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Abstract: Astaxanthin is a carotenoid with powerful antioxidant and anti-inflammatory activity
produced by several freshwater and marine microorganisms, including bacteria, yeast, fungi, and
microalgae. Due to its deep red-orange color it confers a reddish hue to the flesh of salmon, shrimps,
lobsters, and crayfish that feed on astaxanthin-producing organisms, which helps protect their
immune system and increase their fertility. From the nutritional point of view, astaxanthin is
considered one of the strongest antioxidants in nature, due to its high scavenging potential of
free radicals in the human body. Recently, astaxanthin is also receiving attention for its effect on
the prevention or co-treatment of neurological pathologies, including Alzheimer and Parkinson
diseases. In this review, we focus on the neuroprotective properties of astaxanthin and explore the
underlying mechanisms to counteract neurological diseases, mainly based on its capability to cross
the blood-brain barrier and its oxidative, anti-inflammatory, and anti-apoptotic properties.

Keywords: astaxanthin; neuroinflammation; neuroprotective effect; neuroactive carotenoids;
neurodegenerative diseases

1. Introduction

Carotenoids have gained scientific and commercial interest during the last decades, due to
their huge chemical diversity (about 750 carotenoids have been characterized) and their strong
beneficial effects on human health and wellbeing. These bioactive compounds exert antioxidant,
repairing, antiproliferative, antiaging and anti-inflammatory effects and can be used either as skin
photo-protection to inhibit adverse effects of solar UV radiation or as nutraceutical and cosmeceutical
ingredients to prevent oxidative stress-related diseases and chronic inflammation [1–3].

Astaxanthin is one of the most successful carotenoids on the market (Figure 1), since many
studies in recent years have demonstrated its inhibitory role against oxidative stress and inflammation,
dangerous processes at the basis of many chronic diseases. Moreover, astaxanthin exerts a strong
protective effect on human brain; its unique chemical structure allows it to readily cross the blood-brain
barrier (BBB) [4]. Thus, the brain is considered the most important target organ of astaxanthin.
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Astaxanthin is present especially in the marine environment and is produced mainly by
microorganisms such as bacteria, microalgae, and yeast; it can also be found in marine invertebrates and
vertebrates [5–7]. The most important producers of astaxanthin are the marine bacterium Agrobacterium
aurantiacum, the green microalgae Haematococcus pluvialis and Chlorella zofingiensis, and the red yeast
Xanthophyllomyces dendrorhous (called also Phaffia rhodozyma). Animals cannot synthesize astaxanthin
but can obtain it through the diet [8]. Astaxanthin is thus present in salmon, trout, shrimp, lobster,
and fish eggs which confers a reddish-orange hue to these organisms. Nevertheless, the majority of
astaxanthin-based products on the market are derived from its synthetic production, since its natural
production is still not well standardized for industrial scale. Unfortunately, synthetic astaxanthin is
significantly more inferior than algal-based astaxanthin in terms of anti-inflammatory and antioxidant
properties [9].

Given that oxidative damage and increased neuro-inflammation are critically related with the
pathogenesis of late-onset massive neuronal loss in neurodegenerative diseases, the neuroprotective
effect of natural compounds, such as astaxanthin, has been of specific interest as co-treatments and
prevention for these diseases [10]. The most common neurodegenerative diseases include Alzheimer
Disease (AD), Parkinson Disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis
(ALS) [11,12]. Although different neurodegenerative diseases can have several causative factors,
they have some common characteristics such as an increase in ROS levels in neuronal cells caused by
mitochondrial insults and the release of redox metals interacting with oxygen [13], resulting in neuronal
cell death [14]. This can lead to an increase in protein aggregates that inflame and activate microglia
cells [15]. Once neuroinflammation is chronically activated, cytokines and chemokines are released,
producing an increment of oxidative stress, with dangerous detrimental effects on neurons [16].

The aim of this review is to report the most recent scientific findings on the protective and curative
role of astaxanthin on human brain against neuroinflammation, oxidative stress and, more in general,
on the beneficial effects for patients with neurodegenerative disorders (Table 1).
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Table 1. In vitro and in vivo studies of biological roles of astaxanthin.

