
Vol.:(0123456789)1 3

Journal of Neurology (2019) 266:2075–2086 
https://doi.org/10.1007/s00415-019-09363-4

NEUROLOGICAL UPDATE

An update on genetic frontotemporal dementia

Caroline V. Greaves1 · Jonathan D. Rohrer1 

Received: 20 April 2019 / Revised: 1 May 2019 / Accepted: 3 May 2019 / Published online: 22 May 2019 
© The Author(s) 2019

Abstract
Frontotemporal dementia (FTD) is a highly heritable group of neurodegenerative disorders, with around 30% of patients 
having a strong family history. The majority of that heritability is accounted for by autosomal dominant mutations in the 
chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN), and microtubule-associated protein tau (MAPT) genes, 
with mutations more rarely seen in a number of other genes. This review will discuss the recent updates in the field of genetic 
FTD. Age at symptom onset in genetic FTD is variable with recently identified genetic modifiers including TMEM106B (in 
GRN carriers particularly) and a polymorphism at a locus containing two overlapping genes LOC101929163 and C6orf10 (in 
C9orf72 carriers). Behavioural variant FTD (bvFTD) is the most common diagnosis in each of the genetic groups, although 
in C9orf72 carriers amyotrophic lateral sclerosis either alone, or with bvFTD, is also common. An atypical neuropsychiat-
ric presentation is also seen in C9orf72 carriers and family members of carriers are at greater risk of psychiatric disorders 
including schizophrenia and autistic spectrum disorders. Large natural history studies of presymptomatic genetic FTD are 
now underway both in Europe/Canada (GENFI—the Genetic FTD Initiative) and in the US (ARTFL/LEFFTDS study), col-
laborating together under the banner of the FTD Prevention Initiative (FPI). These studies are taking forward the validation 
of cognitive, imaging and fluid biomarkers that aim to robustly measure disease onset, staging and progression in genetic 
FTD. Grey matter changes on MRI and hypometabolism on FDG-PET are seen at least 10 years before symptom onset with 
white matter abnormalities seen earlier, but the pattern and exact timing of changes differ between different genetic groups. 
In contrast, tau PET has yet to show promise in genetic FTD. Three key fluid biomarkers have been identified so far that are 
likely to be helpful in clinical trials—CSF or blood neurofilament light chain levels (in all groups), CSF or blood progranulin 
levels (in GRN carriers) and CSF poly(GP) dipeptide repeat protein levels (in C9orf72 carriers). Increased knowledge about 
genetic FTD has led to more clinical presymptomatic genetic testing but this has not yet been mirrored in the development 
of either an accepted FTD-specific testing protocol or provision of appropriate psychological support mechanisms for those 
living through the at-risk phase. This will become even more relevant as disease-modifying therapy trials start in each of 
the genetic groups over the next few years.
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Introduction

Frontotemporal dementia (FTD) is a heterogeneous neuro-
degenerative disorder presenting with distinct changes in 
behaviour, language and motor function. Despite often being 
considered as a rare disease, FTD is probably the most com-
mon form of dementia experienced in people under the age 

of 60, with an estimated lifetime risk of 1 in 742 [1]. The 
behavioural variant (bvFTD) is characterised by changes in 
personality, while the language variant (known as primary 
progressive aphasia, PPA) is typically associated with pro-
gressive speech production or comprehension difficulties [2, 
3]. People with FTD can also develop motor deficits, either 
amyotrophic lateral sclerosis (FTD-ALS) or Parkinsonism, 
in the latter case often with specific features of a corticobasal 
syndrome (CBS) or progressive supranuclear palsy (PSP) 
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Heritability, genes and phenotype

