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GATHER checklist, with description of compliance and location of information 
# GATHER checklist item Description of compliance Reference 
Objectives and funding 

1 Define the indicators, populations, and time 
periods for which estimates were made. 

Narrative provided in paper 
and appendix describing 
indicators, definitions, and 
populations 

Main text (Methods) 
and appendix 

2 List the funding sources for the work. Funding sources listed in 
paper Summary (Funding) 

Data Inputs 
For all data inputs from multiple sources that are synthesised as part of the study: 

3 Describe how the data were identified and how 
the data were accessed. 

Narrative description of data 
seeking methods provided 

Main text (Methods) 
and appendix 

4 Specify the inclusion and exclusion criteria. 
Identify all ad-hoc exclusions. 

Narrative about inclusion 
and exclusion criteria by 
data type provided; ad hoc 
exclusions in cause-specific 
write-ups 

Main text (Methods) 
and appendix 

5 

Provide information on all included data sources 
and their main characteristics. For each data 
source used, report reference information or 
contact name/institution, population represented, 
data collection method, year(s) of data 
collection, sex and age range, diagnostic criteria 
or measurement method, and sample size, as 
relevant. 

An interactive, online data 
source tool that provides 
metadata for data sources by 
component, geography, 
cause, risk, or impairment 
has been developed 

Online data citation 
tools: 
http://ghdx.healthdata
.org/gbd-2019/data-
input-sources 

6 
Identify and describe any categories of input 
data that have potentially important biases (e.g., 
based on characteristics listed in item 5). 

Summary of known biases 
by cause included in 
appendix 

Appendix 

For data inputs that contribute to the analysis but were not synthesised as part of the study: 

7 Describe and give sources for any other data 
inputs. 

Included in online data 
source tool 

http://ghdx.healthdata
.org/gbd-2019/data-
input-sources 

For all data inputs: 

8 

Provide all data inputs in a file format from 
which data can be efficiently extracted (e.g., a 
spreadsheet as opposed to a PDF), including all 
relevant meta-data listed in item 5. For any data 
inputs that cannot be shared due to ethical or 
legal reasons, such as third-party ownership, 
provide a contact name or the name of the 
institution that retains the right to the data. 

Downloads of input data 
available through online data 
tools (visualization/ data 
query, GHDx); input data 
not in tools will be made 
available upon request 

Online data 
visualisation tools, 
data query tools, and 
the Global Health 
Data Exchange 

Data analysis 

9 Provide a conceptual overview of the data 
analysis method. A diagram may be helpful. 

Methods section has 
overview of analysis 
methods; A flow diagram of 
the dementia modelling 
process has been provided 

Main text (Methods) 
and appendix 
 

10 

Provide a detailed description of all steps of the 
analysis, including mathematical formulae. This 
description should cover, as relevant, data 
cleaning, data pre-processing, data adjustments 
and weighting of data sources, and mathematical 
or statistical model(s). 

Flow diagrams and methods 
write-ups have been 
provided 

Main text (Methods) 
and appendix 

http://ghdx.healthdata.org/gbd-2019/data-input-sources
http://ghdx.healthdata.org/gbd-2019/data-input-sources
http://ghdx.healthdata.org/gbd-2019/data-input-sources
http://ghdx.healthdata.org/gbd-2019/data-input-sources
http://ghdx.healthdata.org/gbd-2019/data-input-sources
http://ghdx.healthdata.org/gbd-2019/data-input-sources
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11 Describe how candidate models were evaluated 
and how the final model(s) were selected. 

Provided in methodological 
write-ups Appendix 

12 
Provide the results of an evaluation of model 
performance, if done, as well as the results of 
any relevant sensitivity analysis. 

Provided in methodological 
write-ups Appendix 

13 

Describe methods for calculating uncertainty of 
the estimates. State which sources of uncertainty 
were, and were not, accounted for in the 
uncertainty analysis. 

Appendix Appendix 

14 State how analytic or statistical source code used 
to generate estimates can be accessed. Appendix http://github.com/ihm

euw  
Results and Discussion 

15 Provide published estimates in a file format from 
which data can be efficiently extracted. 

GBD 2019 results available 
through online data tools, the 
Global Health Data 
Exchange, and online data 
query tool 

Main text, appendix, 
online data tools 
(visualization/ data 
query tools, GHDx) 

16 Report a quantitative measure of the uncertainty 
of the estimates (e.g. uncertainty intervals). 

Uncertainty provided with 
all results 

Main text, appendix, 
online data tools 
(visualization/ data 
query tools, GHDx) 
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Dementia prevalence flowchart 
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Surveys

