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Correspondence should be addressed to Azhar Rasul; drazharrasul@gmail.com

Received 8 January 2018; Revised 5 April 2018; Accepted 12 April 2018; Published 2 May 2018

Academic Editor: Paola Patrignani

Copyright © 2018 Ammara Riaz et al.%is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Natural products, an infinite treasure of bioactive chemical entities, persist as an inexhaustible resource for discovery of drugs.
%is review article intends to emphasize on one of the naturally occurring flavonoids, astragalin (kaempferol 3-glucoside), which is
a bioactive constituent of various traditional medicinal plants such as Cuscuta chinensis. %is multifaceted compound is well
known for its diversified pharmacological applications such as anti-inflammatory, antioxidant, neuroprotective, cardioprotective,
antiobesity, antiosteoporotic, anticancer, antiulcer, and antidiabetic properties. It carries out the aforementioned activities by the
regulation and modulation of various molecular targets such as transcription factors (NF-κB, TNF-α, and TGF-β1), enzymes
(iNOS, COX-2, PGE2, MMP-1, MMP-3, MIP-1α, COX-2, PGE-2, HK2, AChe, SOD, DRP-1, DDH, PLCc1, and GPX), kinases
(JNK, MAPK, Akt, ERK, SAPK, IκBα, PI3K, and PKCβ2), cell adhesion proteins (E-cadherin, vimentin PAR-2, and NCam),
apoptotic and antiapoptotic proteins (Beclin-1, Bcl-2, Bax, Bcl-xL, cytochrome c, LC3A/B, caspase-3, caspase-9, procaspase-3,
procaspase-8, and IgE), and inflammatory cytokines (SOCS-3, SOCS-5, IL-1β, IL-4, IL-6, IL-8, IL-13, MCP-1, CXCL-1, CXCL-2,
and IFN-c). Although researchers have reported multiple pharmacological applications of astragalin in various diseased con-
ditions, further experimental investigations are still mandatory to fully understand its mechanism of action. It is contemplated
that astragalin could be subjected to structural optimization to ameliorate its chemical accessibility, to optimize its absorption
profiles, and to synthesize its more effective analogues which will ultimately lead towards potent drug candidates.

1. Introduction

Medicinal plants have been an infinite source of therapeutic
agents since millions of years. Most of the discovered drugs
either belong to natural products or derivatives of natural
compounds [1, 2]. %e actual fact is that nature is the creator
of seemingly limitless series of molecular structures. %ese
structures can serve as unlimited sources for the development
of drugs, robust chemotypes, and pharmacophores which are
able to be amplified into scaffolds of novel drugs for the cure
of various ailments [3]. Before the advent of the postgenomic
era with high throughput screening, approximately 80% of

drugs were either pure extracts of medicinal plants or the
semisynthetic analogues of various compounds from natural
sources [4]. After the second world war, the pharmaceutical
research expanded to massive screening of plant extracts in
search of new drugs from natural resources [5]. To date, about
61% of anticancer and 49% of anti-infective compounds have
been discovered from natural products [6].

%e term “natural products” encompasses chemical
entities derived from plants, bread molds, microorganisms,
terrestrial vertebrates as well as invertebrates, and marine
organisms [7]. %ese chemical entities are known to have
immense chemical diversity with outstanding drug-like
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properties that contribute towards their multitargeted action
[8]. A lot of plant-derived bioactive compounds are used for
the cure as well as for the prevention of several diseases.
Among these compounds are the polyphenols consisting of
alcohols with ≥2 benzene rings and ≥1 hydroxyl group.%ese
polyphenols have a range from simple structural molecules
(flavonoids and phenylpropanoids) to highly complex com-
pounds (lignins and melanins). Reports have suggested that
polyphenols in general and flavonoids in particular exhibit
various biological effects like antiallergic, antibacterial, anti-
inflammatory, antiviral, antithrombic, hepatoprotective, an-
tibacterial, and antioxidant activities [9].

Flavonoids are structurally diverse and most abundantly
found polyphenols in the human diet [10]. %ey are mostly
found in the form of glycosides and acylglycosides. Flavo-
noids have been divided into various classes such as flavones,
flavonols, flavanones, flavanonols, flavanols or catechins,
and anthocyanins. %ey are the essential constituents of our
food and are found in onions, parsley, berries including blue
berries, black tea, green tea, bananas, red wine, all citrus
fruits, sea blackthorns, and dark chocolates with the contents
of 70% or more [11].

Astragalin (kaempferol-3-O-β-D-glucoside), a bioactive
natural flavonoid, has been well known for its medicinal
importance. It has been reported to exhibit multiple phar-
macological properties including antioxidant [12, 13], anti-
inflammatory [14], anticancer [15], neuroprotective [16],
and cardioprotective property [16].