Heritability

FTD is a highly heritable disorder but almost uniquely 
within the neurodegenerative disease spectrum, it is neither 
purely genetic (like Huntington’s disease, HD) nor a mainly 
sporadic condition (like Alzheimer’s disease) (Fig. 1). The 
extent of heritability of FTD has been the subject of a num-
ber of studies, with many of the initial investigations relying 
on the dichotomy between a ‘present’ or ‘absent’ family his-
tory. However, more nuanced family history scoring systems 
have been developed for FTD [7–9] revealing a complex 
picture of heritability. Using the modified Goldman score 
[7, 8] a strong family history [scores 1–3] was found in 31% 
[8], whilst using the Penn score, an equivalent strong family 
history [high or medium categories] was found in 26% [9]. 
All of these studies show variability in heritability across 
the clinical phenotypes, e.g. a strong family history has been 
found in 48% of people with bvFTD but only 12% of people 
with PPA [9]. Heritability of the motor phenotypes is less 
clear (mainly due to small numbers in most studies), e.g. a 
strong family history has varied from 10 to > 40% in FTD-
ALS [8, 10, 11].

Genes

The majority of the heritability of FTD is accounted for by 
autosomal dominant mutations in three genes: progranulin 

(GRN), microtubule-associated protein tau (MAPT) and 
chromosome 9 open reading frame 72 (C9orf72) [12, 13]. 
Each genetic group causes between ~ 5 and 10% of all FTD, 
with geographical variability in different case series (e.g. 
a predominance in Northern Italy and the Basque country 
of GRN mutations [14, 15]). Overall, C9orf72 seems to be 
the most common worldwide cause of genetic FTD, fol-
lowed by GRN and then MAPT. A list of pathogenic and 
other variants in these genes has been collated online in the 
AD&FTD Mutation Database (http://www.molge n.ua.ac.be/
FTDmu tatio ns): 79 GRN and 45 MAPT pathogenic variants 
are currently described. However, a Pubmed search of muta-
tions reported over the last 5 years in these genes identifies 
a further 35 GRN and 18 MAPT pathogenic variants not 
included in that database, i.e. 114 GRN and 63 MAPT muta-
tions currently identified in total. This number excludes the 
majority of missense variants in GRN, many of which may 
be risk factors for Alzheimer’s disease rather than a Men-
delian cause of FTD, although identifying pathogenicity is 
not always easy [16].

In recent years, mutations in an increasing number of 
genes have been associated with autosomal dominant FTD: 
VCP (2004), CHMP2B (2005), TARDBP (2008), FUS 
(2009), SQSTM1 (2012), CHCHD10 (2014), TBK1 (2015), 
OPTN (2015), CCNF (2016), TIA1 (2017). Cumulatively, 
they account for < 5% of all FTD, with most only found in 
a small number of families across the world. Recent studies 
have identified TBK1 as probably the fourth most common 
genetic cause overall of FTD, accounting for between 1 and 
2% of all cases (although the pathogenic nature of many of 
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Fig. 1  The landscape of the frontotemporal dementia spectrum dis-
orders. About 70% is sporadic with approximately equal numbers 
of TDP-43 proteinopathies and tauopathies (including corticoba-
sal degeneration, CBD progressive supranuclear palsy, PSP Pick’s 
disease, GGT  globular glial tauopathy), and a smaller number of 
FUSopathies (including atypical frontotemporal lobar degeneration 

with ubiquitin inclusions, aFTLDU). About 30% is genetic with TDP-
43 proteinopathies being the commonest cause (mutations in C9orf72 
(usually TDP-43 types A or B), GRN (type A), TBK1 (types A or B), 
VCP (type D), SQSTM1, and TARDBP) then tauopathies (mutations 
in MAPT), FUSopathies (mutations in FUS) and other proteinopa-
thies (mutations in CHMP2B)

http://www.molgen.ua.ac.be/FTDmutations
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the reported missense variants remains unclear [17]). How-
ever, as with the major genetic groups, there is geographi-
cal variability: in a recent study of FTD in Sardinia, 8% of 
patients had a TARDBP mutation [18].