Model Effect Concentration Target Disease Reference

Mice Anti-inflammatory 25 mg/Kg/day NF-κB, TNF-α Cognitive
impairment [17]

SH-SY5Y cells Anti-apoptotic 1 to 20 µM 6-OHDA, Casp3,
Casp9, PARP Not specific disease [18]

PC12 cells Antioxidant 5, 10, 20 µM NOX2, NFR2, HO-1
Sp1/NR1 Not specific disease [19,20]

Rats Cell regeneration 20 mg/Kg/day GFAP, MAP-2, BDNF,
GAP-43 SOD, GSH, Not specific disease [21]

Rats Neuroprotective 25 mg/kg Not investigated Cognitive disorders [22]
Human Antioxidant 6 or 12 mg/d PLOOH Dementia [23]

Rats Anti-inflammatory 1, 10 or 100 mg/Kg TNF-α, PGE2, IL-1β AD [24]

BV-2 cells Anti-inflammatory 50 µM
p-IKKα, p-IκBα,
NF-κB p65, IL-6,

MAPK
AD [25]

Mice Antioxidant 2 mg/kg SOD, GSH, MDA,
APOP AD [26]

PC12 cells Antioxidant 0.1 µM Bax, IL-1β, TNFα,
NF-κB AD [27]

Primary hippocampal
neurons Antioxidant 0.1 µM NFATc4, RyR2 AD [28]

Neural Progenitor
Cells (NPCs) Pro-proliferative 5 and 10 ng/mL PI3K, MEK, CDK2 AD [29,30]

Mice Neuroprotective 3 mg/kg TH, IBA-1 PD [4]
SH-SY5Y cells Antioxidant 100 nM PARP, CYTc PD [31]
Motor neurons Antioxidant 100 nM SOD1 ALS [32]

SH-SY5Y cells and Rats Neuroprotective 10 to 50 µM (cells)
30 mg/kg (rats) iNOS, HSPs IR [33]

Mice Neuroprotective 20 mg/kg GHS, SOD, Cyt C,
Casp3 IR [34]

Rats Neuroprotective 10 mg/Kg SOD, MVA, Nef2,
HO-1, NQO1 IR [35]

2. Brain Processes Involved in Neurodegeneration and Protective Effects of Carotenoids

The human Central Nervous System (CNS) contains 100 billion neuronal cells and an equal
number of glia cells, such as microglia, astrocytes, and oligodendrocytes [36]. The CNS includes all
nerves in the brain and spinal cord and is isolated from the other compartments of the human body
through the blood-brain barrier (BBB). This barrier is fundamental to control and restrict the penetration
of molecules (e.g., neurotoxins) and cells (e.g., immune cells or infectious agents) from peripheral parts
of the body into the CNS. Tight junctions between cells forming the vascular endothelium at the CNS
level confer to BBB its selective property.

CNS is able to activate the innate immune system in response to several forms of injuries, including
trauma, infections, stroke and neurotoxins. A variety of cell types belonging to CNS, such as astrocytes,
microglia, vascular cells, neutrophils, and macrophages, are involved in neuroinflammation [37].
Neuroinflammation is a local response of the CNS during several processes, such as neurodegeneration,
trauma, and autoimmune disorders, that leads to innate immune cells mobilization and activation.
Glia cells release cytokines, reactive oxygen species (ROS) and reactive nitrogen species (RNS),
which could be harmful for neurons and oligodendrocytes when neuroinflammation is not a transient
event. There is growing evidence suggesting that a long-standing chronic neuroinflammatory
response can lead to neuronal damage, producing neurodegeneration via sustained accumulation of
neurotoxic pro-inflammatory mediators [10]. The release of pro-inflammatory mediators, together with
pro-oxidant agents, results in morphological and functional changes of intracellular organelles and
contributes to the insurgence and progression of neurodegenerative pathologies. An example are
mitochondria, intracellular targets of oxidative injuries, where chronic inflammation could produce
mitochondrial dysfunction [38–40].

The CNS is considered highly vulnerable to oxidative stress and inflammation due to its low
cell renewal potential and high cellular metabolism, since this organ requires about 25% of total
body energy. This energy is fundamental for neuronal connection, axonal transport, and myelination,
while mitochondrial activity produces a high amount of ROS. ROS are involved in several signal
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transduction pathways, such as survival, growth, proliferation and defense mechanisms against
microbial infection. An unbalance between ROS production and endogenous mechanisms for
detoxification of reactive oxygen intermediates leads to dysregulation of the above-mentioned
mechanisms and consequent neurotoxicity and neurodegeneration [41,42].