2. Natural Sources of Astragalin

Astragalin, a naturally occurring flavonoid, has been iden-
tified in a variety of plants (Figure 1 and Table 1) such as
Cuscuta chinensis Lam., a member of the Convolvulaceae
family, which consists of about 60 genera and 1,650 species.
%e seeds of the genus Cuscuta are a rich source of astragalin
and are utilized as a traditional folk medicine to cure os-
teoporosis in various Asian countries including Pakistan
[17]. C. chinensis has high contents of astragalin, that is,
29–34% of total phenolics as compared to other species [18].
Cassia alata belongs to the family Fabaceae (the largest
family among angiosperms) that comprises of ∼700 genera
and 20,000 species. %e leaves of C. alata are found to be
effective against skin diseases including eczema and chronic
skin impurities in tropical regions of the world (Malaysia,
Brazil, and Indonesia) [19]. Astragalin has also been isolated

from the plants of Ebenaceae, Rosaceae, and Eucommiaceae
families. %e summary of plants containing astragalin, parts
utilized, and biological features are enlisted in Table 1.

Astragalin can also be produced in vivo by glycosylation
of kaempferol at the 3C-O position [20]. UDP-dependent
glycosyltransferases (UGT) were used as biocatalysts in the
synthesis of astragalin. A recombinant strain of Arabidopsis
thaliana was used to construct an efficient UDP-glucose
synthesis pathway by use of enzymes such as uridylyl-
transferase, sucrose phosphorylase, and sucrose permease.
BL21-II was a recombinant strain designed to scale up the
production of astragalin by using a fed-batch fermentator.

3. Biological Activities of Astragalin and Their
Mechanisms of Action

%e biologically active and therapeutically effective com-
pound “astragalin” has been known to possess broad
spectrum of pharmacological features such as anticancer,
anti-inflammatory, antioxidant, neuroprotective, antidia-
betic, cardioprotective, antiulcer, and antifibrotic as shown
in Figure 2. Various in vivo and in vitro investigations on
astragalin have elucidated its medicinal characteristics and
mechanism of actions.

3.1. Anti-inflammatory Activity. Inflammation is an im-
mediate response of a body to tissue damage caused by
pathogens and toxic stimuli such as physical or chemical
injury. Although inflammatory response is a defense
mechanism, but if persistent, it can lead to multiple path-
ological conditions such as cancer, allergy, atherosclerosis,
and autoimmune diseases [119]. Negative after effects as-
sociated with nonsteroidal type anti-inflammatory drugs
(NSAIDs) arouse a need among researchers to find out
effective and safe alternatives [120]. Plant extracts enriched
with flavonoids have been known to possess anti-
inflammatory activity [121].

Astragalin, a bioactive natural flavonoid, has been
known to mitigate inflammation in LPS-induced murine
model of mastitis and lung injury model via reducing the
activity of myeloperoxidase and the expression of IL-1β,
IL-6, and TNF-α. Astragalin’s anti-inflammatory response
proceeds via inhibition of LPS-induced activation of NF-κB,
as it is actively involved in alleviating the deterioration of
IkBα and restricting the nuclear translocation of NF-κB
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Figure 1: Natural sources of astragalin.
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Table 1: Plants containing astragalin as an important constituent with its biological properties.

Name of the plant Parts
used/extract Biological activities References

Botanical name Common name
Acer truncatum Shantung maple — — [21]
Aceriphyllum rossii Mukdenia Aerial parts Antioxidant [22]

Agrimonia pilosa Hairy agrimony Aerial parts Antihemorrhagic, antiplatelet, antioxidant, and
acetylcholinesterase inhibitory [23]

Allium ursinum Wild garlic Flowers Antimicrobial [24]
Allium victorialis Alpine leek — Antitumor [25]
Alsophila spinulosa Hook tryon Leaves Antixanthine oxidase [26]

Apocynum venetum Luobuma Leaves Lower blood pressure, antidepressant,
antinephritis, and antineurasthenia [27]

Jasminum subtriplinerve
Blume — Aerial parts — [28]

Astragalus hamosus Dwarf yellow milk
vetch Aerial parts — [29]

Caesalpinia decapetala Mysore thorn Leaves — [30]

Calligonum polygonoides Phog Aerial parts Antiulcer, anti-inflammatory, hypoglycemic,
and antioxidant [31]

Camellia sinensis Tea Leaves and seeds Antidysentery, antihyperlipidemia,
antihyperglycemia, and anti-inflammatory [32–35]