Age at onset

Age at symptom onset is variable in each of the genetic 
forms of FTD, with intrafamilial variability (even within the 
same generation) of at least a decade in some families (par-
ticularly GRN). Whilst MAPT mutations are fully penetrant 
in most cases, both GRN [19] and C9orf72 [20] mutations 
exhibit age-related penetrance with a small number of car-
riers in their 80s (and 90s) yet to develop symptoms. In both 
GRN and C9orf72 carriers, TMEM106B has been identified 
as a genetic modifier, the association being stronger with 
GRN than with C9orf72 [21]: a lower age at onset in GRN 
may well be related to carrying the risk allele, with homozy-
gous carriers of the protective allele rarely found in symp-
tomatic GRN carriers, suggesting that this may be a factor 
in age-related penetrance [22]. Another recently identified 
modifier of disease risk in GRN carriers, GFRA2, did not 
seem to affect age at onset [22]. However, a study of C9orf72 
carriers identified a locus on chromosome six containing two 
overlapping genes (LOC101929163 and C6orf10) in which 
a polymorphism at rs9357140 was associated with age of 
onset: median age of onset in GG carriers was 6 years ear-
lier than AA carriers [23]. The significance of the C9orf72 
repeat expansion length remains unclear, with no definitive 
evidence of an association with age of onset [24]. Little is 
known about factors that modify age at onset in the MAPT 
group, although a recent study suggested that ApoE ε4 car-
riers had a lower age at onset in tauopathies including MAPT 
mutations [25].

Phenotype

The most common clinical presentation of all genetic forms 
is bvFTD, but all phenotypes within the FTD spectrum are 
observed. MAPT mutation carriers may have prominent 
semantic impairment but that is rarely a presenting feature, 
nor are other forms of PPA; however, CBS and, in rare cases, 
PSP may both occur, although never FTD-ALS. In contrast, 
GRN mutations can present as a PPA syndrome, either a 
nonfluent variant of PPA or a mixed phenotype, not clearly 
fitting into one of the three described subtypes [26]. CBS 
may occur either alone or in conjunction with PPA, but PSP 
and FTD-ALS are almost never seen. C9orf72 expansion 
carriers may have an atypical neuropsychiatric presenta-
tion of bvFTD with associated hallucinations or delusions 
[27, 28], and significantly, family members of C9orf72 car-
riers have a greater risk of psychiatric disorders including 
autistic spectrum disorders, psychotic illnesses including 

schizophrenia, mood disorders and suicide [27]. Unlike the 
other two major genetic groups, C9orf72 expansions can 
cause FTD-ALS or ALS alone. PPA is a rare phenotype but 
is usually a nonfluent variant when present, and similarly 
parkinsonian disorders can occur but are infrequent as a 
presenting syndrome. Also unlike the other genetic groups, 
hyperkinetic movement disorders may occur, and C9orf72 is 
said to be associated with a Huntington’s disease-like phe-
notype on some occasions [29].

The phenotype in the other genetic groups is less clear. 
TBK1 mutations can cause bvFTD, PPA, CBS, FTD-ALS 
and ALS alone—this unique combination within a single 
family can be particularly suggestive of a TBK1 mutation. 
TBK1 and TARDBP mutations can both be associated with 
focal temporal lobe atrophy and a semantic variant PPA [18, 
30, 31], an unusual genetic FTD phenotype as this variant of 
PPA is almost always sporadic.

Natural history studies and biomarkers

Until recently, clinical studies of genetic FTD have been 
small and single centre. However, the Genetic FTD Initiative 
(GENFI) started recruiting in 2012 and now encompasses 
25 centres across Europe and Canada (http://www.genfi .org.
uk). This is a natural history study with detailed phenotyping 
of both presymptomatic and symptomatic mutation carriers 
[32]. In the US, a similar study (ARTFL/LEFFTDS) has 
been running for the last few years. Collaboration across 
natural history studies of genetic FTD across the world has 
started through the creation of the FTD Prevention Initia-
tive (FPI: http://www.genfi .org.uk/fpi.html), aiming to share 
information and inform future clinical trial design.