In normal conditions and young brains, mitochondrial dysfunction is regulated and deleted by
autophagy, a clearance mechanism able to remove intracellular components. In particular, mitophagy
is a specific autophagic process, which is activated when damaged or superfluous mitochondria need
to be removed. This signal leads to formation of autophagosomes with consequent degradation of
unnecessary mitochondria. The efficiency of these clearance mechanisms diminishes with increasing
age, with the accumulation of toxic molecules and damaged organelles [43–45]. Aging is considered
the major risk factor for the insurgence and development of many neurodegenerative diseases, as also
confirmed by studies describing the autophagy reduction in aging CNS cells [46–48]. For example,
mitochondrial complex I (NADH dehydrogenase) dysfunction is strictly correlated to the idiopathic
Parkinson’s disease phenotype; similarly, injury of complex II (succinate dehydrogenase) yields the
Huntington’s disease phenotype. mtDNA mutations either inherited or caused by oxidative damage
have been shown to contribute to Alzheimer’s disease pathology [37]. Loss of cognitive function is a
common symptom in neurodegenerative diseases and there are few commercially available drugs that
are able to reduce the occurrence of neuroinflammation.

Research on molecules with anti-neuroinflammatory effects and with protective properties against
oxidative stress in neuronal cell models shows interesting results about some carotenoids [49,50].
Recently, it was demonstrated that astaxanthin attenuates cognitive disorders in in vivo and in vitro
models for neurodegenerative diseases [4,51–53]. The first study in measuring carotenoids within
brain compartments was carried out by Craft et al. [54]. This study quantified carotenoid content in
five elderly brains and found a seeming preference for xanthophylls in the human brain.

In the last decade, some natural carotenoids, in particular those belonging to the xanthophyll
family, such as lutein, crucin, crocetin, have been shown to have anti-neuroinflammatory
and antioxidant effects [50,55]. The marine derived xanthophylls, such as fucoxanthin and
astaxanthin, have anti-inflammatory effects and antioxidant activity on different cell lines [56,57].
Furthermore, astaxanthin has also been found to reduce hippocampal and retinal inflammation
in streptozotocin-induced diabetic rats, alleviating cognitive deficits, retinal oxidative stress,
and depression [17,58,59], while fucoxanthin exerts anti-inflammatory effects against various stimuli
through Akt, NF-κB, and mitogen-activated protein kinase pathways [60].

The most common mechanism of action for marine xanthophylls is the suppression of
inflammation pathways through the radical scavenging activity against oxygen-reactive species [5,61].
In particular, astaxanthin exerts protective effects in liver cells after induction of an inflammatory
injury [62,63] and protects neuronal cells from oxidative stress [18,64], through the activation of
specific pathways, such as HO-1/NOX2 axis [19] and Sp1/NR1 signaling [20]. Recent studies have
demonstrated the beneficial effects of carotenoids for the treatment of neurodegenerative diseases,
while a number of epidemiological studies have linked the consumption of a carotenoid rich diet with
a decreased risk of neurodegenerative diseases in humans [65–68].

Extensive studies suggest that carotenoids may inhibit neurodegenerative diseases through a
variety of molecular mechanisms [68,69]. For example, fucoxanthin treatment reduced Aβ-induced
damage in a cultured cell model through several mechanisms including downregulation of apoptotic
factors, inhibition of inflammatory cytokine-mediating action, and simultaneous reduction of ROS [70].
High levels of carotenoids within the brain, such as lutein and zeaxanthin, can enhance cognitive
function in elderly people, exerting neuroprotection with a reduction of neuronal mortality [71].
In addition, high carotenoid concentrations in other body compartments provide protection against
neurological pathologies. In particular, Dias and collaborators [72] found lower concentrations of
carotenoids (lutein, lycopene and zeaxanthin) in dementia patients with respect to control subjects.
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Many studies confirm that astaxanthin delays or ameliorates the cognitive impairment associated with
normal aging or alleviates the pathophysiology of various neurodegenerative diseases [73,74].