Carthamus lanatus L. Downy safflower Aerial parts Antioxidant [35]
Cassia alata Ringworm bush Leaves Antioxidant, anti-infectious, and DNA repair [19]
Celastrus gemmatus Loes Chinese bittersweet Leaves — [36]
Centella asiatica Asiatic pennywort Leaves Anti-inflammatory [37]
Clerodendrum philipinum Chinese glory bower Roots — [38]
Conyza filaginoides Laennecia filaginoides Aerial parts Antiprotozoal [39]
Corchorus olitorius L. Moroheiya Leaves Inhibits the histamine [40]
Cuscuta chinensis Chinese dodder Seeds Antiosteoporotic [17, 41–43]
Cuscuta australis Australian dodder Seeds — [17, 41–43]
Diodia teres Buttonweed Whole plant — [44]
Drosera peltata Sundew Antitussive [45]
Dianthus barbatus cv Sweet William Aerial parts Anti-inflammatory [46]
Eucommia ulmoides Hardy rubber tree Leaves Antidiabetic, antioxidant, and hypnotic effect [47–49]
Eupatorium cannabinum L. Hemp agrimony Aerial parts — [50]
Eupatorium lindleyanum Aerial parts — [51]
Exochorda racemosa Pearlbrush — — [52]

Flaveria bidentis (L.) Kuntze Coastal plain yellow
tops Leaves — [53, 54]

Flos gossypii — Flowers — [55]
Gladiolus gandavensis Gladiolus Aerial parts — [56]
Glycyrrhiza glabra European licorice Leaves — [57]
Glycyrrhiza uralensis Fisch Chinese licorice Leaves — [58]
Gynura procumbens Longevity spinach — Antidiabetic [59]
Hedera helix English ivy — — [60]
Helianthemum glomeratum Island rushrose Aerial parts — [61]
Hemistepta lyrata Bunge — Whole plant — [62]
Hippophae rhamnoides L. Sea buckthorn Leaves — [63]
Ipomoea batatas Sweet potato Leaf — [64]
Koelreuteria paniculata Golden rain tree Flowers Antioxidant [65]
Allium ampeloprasum Wild leek Leaves Antioxidant [66]
Ligusticum chuanxiong — Aerial parts — [67]
Lindera aggregate Evergreen lindera Leaves — [68]
Litsea coreana — Leaves Antioxidant [69]
Magnolia fargesii — Flowers Anticomplement [70]
Moringa oleifera Lam. Drumstick tree Leaves Antioxidant [71]
Morus alba L. White mulberry Leaves Hypoglycemic and antioxidant [72–78]
Mussaenda arcuate Forest star Leaves [79]
Nelumbo nucifera Sacred lotus Leaves Lipolytic activity [80–84]
Ochradenus baccatus Taily weed Aerial parts — [85]
Orostachys japonica Rock pine — Calpain inhibitory activity [86]
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Table 1: Continued.

Name of the plant Parts
used/extract Biological activities References

Botanical name Common name

Diospyros kaki Japanese persimmon Leaves Angiotensin converting enzyme activity, and
inhibition of atopic dermatitis (AD) [12, 87–89]

Rosa agrestis Field briar Leaves Anti-inflammatory and antioxidant [13, 90–92]
Peucedanum alsaticum — Fruits — [93]
Phaseolus vulgaris L. Common bean — [94]
Phlomis spinidens — Aerial parts Antiallergic [95]
Phyllanthus muellerianus — Leaves Antibacterial and anti-inflammatory [96]
Polygala cyparissias — Antiulcer [97]
Polygonum salicifolium Knotweed Aerial parts DPPH-free radical scavenging activity [98]

Prunus padus L. European bird cherry Flowers and
leaves Antioxidant [99]

Prunus serotina Ehrh Black cherry Leaves and
flowers — [100]

Pseudotsuga menziesii Oregon pine Needles Cytotoxic [101]
Radix astragali Milk vetch root Roots Antidiabetic [102–104]
Rhus sylvestris Sumach Stems and leaves Antiosteoporotic [105]
Rosa soulieana Shrub rose Flowers Antioxidant [106]
Rubus rigidus var.
camerunensis Ronce blanche Aerial parts Antioxidant [107]

Sapium sebiferum Chinese tallow Leaves — [108]
Solenostemma argel Arghel Aerial parts Antibacterial [109]
Solidago canadensis L. Canada goldenrod — Antioxidant [110]
Sorbus aria (L.) Lutescens Leaves — [111]
Tadehagi triquetrum — Whole plant Antimicrobial and anti-inflammatory [112]
Tiarella polyphylla Foam flower Whole plant — [113]
Trachelospermum
jasminoides Confederate jasmine Leaves Antifungal [114]

Urtica cannabina — Fruits — [115]
Vahlia capensis — — Antibacterial [116]
Vicia calcarata Few flowered vetch Aerial parts Hepatoprotective [117]
Wedelia chinensis — Whole plant Inhibitor of the complement system [118]

