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Bacterial strains living in the environment must cope with the toxic compounds originating from humans production. Surface
bacterial structures, cell wall and cytoplasmic membrane, surround each bacterial cell and create selective barriers between the cell
interior and the outside world. They are a first site of contact between the cell and toxic compounds. Organic pollutants are able to
penetrate into cytoplasmicmembrane and affect membrane physiological functions. Bacteria had to evolve adaptationmechanisms
to counteract the damage originated from toxic contaminants and to prevent their accumulation in cell. This review deals with
various adaptation mechanisms of bacterial cell concerning primarily the changes in cytoplasmic membrane and cell wall. Cell
adaptation maintains the membrane fluidity status and ratio between bilayer/nonbilayer phospholipids as well as the efflux of toxic
compounds, protein repair mechanisms, and degradation of contaminants. Low energy consumption of cell adaptation is required
to provide other physiological functions. Bacteria able to survive in toxic environment could help us to clean contaminated areas
when they are used in bioremediation technologies.

1. Introduction

Over hundreds of years, mankind has been producing mil-
lions of tons of dangerous pollutants. A significant part of
this pollution consists of hydrophobic organic compounds
that are extremely persistent. These compounds have been
stored in soil and water sediments and tend to persist
unmodified over decades. Nowadays, there is a growing
awareness concerning the toxic or even carcinogenic effects
of these chemicals. Efficient ways to dispose this waste are
physical and chemical techniques that include combustion,
photolysis, chemical degradation, and decomposition. Each
chemical method can be successfully applied only within a
certain range of concentrations of organic compounds due to
their solubility, toxicity, and persistence [1]. Limitations of the
application of these techniques in the environment are caused
by low concentration of the pollutants. Alternative methods

for the decontamination are represented by biodegradation
or phytoremediation. Biodegradation has long been seen as a
cost-effective and ecological way to eliminate environmental
contamination [2]. However, the toxicity of the chemicals
can hamper application of microorganisms for removal of
the pollutants. Bacteria used for biodegradation must be
able to survive and colonize the contaminated area. Some
bacteria have developed efficient adaptation mechanisms
to survive under adverse conditions [3–5]. Anomalies in
environmental conditions activate in cells a series of pro-
cesses that allow microorganisms to minimize their negative
impact. All adaptation mechanisms are synchronized to
ensure necessary physiological functions with low energy
consumption. Environmentally induced perturbations in cell
membrane structure may result in significant disturbance
of some physiological functions. Flexibility and adaptation
capacity of the membrane largely determines survival of
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the cells [6, 7]. Since membranes constitute the main target
for the action of solvents, most adaptive mechanisms are
concerned with maintenance of the membrane fluidity and
lipid-phase stability [8]. Fluidity of cytoplasmic membrane
is a very important characteristic of the membrane structure
and is defined as the reciprocal value of its viscosity. It
can be modulated by the alteration of fatty acids that build
membrane phospholipids.

2. Cytoplasmic Membrane

Cytoplasmic membrane is a dynamic structure, which
consists of stable phospholipid bilayer with motile proteins.
The lipid components of the membrane form a barrier
to the transport of molecules, while protein components
act as transport structures of pumps and channels that
allow selected molecules to circulate into and out of
the cell [9]. Cytoplasmic membranes of most bacterial
strains consist of phosphatidylethanolamine—PE (75%),
phosphatidylglycerol—PG (15–20%), and cardiolipin—CL
(5–10%). Unlike mammals, only a few bacterial species
contain phosphatidylcholine (PC) in the membranes (e.g.,
Rhodopseudomonas sphaeroides, Pseudomonas stutzeri).
These bacteria tend to be highly specialized or highly
evolved. PC is synthesized by three successive methylations
of PE [10].

Studies with E. coli showedthat bacterial phospholipids
are synthesized exclusively for use in the biogenesis of
membranes [11]. The enzymes of fatty acid biosynthesis are
located in the cytoplasmic membrane, and the enzymes that
metabolize phospholipids are bound to the inner part of the
membrane. Biosynthesis of one mole of phospholipid from
acetyl-CoA and sn-glycerol-3-phosphate requires 32mol of
ATP. Phospholipids constitute 10% of the dry weight of
the cell, which means that a significant amount of energy
expended in the biogenesis of a new cell is used in the
production of membrane phospholipids [10, 12].

The diversity of cell membrane functions is conditioned
by their structure. Despite their different functions, the
membranes have according to Berg et al. [13] in common
several similarities:

(1) membranes are sheet-like structures with the thick-
ness between 6 nm and 10 nm, 60–100 Å, respectively.
They form dosed boundariesbetween different com-
partments [13];

(2) membranes consist mainly of lipids and proteins with
or without carbohydrate appendix. The mass ratio of
lipids to proteins ranges from 1 : 4 to 4 : 1 [14];

(3) membrane phospholipids are molecules with average
size about 10 angström. They have hydrophilic and
hydrophobic moieties. Because of the differences in
polarity of their constituents, they spontaneously
form bimolecular sheets in aqueous environment—
membrane bilayers. The bilayers of lipids are barriers
to the flow of polar molecules [15];

(4) membranes contain specific proteins, which mediate
distinctive functions of particular membranes. Mem-
brane proteins can have various functions, for exam-
ple, receptors, membrane pumps, channels, energy
transducers, and enzymes.Membrane proteins can be
fully embedded in lipid bilayers or may stick out from
the membrane structure [16];

(5) membranes are noncovalent cell components. The
most abundant membrane elements, proteins, and
phospholipids are linked together by noncovalent
interactions, which act cooperatively [16, 17];

(6) membranes are in general asymmetric. The two faces
of biological membranes always differ from each
other [14];

(7) the fluidity is the most important membrane charac-
teristic. Lipid molecules diffuse rapidly in the plane
of the membrane, as do proteins, unless they are
bonded by specific interactions. In contrast, lipid
molecules and proteins do not readily rotate across
the membrane. Membranes can be regarded as two-
dimensional bilayers of oriented proteins and lipids
[13];

(8) most cell membranes are electrically polarized with
a negatively charged inside (typically 60 millivolts).
Membrane potential plays a key role in transport,
energy conversion, and excitability [13, 14, 16, 17].