GBD risk deleted 
prevalence 1990-
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to dementia
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Risk Meta-Analysis
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(RR-1)/RR
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GBD Dementia 
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Additional details on the estimation of dementia prevalence and mortality can be found in the Appendix section on the Methods for the Estimation of Dementia. Further discussion of the estimation of dementia mortality can also be found 
in “GBD 2019 Collaborators. Global mortality from dementia: Application of a new method and results from the Global Burden of Disease Study 2019. Alzheimers Dement (N Y). 2021 Jul 27;7(1):e12200. doi: 10.1002/trc2.12200. PMID: 
34337138; PMCID: PMC8315276.”
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Dementia forecasting flowchart 
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1. Summary exposure values (SEVs) are a relative risk-weighted prevalence of a given risk factor exposure. For binary risk factors the SEV is equal to risk factor prevalence, but for continuous risks the SEV upweights prevalence 
where the relative risk is highest. The SEV is equal to zero when there is no excess risk in a population and equal to one when the population risk is highest. 
2. The annualised rate of change forecasting method works by using prior information on annualised rate of change to predict trends into the future. Out-of-sample predictive validity is used to decide how much weight to give to 
more recent trends versus older trends. 
3. The population attributable fraction (PAF) represents the proportion of disease prevalence in a population that is attributable to a set of risk factors. The population attributable fractions for different risk factors cannot be 
simply added together because the effect of some risks may be mediated through others. We estimated mediation factors using information on crude and adjusted risks either from individual-level or from the literature. 
4. Scalars represent the proportion of dementia prevalence that is attributable to GBD risk factors, and is calculated as 1/(1-PAF). 
5. To calculate risk deleted prevalence, you would divide the prevalence of dementia by the scalar. 
6. A random walk is a time series model that assumes that each time period takes one additional step away from it’s previous value, and that all steps are independent from prior steps. This component of the model accounts for 
unexplained trends and helps to accurately capture uncertainty in the forecasts.
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General methods for the Global Burden of Disease (GBD) study 
(Adapted from “Global, regional, and national burden of Alzheimer's disease and other dementias, 1990–2016: a 
systematic analysis for the Global Burden of Disease Study 2016” by GBD 2016 Dementia Collaborators, The 
Lancet 2019; 18: 88-106.) 

The Institute for Health Metrics and Evaluation, with a growing collaboration of scientists, produces annual updates 
of the Global Burden of Disease study. Estimates span the period from 1990 to the most recent completed year. As 
of June 2021, there were over 7,041 collaborators in 156 countries who contributed to this global public good. 
Annual updates allow incorporation of new data and method improvements to ensure that the most up-to-date 
information is available to policy makers in a timely fashion to help make resource allocation decisions. The guiding 
principle of GBD is to assess health loss due to mortality and disability comprehensively, where we define disability 
as any departure from full health. In GBD 2019, estimates were made for 204 countries and territories, and 808 
subnational locations, for 29 years starting from 1990, for 23 age groups and both sexes. Deaths were estimated for 
276 diseases and injuries, while prevalence and incidence were estimated for 354 diseases and injuries. 

Non-fatal estimates are based on systematic reviews of published papers and unpublished documents, survey 
microdata, administrative records of health encounters, registries, and disease surveillance systems. Our Global 
Health Data Exchange (GHDx, http://ghdx.healthdata.org/) is the largest repository of health data globally. We first 
set a reference case definition and/or study method that best quantifies each disease or injury or consequence 
thereof. If there is evidence of a systematic bias in data that used different case definitions or methods compared to 
reference data, we adjust those data points to reflect what its value would have been if measured as the reference. 
This is a necessary step if one wants to use all data pertaining to a particular quantity of interest rather than choosing 
a small subset of data of the highest quality only. DisMod-MR 2.1, a Bayesian meta-regression tool, is our main 
method of analysing non-fatal data. It is designed as a geographical cascade where a first model is run on all the 
world’s data, which produces an initial global fit and estimates coefficients for predictor variables and the 
adjustments for alternative study characteristics. The global fit, adjusted by the values of random effects for each of 
seven GBD super-regions, the coefficients on sex and country predictors, are passed down as data to a model for 
each super-region together with the input data for that geography. The same steps are repeated going from super-
region to 21 region fits and then to 195 fits by country and, where applicable, a further level down to subnational 
units. Below the global fit, all models are run separately by sex and for eight time periods: 1990, 1995, 2000, 2005, 
2010, 2015, 2017, and 2019. During each fit all data on prevalence, incidence, remission (ie, cure rate) and mortality 
are forced to be internally consistent. 