Anti-inflammatory
activity

Antioxidant
activity

Anticancer
activity

Antiosteoporotic
activity

Cosmetic use

Neuroprotective
effect

Cardioprotective
activity

Antiobesity
activity

Antiulcer activityAntidiabetic
activity

Astragalin

Figure 2: Biological activities of astragalin.
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[92, 122]. Another investigation on LPS-stimulated ex-
pression of inflammatory mediators in macrophages has
declared the fact that astragalin actively inhibited the ex-
pression of proinflammatorymediators via inhibiting NF-κB
signaling pathway [123]. Astragalin has been known to halt
the MAPK and NF-κB pathways in leptospira-induced
uterine and epithelial inflammation in mice [124]. Astra-
galin has capability to inhibit the production of prosta-
glandin E2 (PGE2) in periodontal pathogen-induced
periodontitis, a destructive inflammatory pathological
condition, in human gingival epithelial cells [125]. Astragalin
has been investigated to determine the underlying mechanism
for its protective effect against ovalbumin-stimulated allergic
reactions in mouse models of allergic asthma. Results have
declared that it effectively lowers the eosinophil count in lung
tissues and inhibited eosinophilia induced by ovalbumin. As
a result, IgE, IL-4, IL-5, and IL-13 were retrieved in bron-
choalveolar lavage fluid [126]. Purely prepared astragalin
inhibited the activity of PGE2 and downregulated the pro-
duction of cellular nitrite oxide and IL-6 in LPS-stimulated
RAW 264.7 cells [33]. Astragalin treatment leads to the in-
hibition of alveolar destruction, allergic inflammation, and
thickening of airways in the ovalbumin-induced inflammatory
mouse model [14]. Anti-inflammatory activities of astragalin
in different animal models are recorded in Table 2.

3.2. Antioxidant Activity. In living systems, free radicals
such as hydroxyl radicals (OH·), superoxide anion (O2·−),
singlet oxygen (1O2), and ROS are reported to have dele-
terious impacts on cellular functions. Excessive production
of free radicals may affect the balance of prooxidant and

antioxidant systems in the body, thus causing various
pathological conditions such as arterial hypertension,
rheumatism, inflammation, diabetes, cancer, neurodegen-
erative disorders, and genetic mutations [120]. Researchers
have affirmed various plant extracts as natural and infinite
treasure of antioxidants. %ese antioxidants act as free
radical scavengers, electron donors, and chelating agents for
free catalytic metals in biological systems [75].

Astragalin also inhibits the endotoxin-induced oxidative
stress, which can lead to epithelial apoptosis and eosino-
philia. It can also act as an antagonizing agent against
endotoxin-induced oxidative stress via modulation of LPS-
TLR signaling network [129]. Astragalin causes the sup-
pression of 6-hydroxydopamine-stimulated neurotoxicity in
Caenorhabditis elegans via modulation of apoptosis-related
pathways and alleviation of oxidative stress [130]. Astragalin
has capability to improve neural function in the ischemia
brain injury model of rats via blocking the apoptosis in the
hippocampus region by enhancing the expression of NCam
[131] (Table 3).

3.3. Neuroprotective Activity. Disturbance in cerebral redox
homeostasis is the main cause of neurodegenerative diseases
in humans. Cerebral oxidative stress leads to dopaminergic
neuronal cell death and dysfunction. Neuroprotective
mechanism of naturally occurring bioactive entities is as-
sociated with their free radical scavenging capability gen-
erated by neurotoxins and oxidative stress-induced
processes in neuronal cells of the brain [133].

Astragalin has been reported to decrease the neuro-
degeneration in C. elegans stimulated by 6-OHDA and

Table 2: Anti-inflammatory activities of astragalin in vitro and in vivo.

Assay Organism tested Dose/concentration Molecular targets References

LPS-induced mouse mastitis Mouse mastitis 10, 25, and
50mg/kg

TNF-α↓, IL-1β↓, IL-6↓, p65┴, and
IκBα┴ [92]

LPS-induced endotoxemia and
lung injury in mice Mice (lung) 25, 50, and

75mg/kg TNF-α┴, IL-1β┴, and IL-6┴ [122]

LPS-induced macrophages in
mice Mouse cells 1–100 µg/mL

iNOS↓, COX-2↓,TNF-α↓, IL-1β↓,
IL-6↓, MIP-1α↓, MCP-1↓, NF-κB

p65┴, IκBα┴, and NO┴
[127]