Much of the work being performed in these studies (and 
in other single centre investigations) over the last few years 
has aimed to develop validated biomarkers that robustly 
measure disease onset, staging and progression (Fig. 2). The 
following sections highlight recent work in this field.

Cognition

Neuropsychometric measures are abnormal in presympto-
matic carriers around 5 years prior to expected symptom 
onset [32]. Whilst executive function deficits seem common 
across the different genetic groups, specific patterns of cog-
nitive decline have been identified at a presymptomatic stage 
in MAPT, GRN and C9orf72 carriers [32]. A number of stud-
ies have now shown that MAPT carriers have both nam-
ing and episodic memory difficulties presymptomatically 
[32–34], consistent with early medial temporal lobe atro-
phy [32]. As mentioned above, whilst most people develop 
bvFTD, some develop PPA, and one study has shown that 
longitudinal preclinical decline on phonology and letter 

http://www.genfi.org.uk
http://www.genfi.org.uk
http://www.genfi.org.uk/fpi.html
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fluency tasks was predictive of conversion to a nonfluent 
variant PPA phenotype in GRN carriers [33].

Neuropsychiatric and functional measures

Validated measures of psychiatric symptoms or functional 
decline are limited in genetic FTD. The Neuropsychiat-
ric Inventory (NPI) has been the most studied, although 
was not designed with FTD in mind, and does not include 
all relevant psychiatric symptoms that are seen in FTD 
[35]. The Cambridge Behavioural Inventory (CBI) has 
been used in the GENFI study and has shown changes in 
proximity to symptom onset [32], although as with many 
behavioural questionnaires there can be variability over 
time in FTD. More specific measures of particular symp-
toms such as loss of empathy (e.g. the Interpersonal Reac-
tivity Index) or impaired self-monitoring (e.g. the Revised 

Self-Monitoring Scale) have not yet been well studied in 
genetic FTD. In terms of measuring disease severity and 
decline in function over time, an adaptation of the Clini-
cal Dementia Rating scale for FTD (commonly called the 
FTLD-CDR) shows promise in genetic FTD [35], as does 
the FTD Rating Scale (FRS) [36], but more detailed stud-
ies of these and other novel measures are required.

Imaging

Grey matter atrophy and hypometabolism both appear to 
occur at least 10 years before symptom onset in genetic 
FTD, whilst white matter tract abnormalities are seen ear-
lier [37]. However, there is variability both in timing and 
location between the different genetic groups.

Fig. 2  Schematic of fluid, imag-
ing and cognitive biomarker 
profiles across the lifespan of 
C9orf72, MAPT and GRN muta-
tion carriers. NfL neurofilament 
light chain, DTI diffusion tensor 
imaging, WM white matter, 
WMH white matter hyperin-
tensities, GM grey matter, EF 
executive function, VF verbal 
fluency, M memory; N naming
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Grey matter atrophy (T1‑weighted MRI)

In presymptomatic MAPT carriers, atrophy is present about 
15 years prior to symptom onset in the anterior and medial 
temporal lobes, orbitofrontal lobe and insula [32, 38], whilst 
in GRN carriers, presymptomatic atrophy can be observed 
in frontal, parietal, and insular cortex as well as the striatum 
around 10 years prior to symptom onset [32, 38]. Sympto-
matic GRN carriers commonly have a very asymmetrical 
pattern of brain atrophy, and this asymmetry can be observed 
around 5 years prior to onset [32]. C9orf72 mutation carriers 
appear to have earlier grey matter volume loss than the other 
two groups, before the age of 40 [39], and potentially more 
than 25 years prior to symptom onset [32]. This appears to 
be particularly focused on the posterior thalamus and its 
cortical connections [32, 38, 39].