For risks, we use a “counterfactual” approach, ie, answering the question: “what would the burden have been if the 
population had been exposed to a theoretical minimum level of exposure to a risk?” Thus, we need to define what 
level of exposure to a risk factor leads to the lowest amount of disease. We then analyse data on the prevalence of 
exposure to a risk and derive relative risks for any risk-outcome pair for which we find sufficient evidence of a 
causal relationship. Prevalence of exposure is estimated in DisMod-MR 2.1, using spatiotemporal Gaussian process 
regression, or from satellite imagery in the case of ambient air pollution. Relative risk data are pooled using meta-
analysis of cohort, case-control, and/or intervention studies.  

From the prevalence and relative risk results, population attributable fractions are estimated relative to the 
theoretical minimum risk exposure level (TMREL). When we aggregate estimates for clusters of risks, eg, metabolic 
or behavioural risks, we use a multiplicative function rather than simple addition and take into account how much of 
each risk is mediated through another risk. For instance, some of the risk of high body-mass index is directly onto 
stroke as an outcome, but much of its impact is mediated through high blood pressure, high cholesterol, or high 
fasting plasma glucose, and we would not want to double count the mediated effects when we estimate aggregates 
across risk factors. 

Uncertainty is propagated throughout all these calculations by creating 1,000 values for each prevalence, death, 
YLL, YLD, or DALY estimate and performing aggregations across causes and locations at the level of each of the 
1,000 values for all intermediate steps in the calculation. The lower and upper bounds of the 95% uncertainty 
interval are the 25th and 975th values of the ordered 1,000 values. For all age-standardised rates, GBD uses a 
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standard population calculated as the non-weighted average across all countries of the percentage of the population 
in each five-year age group for the years 2010 to 2035. GBD uses a composite indicator of sociodemographic 
development, the Socio-demographic Index (SDI), which reflects the geometric mean of normalised values of a 
location’s income per capita, the average years of schooling in the population 15 and over, and the total fertility rate. 
Countries and territories are grouped into five quintiles of high, high-middle, middle, low-middle, and low SDI 
based on their 2019 values. 
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Methods for the estimation of dementia  
(Adapted from Global burden of 369 diseases, injuries, and impairments, 1990–2019: a systematic analysis for the 
Global Burden of Disease Study 2019” by GBD 2019 Diseases, Injuries, and Impairments Collaborators, The Lancet 
2020; 396: 1204–22.) 

Case definition 
Dementia is a progressive, degenerative, and chronic neurological disorder typified by memory impairment and 
other neurological dysfunctions. For the purposes of GBD 2019, we use the Diagnostic and Statistical Manual of 
Mental Disorders III, IV, or V, or ICD case definitions as the reference. The DSM-IV definition is:  

• Multiple cognitive deficits manifested by both memory impairment and one of the following: aphasia, 
apraxia, agnosia, disturbance in executive functioning 

• Must cause significant impairment in occupational functioning and represent a significant decline 
• Course is characterised by gradual onset and continuing cognitive decline 
• Cognitive deficits are not due to other psychiatric conditions 
• Deficits do not occur exclusively during the course of a delirium 

A wide array of diagnostic and screening instruments exists, including Clinical Dementia Rating scale (CDR), Mini 
Mental State Examination (MMSE), and the Geriatric Mental State (GMS). For severity rating purposes we use the 
CDR as the reference. The relevant ICD-10 codes for dementia are F00, F01, F02, F03, G30, and G31. The ICD-9 
codes are 290, 291.2, 291.8, 294, and 331. 

Unlike most causes in the Global Burden of Disease project, dementia mortality and morbidity estimates are 
modelled jointly. This is because of marked discrepancies between prevalence data and cause of death data. 
Specifically, prevalence data suggest little to no variation over time (eg, 1990–2019), whereas age-standardised 
mortality rates in vital registrations in high-income countries have increased multiple times over this same period. 
Additionally, prevalence variation between countries is much smaller than the variation in death rates assigned to 
dementia in vital registration. We attribute these discrepancies to changing coding practices rather than 
epidemiological change. 

Input data for prevalence estimation 
Model inputs 

To inform our estimates of burden due to dementia, we use mortality data from vital registration systems, as well as 
prevalence data from surveys and administrative data such as claims sources.  

Item response theory for prevalence prediction 

The prevalence models for dementia are data-sparse, and there aren’t many surveys done in low-income settings. 
However, there is a larger body of surveys that collect data on cognitive tests and functional limitations, which are 
the two main components of a DSM or ICD diagnosis. Predictions of dementia prevalence using information from 
these questions would allow for expanded data coverage and additional information in locations where there are 
currently no data guiding estimates.  