LPS-induced RAW 264.7 cells. Mice (RAW 264.7 cells) 1, 10, and 100 μM NO↓ and TNF-α↓ [37]
Inhibitory activity on the
histamine release by KU812 cells KU812 cells 10 to 30 μmol/L IL-4↓, IL-13↓, and (IFN-c) no

effect [12]

LPS-induced inflammation in
RAW 264.7 cells Mice (RAW 264.7 cells) NO┴, IL-6┴, and PGE2┴ [33]

P. gingivalis-induced human
gingival epithelial (HGE) cells Human gingival epithelial cells COX-2┴, IL-6┴, IL-8┴, MMP-1┴,

MMP-3┴, PGE-2┴, and IL-4┴ [125]

Anti-inflammatory effects on
Leptospira interrogans-induced
inflammatory response

Uterine and endometrial
epithelial cells of mice 100 μg/mL

TNF-α┴, IL-1β┴, IL-6┴, NF-κB↓,
p38┴, p-p38 MAPK↓, ERK┴, JNK┴,

and p-p65↓
[124]

Protective effects against
ovalbumin- (OVA-) induced
allergic inflammation

Mouse model of allergic asthma 0.5mg/kg and
1mg/kg SOCS-3┴, SOCS-5┴, and IFN-c↑ [126]

Alleviation in hepatic fibrosis
function

Diabetic rats and nondiabetic
rats

PAR2┴, IL-1β↓, IL-6↓, TNF-α↓,
and TGF-β1┴ [128]

Prevention from atopic dermatitis NC/Nga mice 1.5mg/kg IgE↓ [87]
↑Upregulation; ↓downregulation; ┴inhibition.
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increase lifespan of astragalin-treated nematode. It also
reduces the ROS levels, inhibits lipid peroxidation, and
increases SOD and GPx activities. Furthermore, it is capable
of enhancing AChE and reducing the transcript level of
proapoptotic gene egl-1 associated with neuronal cell death
[130]. In another attempt, the effects of astragalin on CNS
were assessed by the application of the leaves extract of
Eucommia ulmoides. %e extract with high percentage of
astragalin had a significant effect on metabolism of mice.
Moreover, it effectively prolonged the convulsion latency
and diminished the convulsion rate.%ese results strengthen
the fact that E. ulmoides has a very good hypnotic effect on
CNS [49]. Astragalin also suppressed carrageenan-
stimulated paw edema in rats. Neural function is also re-
ported to be improved by the use of astragalin in ischemic
brain injury rat models [131].

3.4. Cardioprotective Activity. Myocardial infarction and
ischemic heart failure are the leading causes of mortality in
the developing countries, and their number is increasing
day-by-day. %ey may result in reperfusion arrhythmias,
myocardial stunning, and similar other cardiovascular
disorders [16]. An enhanced perception of ischemia
reperfusion (I/R) damage provides an innovative approach
for new cardioprotective administrations [134]. Regulation
of bradykinin, adenosine, opioid, adrenergic, and other
G-protein connected receptors have been known to be as-
sociated with myocardial protection [135].

Certain epidemiological studies have confirmed that
flavonoids stimulate cardioprotective effects against myo-
cardial ischemia [136]. Astragalin, a bioactive flavonoid, was
proved to be effective against acute I/R injury in Sprague-
Dawley rats as its mechanism of action precedes via di-
minishing intracellular oxidative stress and apoptosis. %e
associated mechanism involves decreased expression of
MDA, TNF-α, IL-6, ROS, and Bax along with the increased
ratio of GSH/GSSG, respectively [137].

3.5. Antiobesity Activity. %e term “obesity” can be defined
as impaired energy balance that usually results from either
enhanced caloric intake and/or reduced energy consumption.

Currently, much attention has been given to several nutritional
aspects thatmay be useful for inhibiting body fat accumulation
and decreasing the risk of diseases related to obesity. In case of
mammals, energy metabolism is maintained by lipolytic ac-
tion in adipose tissues which is generally stimulated by some
pharmacologically important lipolytic hormones such as nor-
epinephrine, epinephrine, and catecholamines [80]. Many
cellular investigations have determined that dietary poly-
phenols decrease viability of adipocytes and growth of
preadipocytes, downregulate triglyceride accumulation and
adipocyte differentiation, and induce fatty acid beta-oxidation
and lipolysis [138].

Astragalin along with other known flavonoids isolated
from N. nucifera showed inhibitory effect on diet-induced
obesity and also activated β-adrenergic receptor pathway,
but additional experimentation is required to fully elucidate
its possible mechanism of action [80].