The most important function of cytoplasmic membrane of
bacteria is to form a permeable barrier, regulating the passage
of solutes between the cell and the outer environment. The
membrane keeps essential metabolites and macromolecules
inside the cell, it pumps nutrients into the cell against a
concentration gradient, and it prevents the entry of certain
compounds present in the environment [12, 18]. The barrier
properties of the cytoplasmicmembrane are of special impor-
tance for the energy transduction of the cell [19].

2.1. Mechanism of Disturbance of the Cytoplasmic Membrane
by Organic Compounds. Many organic pollutants are able to
penetrate into cytoplasmic membrane resulting in swelling
of the membrane and increase of membrane fluidity. This
increase leads to the loss of membrane functionality and to
the damage of bacterial cell. Heipieper et al. [3] established
the existence of a systematic relationship between the values
of log P in the range 1–5 and values for the partitioning of sol-
vents in cytoplasmic membrane. When a solvent penetrates
into a membrane, it disturbs the integrity of that membrane
and, hence, its function leads to an uncontrolled proton
and potassium ions efflux. This leakage causes a lowering
in the proton-motive force and leads to an impairment in
the energy conservation [20, 21]. The experiments with nine
solvents (benzene, toluene, ethylbenzene, o-xylene, cyclohex-
ane, naphthalene, biphenyl, 𝛼-pinene, and decalin), eachwith
log 𝑃 values between 2 and 5, confirmed that their concentra-
tion in the membrane of up to 0.5 𝜇mol⋅mg−1 phospholipid
resulted in an increase in the surface area of the mem-
brane [21]. This partitioning level corresponds with approxi-
mately one solventmolecule per two phospholipidmolecules.
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As a consequence, membrane fluidity is affected. Bacterial
cells try to undertake appropriate responses to minimize
disruptive effect of organic compounds by readjustment of
fluidity.

3. Adaptation Mechanisms of Bacterial Strains

Membrane fluidity is the most important parameter that
determines cell viability. Bacterial cells can change the fluidity
of this surface component depending on the outer conditions.
This could be performed by the alteration of fatty acid
composition, their chain length, and phospholipid compo-
sition [22]. Most bacteria are resisting the fluidizing effect
of hydrophobic compounds by changing their membrane
composition to reduce fluidity and to maintain balance
between bilayer and nonbilayer forming phospholipids [23].
These adaptation mechanisms rely on a modification of the
membrane phospholipids. The alterations in the cytoplasmic
membrane composition play crucial role in adaptation to
the presence of high concentrations of toxic contaminants.
Changes in the fatty acid composition of membrane lipids are
the most important reactions of bacteria against membrane
active substances. Most adaptive mechanisms were only
described for Gram-negative (G−) aerobic bacteria [19, 24–
28]; however, some papers describing Gram-positive (G+)
aerobic [29–36] and anaerobic bacteria are also available [37,
38]. The last mentioned group of bacteria is rarely studied.
The first systematic approach of anaerobic bacteria was pub-
lished by Duldhardt et al. [38]. It demonstrates that anaerobic
bacteria were about three times more sensitive towards a
series of different organic compounds when compared with
aerobic bacteria. This behavior was explained by a lower
growth rate of anaerobic bacteria in comparison with aerobic
species.

3.1. Changes in Fatty Acids Composition

3.1.1. Rigidification of Cytoplasmic Membrane. Segura et al.
[39] mentioned that the alteration of the ratio of long-chain
to short-chain fatty acids is involved in the regulation of the
membrane fluidity under adverse conditions. Larger share of
long-chain fatty acids can impede the pollutant penetration
into the membrane. This results in lower concentration of
the pollutant in the membrane and, thus, reduces its toxicity.
However, increase of membrane saturation (rigidification)
is a more efficient mechanism. Increase in saturation of
membrane phospholipids in the presence of toxic organic
compounds has been described in several publications [25,
26, 40, 41]. The IC
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concentration of toxic compound
leads to the highest increase in membrane saturation [3,
38]. Previous reports indicated that aromatic compounds
such as benzene, biphenyl, phenol, PCBs, and toluene can
accumulate in membrane bilayer between the acyl chains of
fatty acids. This phenomenon leads to the higher membrane
fluidity. Bacterial cells try to counteract this effect with closer
packing of fatty acid alkyl chains of the phospholipids in
the cell membrane to increase the membrane rigidity and
prevent the solvent accumulation [19, 21, 38, 42]. The same

mechanism was observed in Pseudomonas stutzeri in the
presence of naphthalene.The increasing degree of membrane
lipid saturation is one of the major adaptive mechanisms of
bacteria cells to the presence of many aromatic compounds
[3, 43, 44]. This alteration helps cells survive under long-
term adverse conditions. The reasons for the ability of tightly
packing saturated fatty acids are their spherical conforma-
tion (Figure 1(a)) and high phase transition temperatures
(𝑇
𝑀

). Weber and de Bont [45] characterized the transition
from the ordered phase (gel) into disordered phase (liquid-
crystalline) (𝑇

𝑀

) and described the location of phospholipids
in membrane. 𝑇

𝑀

for long-chain saturated fatty acids are
very high (e.g., for palmitic acid, it is 63∘C). This means that
palmitic acid stays in ordered phase below 63∘C. Similarly,
other long-chain saturated fatty acids contribute to low
fluidity ofmembrane and increasemembrane ordering under
growth temperatures. This arrangement prevents fluidizing
compounds to accumulate in membrane fractions. The cor-
responding monounsaturated fatty acids have lower 𝑇

𝑀

. The
lowest 𝑇

𝑀

was measured for unsaturated fatty acids with cis
configuration of double bond; for example, for C16:1cis, it was
0∘C; for C16:1trans, it was 33∘C [46–48]. Bacterial cells try
to increase membrane rigidity to counteract the fluidization
effect of organic pollutants.Thiswill be providedwith specific
amount of fatty acids contributing to a lower𝑇

𝑀

and others to
a higher𝑇

𝑀

.The average compositionwill result in an average
𝑇
𝑀

.
The mechanism of increase of saturation degree has

limitation due to the condition of synthesis of saturated fatty
acids. In G− bacteria, only the energy-dependent de novo
biosynthesis of saturated fatty acids allows for an increase
in the degree of saturation with increasing the proportion of
saturated to unsaturated fatty acids. Under growth-inhibiting
conditions, lipid biosynthesis is stopped due to stringent-
response regulation, and that is why only growing cells can
perform such kind of membrane adaptation [38, 49].