Volumetric MRI studies of genetic FTD have particularly 
highlighted the importance of subcortical structures in the 
pathogenesis of FTD, and more recent work using novel 
postprocessing techniques has aimed to study the subregions 
within these structures, e.g. there are differential patterns 
of atrophy within hippocampal subregions in the different 
genetic groups: MAPT mutation carriers had involvement 
of CA1-4, C9orf72 expansion carriers CA4, CA1 and the 
dentate gyrus, and GRN mutation carriers the presubiculum 
and subiculum [40].

There has been less focus on longitudinal investigation of 
grey matter atrophy; however, rates of atrophy vary between 
genetic groups with faster rates in GRN mutation carriers 
during the symptomatic period (allowing measurement over 
short time periods: [41]) compared with the other groups. 
Around the time of symptom onset, there seems to be a more 
gradual progression of atrophy in MAPT mutation carriers 
but a rapid change in volume loss in GRN carriers [42].

Few studies have investigated disease staging of genetic 
FTD. One novel machine-learning methodology combining 
subtyping and staging identified genetic FTD subtypes and 
their stages over time from structural T1-weighted imaging 
alone [43]. Interestingly, whilst GRN and MAPT mutation 
carriers appeared to fall mainly into a single group, there 
were two distinct patterns of disease progression for C9orf72 
expansion carriers—it remains unclear pathophysiologically 
what differs between these two groups.

White matter hyperintensities (T2‑weighted MRI)

A number of studies have now shown that white matter 
hyperintensities (which are generally an unusual finding in 
FTD) are characteristic of GRN mutations [44, 45]. This 
is mainly in symptomatic mutation carriers (although for 
unclear reasons only a subset of patients), but there is also an 
association in presymptomatic mutation carriers with time 
from expected symptom onset [45]. Pathological studies 

of these white matter hyperintensities suggest that they are 
not vascular but are associated with prominent white matter 
microglial activation and microglial dystrophy [46].

Hypometabolism (FDG‑PET)

Patterns of hypometabolism commonly mirror the pattern 
of grey matter atrophy in genetic FTD [47–51], with pre-
symptomatic deficits also shown around 10 years prior to 
symptom onset.

Structural connectivity (DTI)

Changes in white matter integrity are commonly measured 
with diffusion tensor imaging (DTI), although newer tech-
niques such as neurite orientation dispersion and density 
imaging (NODDI) have recently been developed. Studies 
in genetic FTD suggest that changes can be observed as 
far back as 30 years prior to symptom onset [52]. As with 
grey matter atrophy, there appear to be distinct patterns 
of early white matter involvement in the different groups: 
presymptomatic MAPT mutation carriers have alterations 
in the uncinate fasciculus and parahippocampal cingulum, 
while GRN mutation carriers show involvement of the ante-
rior and posterior internal capsule [52]. Presymptomatic 
C9orf72 expansion carriers have earlier white matter tract 
pathology, which occurs in posterior tracts such as the pos-
terior thalamic radiation, the posterior corona radiata and the 
splenium of the corpus callosum [52, 53]. A single study of 
NODDI suggests that it may be more sensitive than DTI for 
detecting early white matter change in C9orf72 expansion 
carriers [54].

Functional connectivity (resting‑state fMRI)

There have been fewer investigations of functional connec-
tivity but small studies implicate particularly the salience 
network and a medial pulvinar thalamus-seeded network in 
presymptomatic C9orf72 expansion carriers [53], the default 
mode network in MAPT mutation carriers [55] and a fron-
toparietal network in GRN mutation carriers [56–58].