It is known that astaxanthin can cross the blood-brain barrier, a crucial feature for the treatment
of neurodegenerative diseases with antioxidant compounds [75]. A recent study demonstrated that
dietary astaxanthin accumulated in the hippocampus and cerebral cortex of rat brains after single
and repeated ingestion. The accumulation of dietary astaxanthin in the cerebral cortex may affect
maintenance and improvement of cognitive functions [76].

Astaxanthin pre-treatment promotes nerve cell regeneration, increasing gene expression of glial
fibrillary acidic protein (GFAP), microtubule associated protein 2 (MAP-2), brain derived neurotrophic
factor (BDNF) and growth-associated protein 43 (GAP-43) [21]. These proteins are involved in brain
recovery. For example, GFAP is important in the repairing process after CNS injury, being involved
in cell communication and functioning of the BBB [77]. MAP-2 is responsible of microtubule growth
and neuronal regeneration; BDNF is involved in neuronal survival, growth, and differentiation of new
neurons [78], while up-regulation of GAP-43 3 activates a protein kinase pathway, promoting neurite
formation, regeneration, and plasticity [79].

3. Astaxanthin against Cognitive Disorders

Cognitive disorders are a group of mental health diseases that cause several effects on mental
abilities, such as learning, problem solving, memory and perception. The most important cognitive
disorders are delirium, dementia, and amnesia. Delirium is an acute confusional state characterized
by inactivation, disorganized thinking, and confusion of space and time. Dementia is a progressive
deterioration of the brain, memory impairment, confusion, and loss of concentration. Amnesia is a
memory disorder characterized by loss of short-term memory that interferes with daily life.

Among cognitive disorders, chemobrain, a cognitive impairment caused by chemotherapeutic
agents, is receiving increasing attention. These chemical agents could produce in cancer patients a
strong reduction in the quality life, since they induce memory impairment, slow processing speed,
and inability to concentrate. These cognitive dysfunctions seem to be linked to a reduction of neuronal
integrity at the hippocampus and frontal system levels [80]. Recently, El-Agamy and collaborators [22]
investigated the potential effect of astaxanthin as a protective compound able to drastically contrast the
decline of cognitive functions induced by doxorubicin (DOX). Astaxanthin showed neuroprotection
and memory-enhancing effects and was able to switch off inflammation and oxidative stress, mitigating
the increase of acetylcholinesterase activity and suppressing several pro-apoptotic stimuli [22].

Astaxanthin also produces beneficial effects in other body compartments and cells, with direct
repercussion on brain health. In particular, the positive influence of a diet rich in polar carotenoids,
such as astaxanthin, on an abnormal accumulation of phospholipid hydroperoxides (PLOOH) in
the erythrocytes of patients affected by dementia [23] has been described. PLOOH are the primary
oxidation products of phospholipids and their accumulation in erythrocytes induce a reduction
in oxygen transport to the brain, facilitating the progression of dementia [81–83]. Nakagawa and
collaborators [23] described lower PLOOH levels in the erythrocytes and blood cells of patients treated
with astaxanthin with respect to the control (placebo group), demonstrating that this bioactive molecule
is responsible for the improvement of erythrocyte antioxidant status, which may contribute to the
prevention of dementia.

Some marine food products are recommended by many medical authorities worldwide [84].
In particular, fish oil usually contains tocopherols, saturated fats, monounsaturated fats (mostly
palmitoleic and oleic acids), and polyunsaturated fatty acids (PUFA, such as eicosapentaenoic acid, EPA,
and docosahexaenoic acid, DHA). A balanced proportion between EPA and DHA (3:2, regularly found
in natural fish oil) seems to be a key factor for beneficial effects, such as the slowing down of cognitive
decline and reduced depression, whereas many other PUFAs (for instance the pro-inflammatory
arachidonic acid) could be responsible for massive ROS production with consequent activation of
immune cells [85]. The combination of astaxanthin and fish oil enhances the positive effect on brain
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health by reducing harmful effects due to PUFAs [86]. In particular, a Wistar rat fed with 1 mg/kg of
astaxanthin and 1 mg/kg of fish oil presented lipid protection status at the anterior forebrain level.
Moreover, Trolox equivalent antioxidant capacity (TAEC) and Ferric Reducing Antioxidant Power
(FRAP) assessed in brain homogenates was found to increase in rats fed with a mix of astaxanthin
and fish oil, with respect to only fish oil. A similar investigation was performed by Nolan et al. [87],
who studied the beneficial effects of a mixture of xanthophyll carotenoids and fish oil (containing EPA
and DHA) on the human brain. This particular functional food, probably due to its strong antioxidant
potential, was able to reduce the progression of neurodegeneration, acting on memory, sight, and mood.
The reduction of ROS production linked to marine functional foods, such as fish oil, represents a valid
mechanism to prevent cognitive dysfunctions.