Contrast decrease in membrane saturation can be
observed in the presence of polar solvents. Polar solvents are
able to incorporate intomembrane between the phospholipid
headgroups and stimulate the formation of micellar struc-
tures. Therefore, microorganisms increase the production
of unsaturated fatty acids at the expense of saturated fatty
acids.This mechanismwas observed in Escherichia coli in the
presence of ethanol [50].

3.1.2. Isomerization of Unsaturated Fatty Acids. Two different
groups of unsaturated fatty acids take part in bacterial adap-
tation to organic pollutants. Isomerization of cis unsaturated
fatty acids into correspondent trans isomers was described
in many papers as adaptation mechanism of the bacterial
cells under growth inhibiting conditions [25, 38, 51, 52]. This
mechanism is a short-term response triggered in the presence
of hydrophobic chemicals that do not need to synthetize new
fatty acids.

Various bacterial strains, for example, Pseudomonas and
Vibrio, can adapt to the presence of toxic compounds and
their fluidizing properties by isomerization of cis unsaturated
fatty acids to their appropriate trans isomers (Figures 1(b) and
1(c)).These two forms of unsaturated fatty acids have different
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Figure 1: Two mechanisms increasing bacterial membrane saturation and decreasing membrane fluidity. The first one (direction from (b)
to (a)) describes the increase of the synthesis of saturated fatty acids (green circles) instead of cis unsaturated fatty acids (orange circles); the
second one (from (b) to (c)) shows the isomerization of cis unsaturated fatty acids into corresponding trans isomers (purple circles).

steric structure. The cis configuration of the acyl chain has
a nonmovable bend of 30∘, which causes steric hindrance
and disturbs the highly ordered fatty acid package [51]. In
contrast, the steric behavior of trans fatty acids and saturated
fatty acids is very similar. Nonmovable bends of trans fatty
acids have 6∘. Both trans and long-chain saturated fatty acids
possess a long extended conformation. It enables them to
adopt a denser packing in the cytoplasmic membrane and

allows protectingmembrane against the fluidizingmolecules.
That is the reason why the transformation of cis to trans
fatty acid leads to the decrease of membrane fluidity. Another
reason for an ordered packing of trans fatty acids compared
to cis isomers is their higher melting temperature (𝑇

𝑀

).
The studies involving toluene adapted Pseudomonas

putida strain revealed higher amount of trans fatty acids.
𝑇
𝑀

of cytoplasmic membrane of this strain was 7–9 Kelvin
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higher in comparison with nonadapted strain. Toluene can
decrease lipid ordering with its fluidizing effect and promote
the formation of an inverted hexagonal lipid. The observed
conversion of cis unsaturatedfatty acids into trans fattyacids
in P. putida is expected to counteract the formation of a
nonbilayer structure. This observation can be rationalized
because the lipid volume of the trans fattyacids is smaller than
the cis isomer [8]. Heipieper et al. [52] proved the activation
of the cis-trans isomerase in resting cells by the addition of
3-nitrotoluene. This activation resulted in the conversion of
the cis unsaturated fatty acids into the corresponding trans
isomers. The intensity of the rate of cis-trans isomerization
depended on the added amount of toxic compound. A
mutual dependency was found between the activation of this
system and the induction/activation of other stress-response
mechanisms [53]. Cis-trans isomerization correlates with the
toxicity and amount of hydrophobic compound accumulated
in cytoplasmic membrane. In most bacteria, the cis-trans
isomerization is conducted by the transformation of oleic and
vaccenic acids to their trans isomers in consequence of the
high prevalence of the acids in cytoplasmic membrane [54].

The enzyme that is responsible for this adaptation mech-
anism, isomerase, belongs to cytochrome c-type protein
and carries Cti polypeptide with a heme-binding site. This
polypeptide was found in all tested Pseudomonas strains.
Moreover, comparison of the amino acid sequences of the
seven known Cti proteins identified it as heme containing
protein [55]. Cti polypeptide is responsible for the localiza-
tion of cis-trans isomerase in periplasmic space. That is the
reason why only fatty acids with cis double bond in specific
depth of membrane can reach the active site of isomerase
[56]. This enzyme has been purified from the periplasmic
fraction of Pseudomonas oleovorans for the first time by
Pedrotta and Witholt [57]. The cis-trans isomerase gene
cloned and sequenced from Pseudomonas putida P8 [54] and
Pseudomonas putida DOT-T1E [58] made evident that the
isomerase has an N-terminal hydrophobic signal sequence.
This sequence is cleaved off after targeting the enzyme to the
periplasmic space. The observations confirmed that cis-trans
isomerase is constitutively present, does not require ATP or
other cofactors including NAD(P)H and glutathione, and
works in the absence of de novo synthesis of lipids [20, 49, 59,
60]. The occurrence of heme-binding site of the cytochrome
c-type strongly supports a mechanism of cis-trans isomeriza-
tion by forming an enzyme-substrate complex. This finding
prefers a mechanism for the enzyme, in which electrophilic
iron (Fe3+), provided by a heme domain, directly attacks cis
double bond of fatty acid and removes an electron of the cis
double bond, thereby transferring the sp2 linkage into sp3.
Double bond is then rebuilt in trans configuration. Cis-trans
isomerization is an exergonic (exothermic) reaction because
the energetic difference between cis and trans configuration
is 3.1 kJ⋅mol−1 [52].

3.1.3. Changes in Cyclopropane and Branched Fatty Acids.
Higher concentration of organic pollutants stimulated pro-
duction of cyclopropane fatty acids (C17-CP and C19-CP)
in some bacterial strains. These results were observed under

the exposure of polycyclic aromatic hydrocarbons (PAHs),
phenols, biphenyl, and polychlorinated biphenyls (PCBs) [7,
28, 61, 62].