Generating these predictions requires calibrating a model to samples that have information about both functional 
limitations, cognition, and adjudicated dementia diagnoses. However, making comparisons across surveys can be 
difficult, as each survey asks a different set of questions about cognition and limitations, although there is some 
overlap. This overlap allows for the use of item-response theory methods for the harmonisation of these scales. Once 
the scales are harmonised, the subsamples can be utilised to create a model for the prediction of prevalence.  

In GBD 2019, data from the ADAMS and HRS surveys were extracted and used for item-response theory modelling 
to estimate prevalence. HRS is a nationally representative survey in the USA, which has data on cognition and 
functional limitations. ADAMS is a subsample of HRS that includes much more detailed neuropsychological testing 
and adjudicated dementia diagnoses. ADAMS includes almost all questions in HRS plus additional questions.  
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Excluding incidence 

Since 2016, we have made the decision to exclude incidence data, because in locations with high-quality cohort data 
on prevalence and incidence, the two are not compatible (incidence data imply a higher prevalence than what is 
reported). Because dementia has a slow, insidious onset and prevalence is easier to measure, we trust prevalence 
data more and rely on this, excluding incidence data from DisMod. 

Modelling strategy for prevalence estimation 
First, prevalence data was sex-split, crosswalked, and age-split. Studies with age and sex detail separately were split 
into age- and sex-specific datapoints. Data specified as “both”-sex data were split into male- and female-specific 
datapoints using MR-BRT to get a model ratio of female/male prevalence and then using the following equations: 

Male prevalence:  

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏ℎ ∗  
 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏ℎ

�𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�
 

Female prevalence: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝 ∗  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

We also split datapoints where the age range was greater than 25 years using the global age pattern.   

Dementia studies are heterogeneous. Even with a smaller number of definitions (DSM/ICD), there are a large 
number of different ways to diagnose dementia. For example, out of 272 sources used in GBD 2017, there were 263 
different methods of diagnosing dementia (overlap was among those who used 10/66 protocol or AGECAT 
algorithm). Most use a two-step procedure, where clinicians screen patients using a cognitive test and then only fully 
evaluate those who fall below a certain pre-defined threshold. We controlled for methods differences by 
crosswalking alternative case definitions to reference. Study covariates are based on broad categories determined 
after going through the diagnostic heterogeneity, and there are some added for specific criteria that we know are 
biased. The same study-level covariates were used in 2019 as in 2017, with the addition of item-response theory 
HRS predictions. Crosswalking was carried out using a logit difference network meta-regression analysis. US 
MarketScan data were separately crosswalked to standardise the claims data relative to existing literature data.  

MR-BRT crosswalk adjustment factors for dementia (network analysis) 

Data input Reference or 
alternative case 
definition 

Gamma Beta Coefficient, logit 

(95% CI) 

DSM or ICD case 
definition 

Ref 0.34 --- 

Clinical records 
diagnosis criteria 

Alt  –0.05 (–0.72 to 0.61) 

Algorithm diagnosis 
criteria (AGECAT) 

Alt 0.08 (–0.59 to 0.74) 

US MarketScan 

 

Alt –0.95 (–1.61 to –0.28) 

NIA-AA diagnosis 
criteria 

Alt 0.51 (–0.16 to 1.17) 



14 
 

10/66 algorithm 
diagnosis criteria 

Alt 0.97 (0.30 to 1.64) 

GP records used for 
diagnosis 

Alt –1.21 (–1.88 to –0.54) 

 

A separate analysis was conducted to crosswalk MarketScan claims data (excluding MarketScan year 2000) to non-
claims data using a spline on age. The plot below shows the model fit over different ages (gamma = 0.07). 

   

Two country-level covariates were included in the initial DisMod model. Age-standardised education was used as a 
proxy for general brain health/use that may be protective for dementia. We set priors on the covariate value for 
education based on the results of a review of the literature for the effect of each additional year of education on 
dementia prevalence.  
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Smoking prevalence (age-standardised, both sexes) was also used as a covariate to guide estimates, as the literature 
has shown a positive relationship between smoking and dementia.  

Note that two DisMod models were run with prevalence inputs – the first uses adjusted prevalence data (DisMod 
Model 1 in flowchart), which accounts for dementia caused by other diseases. The second uses unadjusted dementia 
(DisMod Model 2 in flowchart), which accounts for all dementia regardless of cause (this is the dementia 
impairment envelope). The tables below summarise country-level covariates used in each of these DisMod model.   