Tau PET

Studies of novel radioligands developed to bind tau protein 
have so far not proven to be particularly helpful in FTD, 
binding much more strongly to paired helical filament 
(PHF)-tau found mainly in Alzheimer’s disease than to other 
forms of tau found in the primary tauopathies. However, two 
particular MAPT mutations (V337M and R406W) are asso-
ciated with PHF-tau and have shown strong binding with 
the AV1451 tracer [59–61]. Unfortunately, there is also off-
target binding of this tracer, with binding seen in non-tau 



2080 Journal of Neurology (2019) 266:2075–2086

1 3

diseases such as in C9orf72 expansions, where the major 
pathology is TDP-43 [62].

Blood and CSF biomarkers

The fluid biomarker field in genetic FTD has yet to identify 
many robust measures, e.g. neither CSF nor blood assays of 
tau or TDP-43 are yet to yield FTD-specific markers. How-
ever, recent work has identified three markers which will 
play an important role in forthcoming trials: neurofilament 
light chain (NfL), progranulin and poly(GP) dipeptide repeat 
proteins (DPRs).

Increased NfL levels (both in CSF and blood) reflect 
axonal damage and appear to be a measure of disease inten-
sity, and predict progression and survival in genetic FTD 
[63, 64]. Levels are highest in C9orf72-associated ALS and 
lowest in MAPT mutation carriers [64]. Longitudinal analy-
sis of samples seems to suggest that levels change not long 
prior to symptom onset in genetic FTD, increasing by three- 
to fourfold during conversion [64]. Whilst an increase in NfL 
is not specific for FTD, and levels are increased in multiple 
neurological diseases, evidence from other diseases suggests 
that a decrease in levels could be a measure of successful 
disease modification in trials [65].

Low serum, plasma or CSF progranulin levels have 
almost perfect sensitivity and specificity for detecting 
pathogenic GRN mutations [66, 67]. Levels are low from 
the earliest time period of presymptomatic genetic FTD 
that they have been measured [during adulthood] and are 
relatively stable over time [67]. CSF and plasma levels are 
relatively poorly correlated (r = 0.54: 67], and little work has 
been done to investigate measures that affect the variability 
of progranulin levels. This future research is important as 

increasing progranulin levels back towards normal levels 
(and therefore theoretically restoring normal progranulin 
function) will be a key biomarker for disease-modifying tri-
als in GRN carriers.

Increased poly(GP) levels have been identified in the CSF 
of C9orf72 expansion carriers both presymptomatically and 
symptomatically [68–70]. One study found slightly lower 
levels in presymptomatic expansion carriers compared with 
symptomatic carriers [70] but that has not been seen con-
sistently. More work needs to be performed to understand 
variability further, but like NfL, decreasing levels of CSF 
poly(GP) post-treatment may be suggestive of disease modi-
fication in future trials.

A particular focus of biomarker research in genetic FTD 
is the development of markers of neuroinflammation. CHIT1 
and YKL-40 are microglial markers that appear to be raised 
in symptomatic genetic FTD [71] with little evidence for a 
change during the presymptomatic period so far. In a small 
study, CSF sTREM2 levels were raised in GRN mutation 
carriers but not the other genetic groups [72].

Clinical practice (Fig. 3)

Symptomatic genetic testing

Testing in symptomatic patients with dementia has changed 
in recent years. Next-generation sequencing (NGS) panels 
are now available to test multiple genes at the same time—
these have identified mutations causative of FTD pathology 
not just in those with an FTD clinical syndrome [73]. Issues 
that remain to be solved in clinical genetic testing include: 
how to decide the pathogenicity of certain variants (of which 
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Fig. 3  Genetic testing, counselling and support through the time-
course of genetic FTD. There is commonly a period in proximity 
to symptom onset of FTD where subtle symptoms may be present 

but diagnostic criteria have not yet been met—this requires careful 
assessment and discussion