The role of these fatty acids in membrane adaptation
mechanisms is still not clear because their participation
in membrane permeability and fluidity maintenance is not
understood in detail [63]. However, it was suggested that
the presence of cyclopropane fatty acids in membrane may
decrease membrane permeability to protons. Some authors
indicated that cyclopropane fatty acid formation is one
of the most important mechanisms that protect bacterial
cells against many chemicals (aromatic compounds, organic
solvents, alcohols, etc.) and environmental factors (salinity,
pressure, and temperature) [6, 24, 48, 64–67].

Other authors demonstrated the decrease of the pro-
duction of these fatty acids after the incorporation of toxic
compounds into cultivation media [26, 42, 68]. Perly et al.
[69] described poorly packing cyclopropane fatty acids into
the acyl chain array of the phospholipid bilayer compared
to unsaturated fatty acids. Even low content of cyclopropane
fatty acids in cytoplasmic membrane may change overall
mobility and order of the acyl chains. These fatty acids
are formed from cis unsaturated fatty acids under energy
consumption. It is thought that the primary function of
cyclopropane fatty acids formation is to change chemical
properties of the membrane without changes of physical
properties [70]. The physiological role of cyclopropane fatty
acids in survival of Escherichia coli under acid stress condi-
tions was reported [63].

The abundance of branched fatty acids in FAMEs profiles
obtained from contaminated environment strains is signifi-
cantly higher compared to control samples [26, 71].

Lipids of anaerobic and G+ aerobic bacteria often contain
a high proportion of iso and anteiso branched fatty acids.
Nevertheless, they can be found in several G− strains [26, 28].
The maintenance of membrane fluidity with alteration of
branched fatty acids depends on the energetic status of the
cells as well as on de novo synthesis of their precursors—
valine (iso-branched-even-chain), leucine (iso-branched-
odd-chain), and isoleucine (anteiso-branched-odd-chain).
Iso and anteiso fatty acids show different physicochemical
properties because of the differences in structure and 𝑇

𝑀

[10, 13, 38, 72, 73].The 𝑇
𝑀

of the branched fatty acids is lower
for the anteiso fatty acids (e.g., 51.7∘C for C15:0 iso and 23.0∘C
for C15:0 anteiso) [72]. This difference causes a remarkable
change in the fluidity of the membrane when the species
of branched fatty acids are changed from one to the other
and affect the lipid ordering in particularmembrane fraction.
The effect on 𝑇

𝑀

caused by a change from anteiso- to iso-
branching in G+ bacteria is comparable to the isomerization
of cis to trans unsaturated fatty acids in G− bacteria. Even the
volume occupied with anteiso fatty acids is higher than that
occupied with iso fatty acids. G+ and G− bacteria that contain
branched fatty acids adapt to differences in temperature
and organic solvents by altering the anteiso/iso ratio in the
cell membrane. According to the different physicochemical
properties of those two species of branched fatty acids, the
bacteria showed a decreased amount of anteiso fatty acids
when grown under adverse conditions to decrease the fluidity
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Figure 2: Structure of bacterial membrane phospholipids—phosphatidylcholine (a), phosphatidylserine (b), phosphatidylethanolamine (c),
phosphatidylglycerol (d), and cardiolipin (e). R
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represent fatty acid acyl chains.

of membrane and diminish incorporation of the pollutants
into membrane structures [28, 62, 73].

Anaerobic sulphate-reducing bacteria contain predomi-
nantly anteiso-branched fatty acids.Themodification of their
membrane fluidity is performed by increasing the relative
ratio of saturated to anteiso-branched fatty acids. Under
the growth insufficient conditions, this mechanism does
not take place. The growth rate of anaerobic bacteria is
much slower compared to that of the aerobic; therefore, the
adaptation mechanisms take more time and these bacteria
are sensitive to organic compounds to a higher extent than
aerobic bacteria [74].

3.2. Changes in Phospholipids. Bacteria contain in their
cytoplasmic membrane several different phospholipid head-
groups (phosphatidylserine—PS, PC, PE, PG, and CL)

(Figure 2). Each of them holds specific function to maintain
vital cell. In the presence of environmental perturbations,
cells alter phospholipids amount.

Changes in phospholipids headgroups on environmental
pollution are poorly studied compared to fatty acids alter-
ation. Phosphatidylethanolamine (PE) is the most abundant
phospholipid in bacterial membrane that comprises more
than 70% of all phospholipids [13]. It provides lateral pressure
to bacterial membrane bilayer and keeps the position of
amino acids. It is a nonbilayer forming lipid because of its
steric conformation (small glycerol group and high acyl-
chain volume). Nonbilayer aggregates (preferred hexagonal
conformation) of cytoplasmic membrane are important in
cell division, membrane fusion, and lateral proteins and
lipids motion. The ratio between bilayer and nonbilayer
forming lipids varies in response to environmental changes.
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Organic solvents like benzene and toluene can reduce the
transition temperature of membrane lamellar-gel to liquid-
crystalline phase (𝑇

𝑀

) and enhance the formation of nonbi-
layer aggregates with decreasing 𝑇LH temperature (transition
from bilayer into hexagonal phase). Stabilization of the
𝑇
𝑀

temperature is important to sustain membrane fluidity
and stability. 𝑇

𝑀

of cytoplasmic membrane can be slightly
modified by membrane phospholipids (each of them has
different 𝑇

𝑀

), which can affect bilayer stability of mem-
brane (e.g., dipalmitoyl-PC has 41∘C, dipalmitoyl-PE has
63∘C, dipalmitoyl-PS has 55∘C, and dipalmitoyl-PG has 41∘C
𝑇
𝑀

). Cultivation of Pseudomonas putida S-12 with toluene
decreased amount of PE and increased content of PG and
CL.This alteration could stabilize membrane by lowering the
fluidity [39]. However,Weber and de Bont [45] described that
phospholipids have much higher effect on bilayer stability
(𝑇LH) than onmembrane fluidity (𝑇

𝑀

) because of their ability
to form hexagonal or lamellar structures. Based on these
facts, the decrease of PE content leads to higher bilayer
stability. Nevertheless, bacterial cell tries to keep balance
between bilayer and nonbilayer phospholipids to maintain its
physiological function.