3.6. Antiulcer Activity. Ulcer is a chronic lesion which
usually develops due to an imbalance between numerous
protective and aggressive factors. Gastric ulcers being rep-
resented by repeated incidents of healing and reexacerbation
contribute towards chronic inflammation which may persist
for 10–20 years. It is a well-known fact that naturally oc-
curring phenolic entities have capability to shield gastric
mucosa from injury due to their cytoprotective and anti-
oxidant features. Furthermore, flavonoids stimulate mucus
secretion, block pepsinogen, prohibit Ca2+ influx, and also
change GSH metabolism. Astragalin, a pharmacologically
active flavonoid isolated from C. cyparissias, has been ex-
amined for its antiulcer activity. Results demonstrated that
30mg/kg dosage of astragalin effectively decreases per-
centage of lesion area, total area of lesion, and ulcer index in
the mice model of gastric secretion [97].

3.7. Antidiabetic Activity. Diabetes mellitus is characterized
by hyperglycemia which is caused by deficit in insulin action
or production [139]. Currently available antidiabetic ther-
apeutics such as hypoglycemic drugs and insulin have
limitations of their own. Natural products and herbal
medicines have been suggested as one of the treatment

Table 3: Antioxidant activity of astragalin in vitro and in vivo.

Assay Organism
tested Dose/concentration Molecular targets References

Free radical-scavenging activity 1, 3, 10, 30, 100, or
300 µg/mL [107]

Inhibitory activity against autophagy-
associated airway epithelial fibrosis Mice 1–20 μM E-cadherin┴, vimentin┴, Beclin-1↓,

LC3A/B↓, EMT↓, and TGF-β1┴ [132]

Apoptotic and eosinophilia amelioration BEAS-2B
cells 1–20 μM

TLR-4↓, Eotaxin-1↓, PLCc1↓, PKCβ2↓, p-
p22↓, p-47↓, JNK↓, p38MAPK↓, Akt↑, and

ERK↑
[129]

Suppression of 6-hydroxydopamine-
induced neurotoxicity in Caenorhabditis
elegans

C. elegans 2.0mg/mL egl-1↓, SOD↑, GPX↑, AChe↑, and p38
MAPK↓ [130]

Neuroprotective effect against ischemic
brain injury Wister rats 5mg/kg and 15mg/kg NCam↑ [131]

↑Upregulation; ↓downregulation; ┴inhibition.
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options for diabetes since ancient times. Naturally occurring
bioactive chemical entities such as flavonoids, terpenoids,
alkaloids, and phenolics have been reported as antidiabetic
agents [140].

Diabetic retinopathy (DR) arises due to diabetes mellitus
and is one of the most common causes of vision loss. Hy-
perglycemia leads to overexpression of many biological
effectors such as vascular endothelial growth factor (VEGF)
which is very crucial for the development of DR. Astragalin
derived from A. membranaceus has beneficial effects against
hyperglycemia. It helps to prevent DR by decreasing the
overexpression of VEGF in cultured muller cells and alle-
viating the effects caused by high concentration of glucose in
the blood [141].

3.8. Antifibrotic Activity. Environmental factors like air
pollutants may result in considerable production of reactive
oxygen species in the airways. Astragalin isolated from leaves
of persimmon and green tea can be effectual in allaying ROS-
prompted bronchial fibrosis as it has capability to inhibit
auto phagosome formation in the airways [132]. It also
alleviates hepatic fibrosis by regulating PAR2 (protease-
activated receptor 2) mechanism. AGS regulates proin-
flammatory cytokines namely IL-6, IL-1β, and TNF-α. It also
attenuates the PAR2 signaling expression, and its protective
effects are especially prominent in diabetic animal models
[128].

3.9. Cosmetic Use. Astragalin glucosides can be used as
valuable agents in cosmetics due to their important chemical
characteristics. First of all, it inhibits collagenase activity.
Collagenase is involved in the hydrolyzation of dermal
matrix protein formation as well as wrinkle formation.
Secondly, astragalin has an antioxidant activity as it alle-
viates the free radical species. %irdly, astragalin controls the
pigmentation in the skin caused by melanin [142]. Melanin
pigment causes darkening of complexion in skin, eyes, and
hair in humans. Nelumbo nucifera (lotus) contains bioactive
compounds astragalin and hyperoside in the receptacles
which are known to be the melanogenesis inhibitor, thus
possibly decreasing the skin darkness [143]. Astragalin along
with quercetin is known to possess protective effect against
the UV radiations. UV radiations can make the skin of
animals prone to various biological responses such as DNA
damage, formation of sunburn cells, melanogenesis, pho-
toaging, skin cancer, hyperplasia, immune suppression, and
edema. UV radiations from the sun can also damage
macromolecules in the epidermal layer of animals creating
specific changes in the skin, for example, mutations in genes

and changes in the immune system. Expression of major
CXC chemokines, that is, chemokine ligand 1 (CXCL1) and
chemokine ligand 2 (CXCL2), at sites of inflammation
within the skin are upregulated after the exposure of skin to
UV radiations. %ese chemokines are the potent stimulators
of neutrophil activation which later on produce ROS and
leads to oxidative stress. Astragalin, a major flavonoid, can
be used as a barrier against UV-induced damage as it is
associated with downregulation of CXCL-1 and CXCL-2 in
the skin and thus can be used as a photoprotective agent
[144] (Table 4).