2081Journal of Neurology (2019) 266:2075–2086 

1 3

more are now found because of NGS); the exact length at 
which C9orf72 expansions become pathogenic (as interme-
diate length expansions are not clearly causative of disease 
[74]); and what to do when no mutation is found in a family 
with autosomal dominant FTD. In terms of this latter prob-
lem, many available NGS panels do not include the more 
recently discovered genes such as TBK1 and we have identi-
fied mutations in these genes by exome sequencing in those 
with negative NGS and C9orf72 sequencing [30]. However 
there are still a small number of families with a strong family 
history of FTD without a known genetic mutation. We offer 
genetic testing in our clinic to all those with bvFTD, even 
in the absence of a family history, as mutations have been 
found in around 10% of apparently sporadic cases of FTD 
[75]. In the other FTD clinical phenotypes, where the risk 
is lower of a genetic cause, we offer testing on an individual 
basis, mainly in those with a strong family history, but the 
identification of a PPA syndrome not fitting criteria for one 
of the three described subtypes is a red flag for consideration 
of testing (with the expectation of potentially finding a GRN 
mutation) [26, 76].

Presymptomatic genetic testing

Once a causal mutation has been established in a sympto-
matic relative, the option of predictive genetic testing can 
be raised with at-risk family members. While potential treat-
ments for FTD are still lacking, appropriate clinical care for 
presymptomatic populations is integral. The genetic counsel-
ling and support systems in place lag far behind those seen 
in other neurodegenerative disorders. Whilst in practice the 
HD predictive genetic testing protocol is currently used as 
the gold standard [77], there are a number of key distinctions 
between HD and FTD which mean that the HD protocol 
may not be appropriate for the FTD population [78], includ-
ing age-related penetrance, unpredictable age at onset of 
symptoms, and phenotypic heterogeneity. Similarly, access, 
experiences and attitudes towards predictive testing can vary 
depending on location [79], and future development of an 
FTD-specific protocol may be more suitable.

The HD predictive guidelines stress the importance of 
psychological evaluation in presymptomatic carriers, with 
others suggesting that psychological assessment is a neces-
sary process for identifying an individual’s risk of experi-
encing an adverse psychological reaction to presymptomatic 
testing [80]. There remain a large proportion of individu-
als who live at-risk of FTD who decide against predictive 
testing—probably about 70–80% of this population [32]. 
These individuals receive little or no support as many will 
not have even been through genetic counselling, and little 
work has been done to identify their psychological needs. 
Initial research does suggest that rates of depression and 
mood disorders are higher even in non-carriers within FTD 

families [81]. One method of helping such individuals is the 
provision of specific support groups aimed at providing peer 
support and information about the at-risk period—the famil-
ial FTD support group in the UK is one such example (http://
www.rared ement iasup port.org/fftd/). Specific interventions 
at an appropriate time such as cognitive behaviour therapy 
or mindfulness have yet to be trialled.

Clinical trials and emerging therapies

There are currently no disease-modifying therapies for 
genetic FTD but trials are now underway or planned in each 
of the three main genetic FTD groups. Antisense oligonu-
cleotide therapy shows promise for both C9orf72 expansions 
[82] and MAPT mutations [83], whilst AAV gene therapy 
is a potential avenue for disease modification in GRN carri-
ers [84, 85], although one study in a mouse model showed 
evidence of T cell-mediated toxicity [85]. Small molecule 
therapies and tau monoclonal antibodies are also being 
developed for tauopathies (with a potential for use in MAPT 
mutations) [86], and other options for GRN mutations 
include modification of proteins such as sortilin and HDAC 
that lead to increased GRN levels [87, 88].

Summary

Much has been learnt about genetic FTD in the last dec-
ade, with the majority of autosomal dominant FTD now 
accounted for. The development of collaborative interna-
tional multicentre natural history studies in GENFI and 
ARTFL/LEFFTDS has brought together researchers and 
families, and has helped to set the background for clinical 
trials that are now getting started and being planned. An 
associated support network for those living at-risk of genetic 
FTD is important and there is work to be done in improving 
this; but with the advent of specific gene-targeted therapeu-
tics, there is hope in the community for the future outlook.
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