Donato et al. [29] described the effect of DDT on the
bacterial strain Bacillus stearothermophilus. This compound
induced a very significant increase of the PE membrane con-
tent with a parallel decrease of PG content.This alterationwas
accompanied by an increase of straight chains and parallel
decrease of branched fatty acids in cytoplasmic membrane.
DDT promoted more ordered membrane with an increase
of the 𝑇

𝑀

temperature to higher values that led into higher
membrane rigidity. However, increase in PE and decrease
of PG amounts are not usual responses of the bacteria. PG
is important in CL synthesis and plays a role in protein
translocation across the membrane [10].

Based on their polarity, toxic organic solvents can accu-
mulate in different membrane sites. This affects their ability
to change membrane bilayer stability by the formation of
inverted cone (polar pollutants) or cone structures (nonpolar
pollutants). Polar compounds as ethanol can accumulate
between the glycerol headgroups. This process destabilizes
bilayer-nonbilayer balance. Bacterial cells react to this effect
by the formation of a lipid with a small headgroup volume,
for example, monoglucosyldiglyceride (MGDG). Benzene,
for example, increases hexagonal aggregates. Cells counteract
this phenomenon by stimulation of production of lamellar
phospholipids (e.g., diglucosylglyceride, DMGM). A similar
effect can be observed in the presence of toluene. Toluene
is able to incorporate into the membrane between the acyl
chains. The cell response is to produce higher amount of
CL to stabilize bilayer. CL has a larger headgroup volume
compared to PE.The decrease of PE production and increase
of CL content will increase the volume of headgroups. This
can compensate toluene induced increase of acyl chains
volume and stabilize bilayer. Moreover, CL has 10-Kelvin
higher 𝑇

𝑀

than PE. Due to this fact, CL increases membrane
rigidity while toluene induces disordering of acyl chains. As
mentioned above, an opposite effect occurs in the presence of
polar ethanol [68].
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PC PE PG PC PE PG PC PE PG PC PE PG
A. xylosoxidans P. stutzeri P. veronii O. anthropi

Control
PCB
3-CBA

Figure 3: Percentage representation of membrane phospholipids
after the addition of nonpolar (PCBs) and polar (3-CBA) toxic
pollutants in the presence of four bacterial strains isolated
from a long-term PCB-contaminated soil and sediment: Alcali-
genes xylosoxidans, Ochrobactrum anthropi, Pseudomonas stutzeri,
and Pseudomonas veronii. PC: phosphatidylcholine, PE: phos-
phatidylethanolamine, and PG: phosphatidylglycerol.

The regulation of phospholipid headgroups content con-
trols the ratio between bilayer and nonbilayer membrane
structures and the bilayer surface charge density. The accu-
mulation of organic solvents in the lipid bilayer may increase
the distance between the lipids in the bilayer.These changes of
the phospholipids will affect the surface charge density of the
membrane. Similarly, ethanol increases lipids surface area.
PS present in cytoplasmic membrane counteracted this effect
and provided lower ethanol sensitivity of E. coli. PE and PC
showed no effect on cell resistance.The explanation for bacte-
rial resistance to environmental stress is an increase in anion-
zwitterionic phospholipid ratio observed by Romantsov et al.
[75].

The effect of nonpolar PCBs and polar 3-chlorobenzoic
acid (3-CBA) was assessed in our laboratory using four
bacterial isolates. The initial concentration of 100mg⋅L−1 of
each pollutant was added into the minimal mineral media
at the beginning of cultivation together with the bacterial
inoculum (1 g⋅L−1). Adaptation responses in phospholipid
headgroups were analyzed after six days of cultivation on the
rotary shaker (180 rpm) at 20∘C in the dark (Figure 3).

The differences in adaptation responses toward polar and
nonpolar toxic compounds can be seen on the examples of
PC and PG. Only aminority of bacterial strains contain PC in
their membrane [10]. This phospholipid belongs to a bilayer
forming group similarly to PG [12]. An increase in PC accu-
mulation in membrane was observed after addition of non-
polar PCBs. Polar 3-CBA did not rapidly affect the amount of
this phospholipid in the membrane. Only a slight increase of
PC content was observed in both Pseudomonas species after
3-CBA addition. On the contrary, both pollutants caused the
decrease of PE amount in all studied strains. As mentioned
before, PE belongs to nonbilayer phospholipids. Presence of
toxic pollutants leads to their accumulation in membrane
and destabilizes the bilayer conformation. Cells counteract
this effect by reducing the nonbilayer phospholipid frac-
tion to increase membrane stability. This phenomenon was
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accompanied with an increase in membrane saturation and
cis/trans isomerization to decrease membrane fluidity [28].
Nonpolar compounds are able to accumulate between the
acyl chains of phospholipids and stimulate the hexagonal
formation and increase 𝑇

𝑀

. As a result of such accumulation,
increase of PG content in membrane can be expected. Our
results obtained using the PCBs are in accordance with this
assumption as can be seen in Figure 3. The presence of 3-
CBA caused the decrease of PG content.This can be explained
by the ability of a polar compound to accumulate between
the polar phospholipid parts (glycerol headgroups) and by a
stimulation of micellar formation (interdigitated phase). PG
has a larger headgroup volume; therefore, a decrease of the
content of this membrane component increases membrane
stability. The addition of PCBs evoked increase of PG and
PC membrane incorporation and decrease of PE in bacterial
cells. Both PC and PG are bilayer forming lipids, while PE
is a nonbilayer lipid. These results are in agreement with the
results obtained with different nonpolar toxic compounds
[45].

3.2.1. Unique Status of Cardiolipin. Cardiolipin (diphos-
phatidylglycerol) is a unique phospholipid that plays an
important role in cell membrane adaptation. Increase in its
synthesis strongly enhances the adaptation ability of bacterial
cell to the presence of organic solvents as well as to long-
term starvation. This mechanism was observed mainly in
Pseudomonas species [76].