3.10.AntiosteoporoticActivity. Osteoporosis is characterized
by structural deterioration of tissues in the bone along with
lower bone mass and bone fragility. %e main causes of
osteoporosis include estrogen deficiency, excess of gluco-
corticoids, and oxidative stress. Astragalin, an active com-
pound, isolated from crude methanolic extract of the seeds
of C. chinensis showed estrogenic activity against osteopo-
rosis, and it is responsible for significant osteoblastic cell
proliferation in UMR-106 osteoblastic cells [17].

3.11. Anticancer Activity. Currently, cancer is the second
leading cause of mortality worldwide. In spite of advances in
the development of new therapeutic preferences for cancer,
its ratio is increasing day by day. Every year, almost 7 million
people die due to cancer. Lung cancer particularly non-small
cell lung cancer (NSCLC) accounts for more than 80% of
deaths all around the world today. %erefore, it is necessary
to discover new cheap and inexpensive drugs that can
ameliorate the antitumor effects and reduce the side effects
of generally recommended chemotherapy drugs [145].

Natural phytochemicals that are active constituents of
medicinal plants, seeds, fruits, and herbs including poly-
phenols (flavonoids, terpenoids, and carotenoids) have
gained significant recognizance for their potential value as
therapeutic agents [146, 147]. Much research work has been
conducted towards the assessment of phenolic phyto-
chemicals as potent prophylactic agents as they can act on
multiple cellular targets. %e mechanistic insight into che-
moprevention incorporates induction of apoptosis and cell
cycle arrest or prohibition of certain cell signaling pathways
mostly protein kinases C (PKC), glycogen synthase kinase
(GSK), mitogen-activated protein kinases (MAPK), and
phosphoinositide 3-kinase (PI3K) leading to abnormal AP-1,
COX-2, and NF-κB expressions. Efficacy of chemopreventive
agents revert their capacity to counteract with certain up-stream
signals that leads to redox imbalances, genotoxic injury, and
other situations of cellular stress. %us, targeting damaged

Table 4: Cosmetic uses of astragalin.

Assay Organism tested Dose/concentration Molecular targets References
Inhibition of melanin
secretion Leuconostoc mesenteroides 10mM MMP-1┴ [142]

Protection against UV
damage

Mice (BalB/c) and human keratinocyte cells
(HaCaT cells)

2.5mg/kg and
0.25 µM/ml

CXCL-1↓ and
CXCL-2↓ [144]

↓Downregulation; ┴inhibition.
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molecules along with interrupted signal transduction pathways
in cancer epitomize a rational strategy for chemoprevention,
and phenolic compounds seem to be auspicious in this aspect
[147, 148]. In recent years, flavonoids have drawn developing
consideration as powerful anticancer agents against various
cancer types [149].

Several investigations on astragalin have explained its
anticancer effect due to its promising competency to inhibit
proliferation in different cancer cell lines including leukemia
(HL-60) [15], hepatocellular (HepG2, Huh-7, and H22)
[150], skin (HaCaT, A375P, and SK-MEL-2) [151], and lung
(A549 and H1299) cancerous cells [145].

Astragalin heptaacetate (AHA), a therapeutically active
flavonoid, induces apoptosis in HL-60 cells through release
of cytochrome c into the cytosol. %e associated mechanism
involves activation of Bax, caspase-3/-7, and p38MAPK and
intracellular ROS generation along with inhibition of cell
signaling pathways JNK/SAPK and ERK ½ [15]. Astragalin
also prohibits TNF-α-induced NF-κB activation in A549 and
H1299 cells. Moreover, AG-triggered cell death is affiliated
with increased Bax : Bcl-2 ratio and enhanced cleavage of
caspase-3/-9 and PARP in conjunction with blockage of
PI3K/Akt, MAPK, and ERK 1/2 signaling cascades in a time-
and dose-related manner [145]. In hepatocellular carcinoma
cells, astragalin (AG) significantly suppressed proliferation
both in vitro in HepG2 cells and in vivo in Huh-7 (nude
mice) and H22 (Kunming mice) cells via mechanistically
inhibiting hexokinase 2 and upregulating miR-125b ex-
pression, respectively [150].