 

Covariates. Summary of covariates used in the dementia DisMod-MR meta-regression model (adjusted prevalence, 
Model 1) 

 

Covariate Type Exponentiated beta 
(95% uncertainty 
interval) 

Smoking prevalence (age-
standardised) 

Prevalence 2.71 (1.03–7.36) 

Years of Education (age-
standardised) 

Prevalence 0.92 (0.92–0.92) 

 

Covariates. Summary of covariates used in the Dementia DisMod-MR meta-regression model (unadjusted 
prevalence, Model 2) 

Covariate Type Exponentiated beta 
(95% uncertainty 
interval) 
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Smoking prevalence (age-
standardised) 

Prevalence 1.00 (1.00–1.01) 

Years of Education (age-
standardised) 

Prevalence 0.92 (0.92–0.92) 

 
Input data for mortality estimation 
In GBD 2019, fatal modelling was redesigned to remove reliance on vital registration data (described in more detail 
in the “Modelling strategy” section). Instead, two new source types were extracted:  

(1) Literature on the relative risk of all-cause mortality given the exposure of dementia. Relative risk 
sources were identified through a systematic review using search terms2 in PubMed. This yielded 4470 
total hits, of which 34 studies were marked for extraction. Overall, the data were heterogeneous and 
varied in the exposure category measured (all dementia, Alzheimer’s disease, cognitive impairment) 
and in the different factors controlled for in analyses. 

(2) Linked vital registration and hospitalisation data. We used mortality records linked to inpatient 
records, covering all deaths from 2003 to 2017 in the Emilia-Romagna region of Italy. 

 

 
 

Table 1: Results of systematic review on all-cause excess mortality with dementia 
N 

 
60 

Region name (%) East Asia 4 (6.7)  
Eastern sub-Saharan Africa 2 (3.3)  
High-income Asia Pacific 4 (6.7)  
High-income North America 22 (36.7)  
North Africa and Middle East 1 (1.7)  
Tropical Latin America 1 (1.7)  
Western Europe 26 (43.3) 

Exposure (%) Alzheimer’s disease 11 (18.3)  
cognitive impairment 10 (16.7)  
other dementia 35 (58.3)  
vascular dementia 4 (6.7) 

Conducted in clinical setting (%) Clinical setting 10 (16.7)  
Population representative 50 (83.3) 

Controlled for education (%) Controlled 32 (53.3)  
No control 28 (46.7) 

Controlled for basic CVD info (%) Controlled 33 (55.0)  
No control 27 (45.0) 

Extensive CVD control (%) Controlled 15 (25.0)  
No control 45 (75.0) 

Controlled for smoking and alcohol (%) Controlled 11 (18.3)  
No control 49 (81.7) 

Controlled for factors in causal pathway (%) Controlled 13 (21.7)  
No control 47 (78.3) 
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Modelling strategy for mortality estimation 
Dementia mortality rates have increased more than five-fold since 1980 in high-quality vital registration systems 
such as in the USA and Scandinavia. We have not seen an equivalent increase in prevalence and incidence data 
sources. If at all, there has been a modest decline in incidence and prevalence of dementia in studies in the UK and 
the USA.1,2 Also, the greater than 20-fold variation in mortality rates of dementia between countries is much greater 
than the four-fold difference in prevalence and incidence between countries. As it is unlikely that case fatality from 
dementia has dramatically increased over the time period and that it would differ by a very large margin between 
countries, the hypothesis is that certifying and coding practices have changed over time and at a different pace 
between countries. To avoid spurious large trends over time in the fatal component of the burden of dementia, we 
decided for GBD 2013 to make dementia mortality rates consistent with the most recent rates relative to prevalence 
of countries that are most likely to certify or code dementia as an underlying cause of death. This approach was 
applied again for GBD 2017 with some modifications. For GBD 2019, the fatal modelling process was redesigned to 
avoid the need for using estimates only from locations with the highest dementia mortality. This was accomplished 
with an attributable risk model based on a systematic review of cohort studies and relative risk data, and end-stage 
disease proportions from linked hospital and death records. The modelling process is described below. 

Modelling steps 

Relative risk data 

First, using relative risk data extracted from studies identified by systematic review, we calculated attributable risk 
and the GBD estimate of all-cause mortality rate for a given study location and time, using the following formula: 

𝐴𝐴𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝐴𝐴𝑙𝑙𝑝𝑝 𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅 = (𝑅𝑅𝑝𝑝𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝 𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅 − 1) ∗ 𝐴𝐴𝑙𝑙𝑙𝑙-𝐶𝐶𝑟𝑟𝐴𝐴𝑅𝑅𝑝𝑝 𝑀𝑀𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟𝑀𝑀 

We then conducted a meta-analysis on the attributable risk data, using covariates for age, sex, exposure category (all 
dementia, Alzheimer’s disease, cognitive impairment), whether the study was conducted in a clinical sample, and 
categories indicating different types of variables that were controlled for in the component studies (educational 
attainment, cardiovascular disease comorbidities, smoking and alcohol consumption, and daily activities or 
residence in a nursing home). Relative risks were estimated using a second Bayesian bias-reduction meta-regression 
model and the same studies identified through systematic review. Regression results for relative risk and attributable 
risk analyses are displayed below. 