CL is a minor component of bacterial membrane that can
be found in many strains. Together with PG, it represents
the most abundant anionic lipid component of bacterial
membrane. These phospholipids are markedly present in a
number of G+ bacteria. It may trap protons in an acid struc-
ture and bind to a large number of unrelated proteins. The
molecule consists of two phosphatidic acid residues linked by
a glycerol. It contains four fatty acid chains per molecule and
possesses one negative charge per headgroup (Figure 2(e)).
CL is synthesized with enzyme cardiolipin synthase in
cytoplasmic membrane. The synthase catalyses the transfer
of phosphatidyl group between two phosphatidylglycerol
molecules and is known as phospholipase D. This enzyme
reacts with two PG molecules, one acting as phosphatidyl
donor and the other as phosphatidyl acceptor. This enzyme
does not have strict substrate specificity and may act in the
reverse direction and decompose CL. Trace amount of CL
occurs in bacterial cells during the exponential growth phase.
Accumulation of CL increases at the beginning of stationary
phase. It is the most stable of all membrane phospholipids
and is essential for the survival upon long-time starvation.
Only de novo synthesis of CL was described in bacteria [77].
Prokaryotes can change the amount of this lipid depending
on their physiological status and growth conditions.

Increase of the amount of this phospholipid is a known
adaptation mechanism in the stress environment. It may
reflect a requirement for enhancement of the structural
integrity of cytoplasmic membrane or for the support of
stress related increases in energy transduction [78]. Another
adaptation to long-term exposure to toxic solvent can be

achieved with efflux pumps or increased biosynthesis and
changes in phospholipids that support the adaptation and
repair mechanisms [76]. CL stimulates changes in the physi-
cal properties of cytoplasmicmembrane. Even small amounts
of CL decrease the lateral interaction within the monolayer
leaflet, which decreases the energy required to stretch the
membrane and could favor the creation of membrane folds
[79]. This is the reason why CL is concentrated in polar
and septal regions of the cell. It is able to form nonlamellar
structures that are required for membrane curvature and
lead to the formation of clusters. The advantage of its
unique conformation enables the nonlamellar structure to
pack tightly forming microdomains which are stabilized by
membrane proteins. Its ability to trap protons at H+ uptake
pathway of energy is due to its high 𝑝𝐾

𝑎

value (>8) and may
have implications for the distribution of the proton-motive
force in energy-converting membranes [80, 81].

Recent studies confirmed that bacteria with CL synthase
deficiency are more vulnerable to osmotic stress and organic
solvents [82]. von Wallbrunn et al. [83] used a mutant
bacterium that is not able to synthesizeCL to find outwhether
the cis-trans isomerase is able to compensate CL in adaptation
mechanisms.Their results demonstrated that the mutant was
not able to grow, which proved that cis-trans isomerase was
not fully able to replace adaptation effect of CL.

3.3. Efflux Pumps and Solvent Transport. Bacteria have devel-
oped various systems to eliminate toxic compounds naturally
present in the environment. This led to the occurrence of
multidrug resistance that is a dangerous property of some
important pathogens [84]. Such elimination takes place
by an uncontrolled efflux and accelerates active extrusion
of structurally unrelated compounds from cytoplasm or
cytoplasmic membrane to the external space. Toxic pollu-
tants may represent substrates for the efflux system. Sev-
eral studies indicated the importance of physical properties
of compounds (hydrophobicity or molecule charge) for
the determination of specificities of this mechanism [85–
87]. The efflux system transporters for organic compounds
identified in multidrug resistant G− bacteria belong to the
RND family (resistance nodulation cell division) of pumps
that are encoded chromosomally [88]. This system consists
of complex transporters, which export toxic compounds
through the cell membranes in a single energy coupled step.
It requires a cytoplasmic membrane export system, which
acts as an energy-dependent extrusion pump, a membrane
fusion protein, and an outer membrane factor [39, 89]. It
was found that primary multidrug efflux system AcrAB-TolC
facilitated the efflux of hydroxyl-PCBs out of the cells [90].
Thesemultidrug resistant pumpsmay affect the accumulation
and degradation of PCBs by bacteria. Moreover, adapted
bacteria of Pseudomonas sp. accumulated lower amount
of trichlorobenzene in cells than nonadapted strains [76].
Similar results were published with toluene by Segura et al.
[91]. The ability of E. coli to eliminate PCBs and hydroxyl-
PCBswas studied byGeng et al. [90].The correlation between
the multidrug resistance and the efflux of toxic pollutant by
Pseudomonas aeruginosawas studied in detail byMuller [92].
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Rojas et al. [89] described that some of the efflux pumps
act on a restricted range of substrates. An example of such
pump is TtfDEF pump from Pseudomonas putida DOT-T1E,
which extrudes only toluene and styrene. Other pumps have
a broad range of structurally diverse compounds. MexAB-
OprM from P. aeruginosa can extrude hexane, p-xylene, and
PCBs as well as antibiotics [93].

3.4. Proteome

3.4.1. Effect of Pollutants onMembrane Proteins. As a result of
the induced change in the membrane lipids, the membrane
proteins are affected as well. Adaptation to some organic
solvents results in a higher ratio of proteins to phospho-
lipids. This decreases membrane fluidity because of the
hindrance of lipid motion with proteins [94]. Cytoplasmic
membrane contains mainly solute transport enzymes and
proteins involved in electron transport chains. Their activ-
ity is changed depending on physicochemical membrane
properties (fluidity and bilayer stability) and membrane
thickness [9]. Sikkema et al. [21] described the decrease of
cytochrome c activity in the presence of polycyclic aromatic
hydrocarbons (PAHs). The type of phospholipid headgroup
has a pronounced influence on the enzyme activity [95],
although the fatty acid composition (lipid ordering) does
not affect membrane enzymes. The activity of Ca2+-ATPase
can be an example. High content of PE increases activity
of this enzyme. Some membrane proteins depend on spe-
cific boundary phospholipids [45]. Correct orientation and
arrangement of specific membrane proteins fully depend on
these phospholipids.