4. Astaxanthin against Alzheimer Disease (AD)

Alzheimer’s disease (AD) is one of the most severe chronic neurodegenerative disorders,
characterized by memory impairment and cognitive dysfunction, due to neuronal loss mainly in
the neocortex and hippocampus. The incidence of AD has increased dramatically in the last decades.
From few cases at the beginning of the 20th century, in 2017 AD was reported to affect one out of
five persons aged 65 and over worldwide [88]. This incidence increases drastically up to 40% over
the age of 85. AD is the most common form of dementia, first described in 1906 by Alois Alzheimer.
Nowadays there are many unknown aspects regarding the physiopathology of AD. Various theories
have tried to explain the molecular mechanisms responsible for the initiation and progression of AD.
Not one of these hypotheses alone is able to fully explain this complex neurodegenerative disease.
Abnormal formation and aggregation in the brain of amyloid beta plaques are considered initial causes
of AD [89]. Many studies have already demonstrated that the formation of these plaques is caused
by an imbalance between synthesis and clearance of amyloid beta [90]. Accumulation of amyloid
beta induces oxidative stress and inflammation at the neurofibrillary tangle level, inducing neuronal
death stimuli in the brain of patients with AD [91,92]. Moreover, some studies have described the
presence of high numbers of damaged mitochondria in the neurons of AD patients, probably due to
mutations in mitochondrial DNA [93]. Oxidative stress at the expense of mitochondria occurs during
the early stages of AD, suggesting a predominant role of oxidative stress for the progression of this
disease [94]. For this reason, natural compounds with antioxidant and anti-inflammatory properties
are recommended for preventing or reducing the progression of this specific neurodegeneration.
In particular, astaxanthin is able to act against oxidative injuries, through various mechanisms, by
quenching of singlet oxygen, scavenging of radicals, inhibiting lipid peroxidation, and regulating gene
expression related to oxidative stress [5,95].

Astaxanthin exhibited strong anti-inflammatory effect, suppressing the expression of
inflammatory mediators, such as TNF-α, PGE2 and IL-1β and blocking the production of nitric
oxide (NO) and the NF-κB-dependent signaling pathway [24,25,96].

Similar anti-inflammatory effects of astaxanthin were described in other studies, using different
experimental models. In particular, astaxanthin (50 µM) drastically reduced the release of inflammatory
mediators in activated microglial cells (BV-2 cell line), through the modulation of factors involved in
the NF-κB cascade (e.g., p-IKKα, p-IκBα, and p-NF-κB p65, IL-6 and MAPK) [97].

These findings validate the astaxanthin administration as an adjuvant therapy for AD, since this
carotenoid is able to attenuate microglial activation and the consequent release of pro-inflammatory
cytokines. This effect has positive repercussions on neuronal integrity, especially in elderly people,
which tend to show increased inflammation in the brain [98].

Endogenous antioxidant enzymes lower their activity and efficiency with age. Results from
recent studies support the beneficial effect of astaxanthin on activation of antioxidant mechanisms,
increasing the levels or stimulating the activity of endogenous enzymes, such as superoxide dismutase
(SOD) and catalase [26,99]. A recent study [27] investigated in mice the effect of astaxanthin on
antioxidant enzymes expressed in major brain structures. Catalase and SOD were found highly
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expressed, together with a reduction in the level of glutathione, when mice were supplemented with
2 mg/Kg of astaxanthin for 1 month. Al-Amin and collaborators [27] also showed a reduction of
malondialdehyde (MDA) and advanced protein oxidation product (APOP) levels in some brain areas,
such as the frontal cortex, hippocampus, cerebellum and striatum, which showed a decrease in lipid
peroxidation levels.