Astragalin can be a novel anticancer agent for the cure
and prevention of UVB-stimulated actinic keratosis skin
lesion by suppressing phospho-MSK1, c-H2AX, and
p38MAPK activation in a time-and dose-related manner in
human HaCaT cells in vitro and Babl/c mice in vivo. In
another report, astragalin strongly exerted cytotoxic effects
in A375P and SK-MEL-2 cancerous cells in a concentration-
dependent way through induction of apoptosis. %e un-
derlying cell deathmechanism involves activation of Bax and
caspase-3/-9, cleavage of PARP, and downregulation of

cyclin D1 and Mcl-1 along with inhibition of Sry-related
HMg-Box Gene 10 (SOX10) signaling cascade [151, 152].
%e reported data recommend astragalin’s multitargeted
activity in preference to single effect that may perform an
imperative role towards developing astragalin into potential
anticancer drug in future (Table 5).

4. ADMET Profiles of Astragalin

ADMET profiles along with biological activity spectra were
performed for astragalin based on in-silico tools. %e results
indicate that astragalin is a potential anticancer agent which
is unlikely to present any acute hazard or toxicity. Fur-
thermore, astragalin can be absorbed by human intestines,
but it is incapable of penetration to Caco-2 cells. Astragalin
has been validated as a novel substrate of p-glycoprotein
which is crucial for the metabolism and clearance of the
compounds and for the efflux of drugs [154].

5. Conclusions and Future Perspectives

Astragalin, a natural flavonoid, has been isolated from
various traditional medicinal plants such as Cassia alata,
Moringa oleifera, Nelumbo nucifera, Cuscuta spp., Radix
astragali, Morus alba, and Eucommia ulmoides. Astragalin
has been reported to modulate inflammatory re-
sponses by regulating the expression of NF-κB, iNOS,
cytokines/chemokines (COX-2, TNF-α, IL-10, and IL-6),
MAPK signaling pathways (PGE2, IgE, IL-4, IL-5, IL-13,
IL-1β, and IL-6), and PAR2 signaling expression. It also has
the capability to alleviate the production of ROS and inhibit
the endotoxin-induced oxidative stress (Figure 3). Astra-
galin is also known to be an inhibitor of ERK-1/2 and Akt
signaling; therefore, it is a significant compound against
cancer proliferation. In this review paper, we have em-
phasized on various pharmacological properties of astragalin
such as anti-inflammatory, antioxidant, neurological, car-
dioprotective, antidiabetic, and anticancer. Although several
in vitro and in vivo investigations have demonstrated its

Table 5: Anticancer activities of astragalin in vitro and in vivo.

Type of cancer Cell line Dose/concentration Molecular targets References

Leukemia HL-60 6± 1 µM Bax↑, Bcl-2↓, caspase-3/-7Act,
JNK/SAPK┴, and ERK 1/2┴

[15]

Hepatocellular HepG2, Huh-7, and H22 — HK2┴ and miR-125b↑ [150]

Skin HaCaT, A375P, and SK-MEL-2 50 and 100 μM/mL

p38 MAPK↓, phospho-MSK1↓,
c-H2AX↓, caspase-9/-3Act, BaxAct,
PARP cleavage, cyclin D1↓, Mcl-1↓,

and SOX10┴
[151, 152]

Lung A549, H1299, H226, H838, H23,
H1437, H125, H2009, and H2087

5, 40 µg/mL (A549) and
20 µg/mL (H1299)

Bax:Bcl-2↑, caspase-9/-3↑, p-IKK-β↓,
NF-κB p65┴, TNF-α┴, ERK-1/2┴,
JNK↑, PI3K/Akt┴, DDH┴, DRP-1↓,

pro-caspase-3/-8↑, and Bax↑
[145, 153]

Breast ZR-75-1, T47D, BT20, MCF-1, and
MCF-7 — DDH┴, DRP-1↓, pro-caspase-3/-8↑,

and Bax↑ [153]

Gastric AGS, SC-M1, NUGC-1, NUGC-3,
and KOTA-III — DDH┴, DRP-1↓ pro-caspase-3/-8↑,

and Bax↑ [153]

↑Upregulation; ↓downregulation; ┴inhibition.
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diversified pharmacological applications, further experi-
mentation along with medicinal chemistry approaches and
preclinical trials is still obligatory to uncover the knowledge
of its biological and pharmacological applications and their
associated mechanisms of actions for the treatment and
prevention of several diseases.
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Figure 3: A diagrammatic representation of molecular targets and mechanism of action of astragalin. Astragalin has capability to modulate
various transcriptional factors, enzymes, protein kinases, cell adhesion molecules, apoptotic and antiapoptotic proteins, and inflammatory
cytokines resulting in anticancer, anti-inflammatory, antioxidant, and cardioprotective activities.
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