                                                            
1 Akushevich I, Kravchenko J, Ukraintseva S, Arbeev K, Yashin AI. Time trends of incidence of age-associated diseases in the US elderly 
population: Medicare-based analysis. Age and ageing. 2013 Jul 1;42(4):494-500. 
2 Matthews FE, Arthur A, Barnes LE, Bond J, Jagger C, Robinson L, Brayne C, Medical Research Council Cognitive Function and Ageing 
Collaboration. A two-decade comparison of prevalence of dementia in individuals aged 65 years and older from three geographical areas of 
England: results of the Cognitive Function and Ageing Study I and II. The Lancet. 2013 Nov 1;382(9902):1405-12. 
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Meta-regression results were used to calculate the total number of excess deaths due to dementia as the product of 
our prevalence estimates (post-adjustment for dementia caused by other GBD diseases) and our estimates of 
attributable risk.  

Linked data  

The excess deaths calculated through the multiplication of attributable risk and prevalence represent the total 
number of excess deaths due to having dementia, which likely includes deaths due to other conditions, such as 
cardiovascular diseases, that are more common in those with dementia as compared to the general population due to 
common underlying risk factors such as blood pressure, smoking, and lower educational attainment. In order to 
subset this total number of excess dementia deaths to calculate the number of deaths that were caused by dementia, 
we completed an analysis of linked clinical and mortality data. We used mortality records linked to inpatient 
records, covering all deaths from 2003 to 2017 in the Emilia-Romagna region of Italy. Using these data, we looked 
for markers of severe, end-stage disease in the clinical records up to one year before death. 

To select these markers, for each ICD code that appeared in the data we calculated the difference in the proportion 
of individuals who died with dementia and had a record of each code in the year before death and the proportion of 
individuals who died without dementia and had a record of the same code in the year before death. We reviewed the 
150 codes with the highest difference and selected codes that indicated end-stage disease, excluding codes for 
conditions such as cardiovascular disease. Codes for decubitus ulcer, malnutrition, sepsis, pneumonia, urinary tract 
infections, falling from bed, senility, dehydration, sodium imbalance, muscular wasting, bronchitis, dysphagia, hip 
fracture, and bedridden status were used as indicators of severe disease.   

In order to determine the proportion of excess deaths that were caused by dementia, we calculated the proportion of 
dementia deaths that had clinical markers of end-stage disease in the year before death, above and beyond the 
occurrence of end-stage disease markers in those who died without dementia. The subtraction of the proportions 
with end-stage disease markers in those without dementia from the proportions in those with dementia represents the 
proportion of individuals who are assumed to have died with severe, end-stage dementia out of total deaths in those 
with dementia. 
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Calculation of deaths due to dementia 

In order to apply these estimates to the total excess deaths we then adjusted these proportions to calculate the 
proportion of individuals who died with severe, end-stage dementia out of excess dementia deaths using the formula:  

𝐷𝐷𝑟𝑟𝑝𝑝𝐷𝐷 𝑤𝑤𝑟𝑟𝑟𝑟ℎ 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐷𝐷𝑟𝑟𝑅𝑅𝑝𝑝𝑟𝑟𝑅𝑅𝑝𝑝
𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑅𝑅𝑅𝑅 𝐷𝐷𝑝𝑝𝐷𝐷𝑝𝑝𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟 𝐷𝐷𝑝𝑝𝑟𝑟𝑟𝑟ℎ𝑅𝑅

=  
𝐷𝐷𝑟𝑟𝑝𝑝𝐷𝐷 𝑤𝑤𝑟𝑟𝑟𝑟ℎ 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐷𝐷𝑟𝑟𝑅𝑅𝑝𝑝𝑟𝑟𝑅𝑅𝑝𝑝
𝑇𝑇𝑝𝑝𝑟𝑟𝑟𝑟𝑙𝑙 𝐷𝐷𝑝𝑝𝐷𝐷𝑝𝑝𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟 𝐷𝐷𝑝𝑝𝑟𝑟𝑟𝑟ℎ𝑅𝑅

∗  
𝑅𝑅𝑝𝑝𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝 𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅

𝑅𝑅𝑝𝑝𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝 𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅 − 1
 

We then calculated the number of deaths due to dementia as the product of total excess dementia deaths and the 
proportion of those who died with severe disease out of excess dementia deaths. These final estimates of deaths due 
to dementia were then used to adjust data on causes of death from all other causes in vital registration systems.   