PC12 are neuronal cells from rats used as an artificial nervous system tissue model to study
neurodegeneration and, in particular, AD. These cells were protected from neurotoxicity induced
by 30 µM of beta-amyloid peptide, when treated with 0.1 µM of astaxanthin. This protective
effect was due to caspase 3, Bax, IL-1β and TNFα, NF-κB inactivation, and suppression of ROS
production [28]. Other studies have demonstrated the protective effect of astaxanthin on amyloid
beta-induced generation of ROS and calcium dysregulation in primary hippocampal neurons [100]
and the significant decrease of oxidative stress levels and cell death in PC12 cells injured with
n-methyl-4-phenylpyridinium iodide (MPP+) [19].

Recent studies [4,101] have reported on the direct relationship between the healthy effects
of astaxanthin on human brain and promotion of neurogenesis and plasticity, two processes that
significantly decrease with age [29] and lead to cognitive decline among elderly people. Although
the molecular process has not been completely elucidated, astaxanthin promotes neurogenesis
and improves behavioral performance in hippocampal-dependent tasks; this could represent the
predominant mechanism induced by astaxanthin, acting on cognitive functions and neurodegeneration
caused by AD [4]. Neural stem cells exhibit higher proliferation rates and colony-forming capacity in a
time- and dose dependent manner when treated with astaxanthin [30]. This result was corroborated
by the upregulation of cyclin-dependent kinase 2 (CDK2), genes involved in proliferation control.
Together with these pro-proliferative effects, astaxanthin showed protective properties in neural
progenitor cells (NPC), significantly reducing apoptotic machinery in NPCs exposed to pro-oxidant
agents [102].

5. Astaxanthin against Parkinson Disease (PD)

Parkinson’s disease (PD) affects 0.1–0.2% of the global population and this percentage drastically
increases with age, reaching 1% incidence in persons aged 60 years and over [103]. Considering the
prevalence of neurodegenerative diseases, PD is the second most common disorder. PD has been
better characterized in recent years as a multisystem neurodegenerative disorder [104], with motor
and non-motor features. In particular, the loss of dopaminergic neurons leads to motor symptoms,
such as bradykinesia, rest tremor and rigidity, while degeneration of non-dopaminergic pathways is
mainly responsible for the alteration of posture, balance and gait. Oxidative stress and inflammation at
the CNS level contributes to insurgence and progression of PD. Unfortunately, there are few treatments
that are able to reduce symptoms and to prevent or restore the loss of neurons in the CNS. As for other
neurodegenerative diseases, carotenoids, in particular astaxanthin, can represent a valid co-adjuvant
treatment for the prevention and/or delay of disease progression. Indeed, astaxanthin reduced
neurotoxicity in PD mice [31], when animals were fed with astaxanthin derived from Haematococcus
pluvialis, for four weeks. Grimmig and collaborators [4] demonstrated that astaxanthin possesses
anti-inflammatory effects, attenuating microglia activation in substantia nigra and striatum. SH-SY5Y
are human neuroblastoma cell line used to assess the potential antioxidant effect of pure compounds.
Astaxanthin is a powerful antioxidant, contrasting the activation of ROS-mediated apoptosis in a dose
dependent manner [105] in SH-SY5Y cells. This positive effect of astaxanthin is due to suppression of
apoptosis, inhibition of mitochondrial abnormalities and the creation of intracellular ROS [18,105].

6. Astaxanthin against Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic lateral sclerosis (ALS) is a lethal motor neuron disorder characterized by a
progressive loss of the upper and lower motor neurons at the spinal or bulbar levels. There are
two forms of ALS, sporadic- and familiar-type. The first type does not have a genetically inherited
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component. The mean age of onset varies from 50 to 65 years, while only in 5% of cases the age of onset
is less than 30 years. However, ALS incident is most pronounced in people 80 years or older [106].
5–10% of ALS cases have a genetic cause. Indeed, in some geographic areas, such as parts of Japan,
Guam, Kii Peninsula of Japan and South West New Guinea, the incidence of this disease is 50–100
times higher than in other parts of the world [106].