3.4.2. Production of Special Proteins. Another known
response of bacterial cells is the production and overexpres-
sion of stress proteins [96–101]. Induction of stress proteins in
E. coli with aromatic compounds, such as 2,4-dinitrophenol
(DNP) and benzoate, has been reported [102, 103]. Other
stress proteins DnaK and GroEL are induced by 2,4-
dichlorophenoxyacetic acid in Burkholderia sp. YK-2 [104]
and by 4-chlorobiphenyl and biphenyl in B. xenovorans
LB400 [97]. Expression regulation of the stress proteins was
reviewed by Hecker and Völker [105]. The role of alternative
sigma factor 𝜎B in this adaptation was emphasized. This
factor controls the production of bmrUR operon in G+
Bacillus subtilis necessary for the production of multidrug
efflux proteins [33]. Toxic environment not only acts on
the envelope, but usually affects the cell proteome as
well. Damaged proteins can be replaced with the newly
synthesized; however, this method is not efficient under
nutrient limitations. Therefore, the proteome repair is
required to maintain cell vitality. Visick and Clarke [106]
described three major mechanisms, which operate in
bacteria after a proteome damage induced by environment.
First mechanisms include the chaperones, which assist in
proper de novo folding of proteins and also provide an
important means of restoring activity to damaged proteins.
Second mechanism describes the existence of enzymatic
repair systems that directly reverse certain forms of protein

damage, including proline isomerization, methionine
oxidation, and the formation of isoaspartyl residues. Third
mechanism concerns proteolysis of abnormal proteins,
which cannot be repaired.

Mart́ınez et al. [98] described the effect of 4-
chlorobenzoic and 2-chlorobenzoic acids on B. xenovorans
LB400. No effect on membrane lipids was observed. The
primary adaptation was revealed as an overexpression of 11
proteins (the highest being the overproduction of catechol-
1,2-dioxygenase, belonging to 3-oxoadipate chlorobenzoate
degradation pathway). Stress proteins, metabolic proteins,
and elongation factors were stimulated as well. Similar
induction of metabolic proteins in response to the aromatic
compounds was described by Santos et al. [107] and Segura et
al. [108]. Ethanol induced production of heat-shock proteins
was observed also in E. coli [109]. The production of shock
proteins belongs to nonspecific general stress responses.

3.5. CellWall. Cell envelope of allmicroorganisms consists of
cell wall and cytoplasmic membrane.These covering compo-
nents protect cell nucleus against the outside effects and help
in communication with other cells. Most of the adaptation
mechanisms discussed in this review are connected with
cytoplasmic membrane as highly selective barrier. Moreover,
the first line of cell protection is based on the alteration
of the membrane composition that leads to lower fluidity
and permeability toward toxic compounds. However, cell
wall plays also a significant role in cell interior protection.
Toxic compounds must firstly penetrate cell wall to reach
other cell components. The cell wall of various bacterial
strains serves as molecule sieve that prevents the transport of
compounds with molecular weight higher than 600–1000Da
[19]. This surface structure is quite dissimilar in G+ and G−
bacteria. G+ bacterial strains have thick murein containing
cell wall convoluted with teichoic acids. The role of murein
layer in the exclusion of toxic compounds from cell is
improbable because of its structure and properties. Mycolata
(Rhodococcus, Mycobacterium, Nocardia, Corynebacterium,
Gordonia, Dietzia, Skermania, and Tsukamurella) represent
a specific taxon of G+ bacteria that are extremely resistant
to drugs and toxic hydrophobic compounds. The cell wall
of the taxon is unique in its composition and organization
compared to other G+ bacteria.The dominant abundance has
arabinogalactan polysaccharide, which is linked with large
2-alkyl 3-hydroxy branched-chain fatty acids called mycolic
acids. This covalently assembled complex is responsible for
the cell surface hydrophobicity and impermeability [110–112].
The cell hydrophobic character helps mycolata to uptake the
hydrophobic substrate from the environment without the
production of surfactant and enables the use of such bacteria
in bioremediation technologies [34–36].

Contrarily, G− bacteria have a very thin murein layer
that is linked from the outside part with the outer layer. The
predominant component of this addition layer is lipopolysac-
charide (LPS). LPS is composed of polysaccharide chainswith
six to seven saturated fatty acids bond in glucosamine dis-
accharide structure. Thanks to these tightly packed saturated
fatty acids, LPS has a very low permeability to hydrophobic



10 International Journal of Microbiology

compounds and, thus, can act as cell protection [39, 113].
LPS polysaccharide chain plays a role in cell resistance as
well. The studies with E. coli mutants unable to synthesize
these polysaccharides showed high sensitivity of the mutants
toward hydrophobic antibiotics, detergents, and other drugs
[45].

Moreover, changes in LPS composition led to higher
o-xylene resistance of Pseudomonas putida Idaho. LPS
molecules with highmolecular weight were replaced by lower
weight bands to adapt to o-xylene [114]. This notion of a
protective function of LPS can be supported by a lower sen-
sitivity of G− bacteria toward various organic contaminants
such as PCBs, toluene, benzene, or biphenyl [26, 28, 115]. The
amount and type of LPS molecules present in bacterial cell
wall have a crucial effect on the bacterial surface properties
as hydrophobicity and adhesion with outer surfaces and
substrates [116].The decrease of cell hydrophobicity generally
leads to lower cell availability toward lipophilic contaminants
and diminished permeability [84].

However, some of the adapted microorganisms are able
to use the hydrophobic solvents as energy source [117].
Under the circumstances, uptake of such substrates is pro-
vided with the release of LPS molecules and enclosing of
hydrophobic substrates with hydrocarbon droplets [118]. G+
bacteriumMycobacterium frederiksbergense showed increase
in cell hydrophobicity in the presence of anthracene instead
of glucose. Anthracene served as a carbon source for the
strain. Bacterium increased the cell surface availability for
the metabolic process [31]. Some microorganisms that are
capable of utilization of hydrophobic contaminants produce
biosurfactants and extracellular mucor to increase bioavail-
ability of such unique carbon sources [119].

Cell survival in inhospitable environment can be sup-
ported by the addition of divalent ions (Mg2+ and Ca2+). It
is supposed that these divalent ions can diminish the charge
repulsion of adjacent polyanionic LPS molecules with their
electrostatic bond. As a consequence, firm ordering of LPS
molecules influences membrane stability and the entry of
toxic organic compounds. Higher toluene resistance of Pseu-
domonas species was observed after the supplementation of
cultivationmedia with divalent ions [45]. Toluene adaptation
correlated with lowered surface hydrophobicity [39]. Higher
surface hydrophobicity was observed in the presence of toxic
water-soluble arsenical compounds. This effect increased
the tolerance of Euglena mutabilis and Euglena gracilis to
hydrophilic toxic compound but not to hydrophobic ones
[120]. The removal of LPS molecules can lead to the loss of
the resistance to toxic contaminants [113, 121].

