will interact directly with the human brain in a fluent manner,

supporting both computer- and brain-to-brain communication

routinely. The widespread use of human brain-to-brain techno-

logically mediated communication will create novel possibilities for

human interrelation with broad social implications that will

require new ethical and legislative responses [32].
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