The most common cause of ALS corresponds to a mutation of the gene encoding Cu/Zn
superoxide dismutase 1 (SOD1). SOD1 is a dimeric ubiquitous enzyme mainly localized in the cytosol
that catalyses the dismutation of superoxide radical into hydrogen peroxide (H2O2) and molecular
oxygen (O2); it plays a pivotal role in the cellular homeostasis of ROS [107–109]. Mutant SOD1 has a
structural instability that causes a misfolds in the mutated enzyme, which can lead to aggregation in the
motor neurons within the CNS. More than 110 mutations of the SOD1 gene have been described and
many of these mutants retain their enzymatic activity, suggesting the possibility of a toxic functional
gain of these forms of mutated SOD1 in ALS [32,109,110]. One of the proposed mechanisms of
neuronal death in ALS is the free radical accumulation resulting from oxidative stress. This may
lead to oxidative damage of lipid, proteins, and nucleic acids, causing cell death. Free radicals are
normally neutralized by antioxidant enzymes and nutrient derived antioxidants, such as vitamin C,
vitamin E, and astaxanthin. The effect of different antioxidants in the treatment of people with ALS
has been evaluated.

Isonaka and co-authors [111] investigated the use of antioxidants in cultured rat spinal neurons
treated with the SOD1 inhibitor diethyldithiocarbamate (DDC). Results demonstrated that the use of
DDC induced an increase of endogenous oxidative stress, inhibiting thus neurite growth. Antioxidants,
such as L-ascorbic acid, L-histidine, α-tocopherol, β-carotene and astaxanthin may rescue the motor
neurons injured by SOD1 inhibition. It is important to note that astaxanthin is the most powerful
carotenoid for this specific effect. In fact, low concentrations of astaxanthin (100 nM) are needed to
obtain a comparable effect of other antioxidant molecules (1 mM) [111].

7. Astaxanthin against Cerebral Ischemia/Reperfusion (IR)

Cerebral ischemia triggers an almost immediate loss of oxygen and glucose to the cerebral tissue
and ultimately causes irreversible neuronal injuries in the ischemic core within few minutes from
the onset. Cerebral ischemia/reperfusion (IR) injury is the tissue damage caused when blood supply
begins to the brain after a period of ischemia. The lack of oxygen for a certain period in specific
brain regions, creates a pathological microenvironment, in which the following restoration of blood
circulation induces activation of inflammatory process and production of oxidative damage, rather than
re-establishment of normal condition and cerebral functions. IR injury can lead to progressive learning
and memory impairment as well as the loss of pyramidal neurons, which result in the progression of
vascular cognitive impairment.

Ischemia induces an imbalance of endogenous pro-oxidants and antioxidants, and the
overproduction of toxic free radicals. Abnormal levels of malondialdehyde (MVA), an important
indicator of lipid peroxidation, as well as glutathione (GSH), and superoxide dismutase (SOD),
both important as free radical scavengers, have been found in the brain tissue after cerebral IR [112,113].
In addition, the destruction of the normal structure of neurons consequently enhances oxidative
stress damage and leads to neuronal apoptosis [114]. In particular, it has been demonstrated
that loss of hippocampal pyramidal neurons after cerebral IR contributes to learning and memory
dysfunction [33,115].

Recent studies have investigated the effect of astaxanthin supplementation to prevent the risk of
ischemia on brain recovery after a cerebral IR injury.

For instance, Lee et al. [34] described in vitro and in vivo antioxidant and neuroprotective effects
of astaxanthin. Oxygen Glucose Deprivation (OGD) was induced in neuronal cells (SH-SY5Y cell line)
and such damaged cells were recovered in the presence of astaxanthin. The latter was able to recover
cells from OGD injury in a dose dependent manner. Moreover, astaxanthin was able to reduce iNOS
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(inducible Nitric Oxide Synthase), HO-1 (Heme oxygenase-1, HSP32), and HSP70 (heat shock protein
70) protein levels, after OGD injury [34]. The same study highlighted the neuroprotective effect of
astaxanthin on global cerebral ischemia in rats.

Xue and co-authors [35] evaluated the efficacy of AST treatment after repeated cerebral IR injury
in a mouse model. These researchers demonstrated that astaxanthin improved learning and decreased
memory impairment and neuronal damage. Astaxanthin treatment increased the number of pyramidal
neurons of the hippocampus and restored normal neuron morphology. In addition, astaxanthin
induced a strong antioxidant activity and an inhibitory effect on neuronal apoptosis in IR mice.
Moreover, astaxanthin treatment reduced oxidative stress, restoring GHS levels and SOD activity, and
significantly suppressed the concentration of MDA. Xue and co-authors [35] also highlighted a decrease
in protein expression of cytochrome C (Cyt C) and caspase-3 (cleaved Caspase-3), both involved in the
occurrence and development of apoptosis.