Interpolation for all years 

Finally, we used log-linear interpolation to interpolate these results (limited to 1990, 1995, 2000, 2005, 2010, 2015, 
2017, 2019) to create estimates for the entire time series from 1980 to 2019. Socio-demographic Index was used as a 
covariate to extrapolate back to the year 1980.   
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Methods for the calculation of SEV scalars 
(Adapted from “Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 
causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories” by Foreman et al., 
The Lancet 2018; 392: 2052–90.) 

The GBD 2015 introduced summary exposure values (SEVs), a univariate measure of risk-weighted exposure. The 
SEV is the relative risk-weighted prevalence of exposure, where 0 is no risk in population and 1 is the entire 
population at maximum risk. 

𝑆𝑆𝐸𝐸𝑆𝑆𝑟𝑟𝑟𝑟 =  
∫ 𝑝𝑝𝑚𝑚 𝑅𝑅𝑅𝑅𝑚𝑚𝐷𝐷𝑙𝑙 − 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿
𝑚𝑚
(𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 1)𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

 

where 𝑙𝑙 denotes a category of exposure, as in low, medium, or high. If we set 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = 1 

𝑆𝑆𝐸𝐸𝑆𝑆𝑟𝑟𝑟𝑟 =  
∫ 𝑝𝑝𝑚𝑚 𝑅𝑅𝑅𝑅𝑚𝑚𝐷𝐷𝑙𝑙 − 1𝐿𝐿
𝑚𝑚
𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 1

 

Where RRmax is the relative risk at the highest level of exposure in theory or observed globally. 

Stated in terms of a population attributable fraction (PAF), the SEV is 

𝑆𝑆𝐸𝐸𝑆𝑆𝑟𝑟𝑟𝑟 =  
𝑃𝑃𝐴𝐴𝑃𝑃𝑟𝑟𝑟𝑟

(1 − 𝑃𝑃𝐴𝐴𝑃𝑃𝑟𝑟𝑟𝑟)(𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 1) 

In order to only have one SEV per risk factor, we averaged it across the causes which are affected by each risk 
factor: 

𝑆𝑆𝐸𝐸𝑆𝑆𝑟𝑟 =  
1

𝑁𝑁(𝐸𝐸)�𝑆𝑆𝐸𝐸𝑆𝑆𝑟𝑟𝑟𝑟
𝑟𝑟
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Methods for the calculation of population attributable fractions (PAFs), PAF mediation, 
and risk factor scalars 
(Adapted from “Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 
causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories” by Foreman et al., 
The Lancet 2018; 392: 2052–90.) 

We generated estimated risk-specific PAFs for the future by converting the forecasted SEV values to PAF as 
follows: 

𝑃𝑃𝐴𝐴𝑃𝑃𝑟𝑟� = 1 − 1
(𝑆𝑆𝑆𝑆𝑉𝑉𝑟𝑟∗(𝑅𝑅𝑅𝑅𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−1)+1)

. 

These PAFs are also location-, age-, and year-specific due to the use of location-, age-, and year-specific SEV 
estimates.  

PAF estimates depend on SEVs, which are not cause-specific; therefore, we expect a bias in logit-transformed space, 
which is the space where exposures are modelled. We try to correct for this bias by forcing our estimated values to 
agree with the GBD in the year 2016. This is done by first taking a reference PAF directly computed from exposure 
and cause-specific relative risks available in the GBD: 

𝑃𝑃𝐴𝐴𝑃𝑃𝑟𝑟 =  
∑ 𝑝𝑝𝑟𝑟𝑚𝑚 ∗ 𝑅𝑅𝑅𝑅𝑚𝑚𝑟𝑟𝑋𝑋
𝑚𝑚 − 1
∑ 𝑝𝑝𝑟𝑟𝑚𝑚 ∗ 𝑅𝑅𝑅𝑅𝑚𝑚𝑟𝑟𝑋𝑋
𝑚𝑚

 

where 𝐸𝐸 corresponds to the different exposure levels of the risk factor. This is followed by calculating the correction 
factor CF via comparing (in logit space) the GBD PAF to the SEV-derived estimated PAF in the reference year 
2019: 

𝐶𝐶𝑃𝑃𝑟𝑟 =  𝑙𝑙𝑝𝑝𝑙𝑙𝑟𝑟𝑟𝑟(𝑃𝑃𝐴𝐴𝑃𝑃𝑟𝑟2019) − 𝑙𝑙𝑝𝑝𝑙𝑙𝑟𝑟𝑟𝑟(𝑃𝑃𝐴𝐴𝑃𝑃𝑟𝑟2019� ) 

 
This correction factor is necessary because the SEV is summarised across all of the causes of death related to that 
risk factor. If there are different patterns of relative risk by exposure level for different causes of death for the same 
risk factor, there is some information loss attributable to this dimensionality reduction. Since that correction factor is 
relatively stable over time, we can simply add it to each year in the forecast to approximate the cause-risk-specific 
PAF accounting for these different relative risk curves.  
 