Although the penetration of external compounds is
diminished by outer membrane, large number of small
molecules can move through this cell structure through
protein canals. Some of the canals forming proteins are highly
specific with specific binding sites facilitating the transport
of certain molecules. Other proteins called porins allow non-
specific diffusion, necessary for the nutrient and water influx
[87, 115]. Porins are water filled protein canals embedded
in the outer membrane. Bacterial resistance toward rather
hydrophilic antibiotics is related to the porin mutations
[122]. OmpF porin is supposed to be a good transporter

for organic solvents [123]. Contrast effect was observed with
porin OmpL. Its absence leads to the solvent hypersensitivity,
because of its stabilization effect to cell wall integrity [76].The
adaptation to solvents does not only enhance the resistance
to other solvents but also enhances the resistance to heavy
metals and antibiotics [124].

4. Other Adaptation Responses

Another mechanism of microorganism adaptation is the
accumulation of special compatible solutes like trehalose,
betaine, rhamnolipid biosurfactants, and proline. These
solutes were found in cell of stress survived microorganisms
because of their ability to protect cell against low temper-
atures with their effect on lipid ordering and membrane
fluidity [125–127]. The solvent accumulation between the
phospholipid headgroups increases the membrane fluidity
and permeability. As a result, proton leakage can be observed,
which leads to the loss of proton-motive force. Bacteria can
stimulate the activity of H+ ATPase in the presence of high
concentration of solvents to decrease the loss of protons [128].

The adaptation of outer membrane is also connected with
the formation of outer membrane vesicles [129]. Membrane
vesicles play an important role in interspecies communica-
tion [130] and the delivery of proteins, toxins, and DNA.
Kobayashi et al. [131] discussed the possibility of toluene-
containingmembrane vesicles as an adaptationmechanism to
transport toxic compounds away from the cells. In addition,
an important function of membrane vesicles release is their
involvement in biofilm formation [132]. Bacteria growing
in biofilms are known to be significantly more tolerant to
antibiotics, biocides, and other forms of environmental stress
[132, 133].

Changes in cell morphology in the presence of toxic
compounds were observed in G− [134] as well as in G+ bacte-
ria [30]. General responses of G− bacteria to environmental
stress were attributed to increase in cell size. G+ bacteria
showed filamentous growth, increased cell volume, formation
of endospores [32], and production of unusual extracellular
capsule [135].

Another efficient way of how to cope with toxic com-
pounds is to decrease their toxic effect with their degra-
dation or modification. The degradation enzymes are bond
to the inner part of cytoplasmic membrane. The ability of
hydrophobic compounds to accumulate in cytoplasmicmem-
brane isminimizedwith hydroxylation of the compound.The
usual degradation pathway begins with the incorporation of
hydroxyl group into the pollutant structure [1, 95, 136, 137].
However, increase in pollutant’s polarity leads to its higher
water solubility and higher availability to the microorganism
itself. This situation usually leads to higher toxicity of the
environment. Therefore, the microorganisms able to modify
toxic compounds try to cooperate with other organisms to
achieve complete mineralization of contaminants into CO

2

and water or at least transform the initial compounds into
nontoxic intermediate.

Somemolecules present in the nature can help bacteria to
survive in the contaminated environment. The mechanisms
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of these compounds have not been described in detail yet.
However, we described that some of these compounds are
able to diminish bacterial adaptation mechanisms relating
to fatty acids composition [138]. Natural matrices rich in
terpene content belong to this group. Many studies described
the stimulation effect of ivy leaves, pine needles [139],
eucalyptus leaves, tangerine, and orange peel [140–142] to
the biodegradation of hydrophobic pollutants. Potential use
of synthetic terpenes and natural matrices containing these
compounds in the stimulation of bacterial adaptation was
studied in our previous works [28, 138, 143]. Our results
clearly indicated the positive effect of natural terpene contain-
ingmatrices, ivy leaves, and pine needles on bacterial survival
in the presence of polychlorinated biphenyls (PCBs). Ivy
leaves decreased the adaptation responses of Pseudomonas
stutzeri and Burkholderia xenovorans LB400 toward PCBs
and increased the biomass growth. Contrast effect was
observed in the presence of synthetic terpenes (carvone and
limonene) which correspond with other papers [144–148].
Although the positive effects of natural terpenes on bacterial
adaptation and survival in the PCB contaminatedmedia have
been observed, it is necessary to study the mechanisms of
such effect with other toxic contaminants in future works.

5. Conclusions and Future Prospects

A number of responses have been observed in bacteria that
counteract the effect of organic pollutants. Rigidification of
the cell membrane is a consequence of cell adaptation. The
alterations in cytoplasmic membrane maintain particular
ratio between bilayer and nonbilayer (hexagonal) phos-
pholipids (prevention against the environmentally induced
formation of interdigitated structure) and keep the opti-
mal phospholipid ordering to stabilize membrane fluidity.
Another mechanism to protect bacterial cell is the efflux of
toxic compounds from the membrane bilayer or its degra-
dation. Toxic compounds affect not only cytoplasmic lipids
but also cell proteins. This resulted in the development of
special protein repairmechanisms by the bacteria. Changes in
cell metabolism reflect the degree of pollutant toxicity. Study
of these mechanisms is the first step in selection of proper
bacterial strains for bioremediation application. Successful
environment decontamination requires bacterial strains that
are able to degrade particular (one or more) contaminants.
Moreover, such strains have to be able to survive and adapt to
environmental pollution.

The successful decontamination process use of adapted
strains and optimization of bioremediation conditions have
been currently extensively studied.Thedegradation studies in
artificial precisely definedmatrices (liquidmedium, enriched
soil, or sediment) and in naturally contaminated matrices
under laboratory conditions (microcosms) should be subse-
quently applied under natural conditions in smaller range
(mesocosms).

Another possibility is genetic modification of excellent
bacterial degraders to survive under adverse environmental

conditions. That allows the degraders to apply their degra-
dation ability (expression of the relevant enzymes) in decon-
tamination process without inhibition of the physiological
processes in bacterial cells.
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