Pan and co-authors [116] demonstrated that astaxanthin was able to protect against brain injuries
induced by transient cerebral ischemia in adult rats. The protective effect was proportional to the
administered dose. Results of this study demonstrated that pre-treatment with astaxanthin lowered
oxidative stress induced by ischemia, increasing the gene expression levels of SOD and decreasing
those of MVA, that indicated a minor lipid peroxidation. In addition, astaxanthin increased gene
expression of the nuclear factor erythroid 2-related factor 2 (Nef2), Heme oxygenase-1 (HO-1) and
NAD(P)H quinone oxidoreductase 1 (NQO1), activating the Nrf2- antioxidant response element (ARE)
signaling pathway.

Astaxanthin pre-treatment reduced the rate of cell death, increasing the gene expression of
anti-apoptotic factor B-cell lymphoma 2 (Bcl-2), and reducing the gene expression of pro-apoptotic
factor Bcl2-associated X (Bax). These two proteins are active mediators of apoptosis; in particular,
Bcl-2 suppresses abnormal Ca2+ release from the endoplasmic reticulum (ER) and prevents ER Ca2+

depletion [117–120], while Bax is a homologous protein of Bcl-2 that promotes apoptosis. The balance
between Bcl-2 and Bax plays an important role on ER Ca2+ homeostasis and in determining the fate of
the cells during transient cerebral ischemia [121,122]. In conclusion, use of astaxanthin exerts protective
and anti-apoptotic effects against IR injuries.

8. Conclusions

There is a growing body of evidence regarding the benefits of several molecules in a healthy diet
that can help to prevent some age-related diseases. There is large public and scientific interest about
natural nutritional supplements able to reduce the risk of age-related disease insurgence and to avoid
the exacerbation of degenerative processes leading to death.

In the last decade the high demand by consumers for nutraceutical products containing bioactive
compounds is directing research towards the discovery and development of renewable natural sources
of bioactive molecules. In this framework, the marine environment represents a new and unexploited
source for the identification or production of bioactive compounds. The global market for marine
biotechnological products and processes is predicted to reach 4.8 billion USD by 2020, rising to 6.4
billion USD by 2025. In Europe, marine biotechnology was identified by the EU Blue Growth Strategy
(2012) as an activity of high potential for the bioeconomy [123]. In this context, 1.20 billion USD was
the estimated value for the global carotenoid market in 2016, which is expected to reach 1.53 billion
USD by 2021, at a compound annual growth rate (CAGR) of 3.78% from 2016 to 2021 [124]. Such an
economic growth related to these compounds is a direct result of the increased number of health
conscious customers and a growing trend for natural products industries.

Among carotenoids that have beneficial effects on human health astaxanthin is one of the most
successful compounds on the market. Its large scale cultivation mainly from the green microalga
H. pluvialis is still considered more expensive [125,126]. The synthetic production of astaxanthin is
still predominant in the market. This synthetic version of the carotenoid is wrongly thought as “a
natural equivalent”. Actually, this production process leads to a mixture of astaxanthin isomers,
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which conferee important molecular and biological differences with respect to the natural carotenoid.
In detail, natural astaxanthin (3S, 3′S) is more than 90% esterified, while the synthetic version is all free
form, or unesterified. This chemical feature of the natural astaxanthin allows interactions with fatty
acids to one or both ends of the compounds, with consequent high bioavailability [9].

Researchers are trying to improve the growth rate and astaxanthin yield of H. pluvialis by
modulating several culture conditions [127]. In addition, preliminary studies have demonstrated
the possibility of the natural astaxanthin production through sea urchin Arbacia lixula aquaculture
without sacrifice them, since the natural carotenoid is accumulated in eggs [8]. For this reason, it is
important to find a new and efficient process for the natural production of astaxanthin. Although
the economic advantage of the synthetic way can obtain only racemic chemical formulation with a
decrease of biological activity at 50%; this aspect encourages research to lower the cost and enhance
the efficiency in the production of the natural compound.
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