We applied the correction factor to the estimated PAF to come up with an adjusted estimated PAF*: 

𝑃𝑃𝐴𝐴𝑃𝑃𝑟𝑟∗ = 𝑝𝑝𝐸𝐸𝑝𝑝𝑟𝑟𝑟𝑟(𝑙𝑙𝑝𝑝𝑙𝑙𝑟𝑟𝑟𝑟�𝑃𝑃𝐴𝐴𝑃𝑃𝑟𝑟�� + 𝐶𝐶𝑃𝑃𝑟𝑟) 

To properly estimate the joint PAF of all risks, one must take into account of how one risk factor is mediated 
through other risk factors. The fraction of one risk that is mediated through another is called mediation factor (MF). 
Using risk mediation factors provided in GBD 2019, we computed the joint (adjusted) PAF of all risks for a cause: 

𝑃𝑃𝐴𝐴𝑃𝑃 = 1 −�(1 − 𝑃𝑃𝐴𝐴𝑃𝑃𝑟𝑟∗ ∗�(1 −𝑀𝑀𝑃𝑃𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟))
𝑆𝑆

𝑟𝑟

𝑅𝑅

𝑟𝑟

 

Where s denotes the risks that impact the dementia via r, and r are all the GBD risk factors associated with dementia. 
Since PAF is the ratio of risk-attributable cause-specific deaths to total cause-specific deaths, we can relate total 
dementia prevalence to dementia prevalence attributable to GBD risk factors: 

𝑃𝑃𝐴𝐴𝑃𝑃 =
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑙𝑙𝑝𝑝𝐷𝐷𝐸𝐸𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝐴𝐴𝑙𝑙𝑝𝑝 𝑟𝑟𝑝𝑝 𝐺𝐺𝐺𝐺𝐷𝐷 𝑝𝑝𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅

𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑙𝑙𝑝𝑝𝐷𝐷𝐸𝐸𝑝𝑝
  

& 
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𝑇𝑇𝑝𝑝𝑟𝑟𝑟𝑟𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑙𝑙𝑝𝑝𝐷𝐷𝐸𝐸𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑙𝑙𝑝𝑝𝐷𝐷𝐸𝐸𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝐴𝐴𝑙𝑙𝑝𝑝 𝑟𝑟𝑝𝑝 𝐺𝐺𝐺𝐺𝐷𝐷 𝑝𝑝𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑙𝑙𝑝𝑝𝐷𝐷𝐸𝐸𝑝𝑝 𝐷𝐷𝑝𝑝𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝐴𝐴𝑙𝑙𝑝𝑝 𝑟𝑟𝑝𝑝 𝐺𝐺𝐺𝐺𝐷𝐷 𝑝𝑝𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅 

∴ 

𝑇𝑇𝑝𝑝𝑟𝑟𝑟𝑟𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑙𝑙𝑝𝑝𝐷𝐷𝐸𝐸𝑝𝑝 =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑙𝑙𝑝𝑝𝐷𝐷𝐸𝐸𝑝𝑝 𝐷𝐷𝑝𝑝𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝐴𝐴𝑙𝑙𝑝𝑝 𝑟𝑟𝑝𝑝 𝐺𝐺𝐺𝐺𝐷𝐷 𝑝𝑝𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅 ∗
1

1 − 𝑃𝑃𝐴𝐴𝑃𝑃
 

Finally, we generated a risk factor scalar, corresponding to the ratio of total cause-specific mortality to underlying 
cause-specific mortality. 

𝑆𝑆𝐸𝐸𝑟𝑟𝑙𝑙𝑟𝑟𝑝𝑝 =
1

1 − 𝑃𝑃𝐴𝐴𝑃𝑃
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Selection of risk factors for final forecasting model 
After accounting for the three risk factors included for dementia in the GBD framework (high BMI, high fasting 
plasma glucose, and smoking), we evaluated five other covariates to assess their relationship with dementia 
prevalence not attributable to the GBD risk factors. The five covariates tested represent other covariates estimated 
within the GBD project and for which the 2020 Lancet Commission report reported evidence of a link with 
dementia: low physical activity, high systolic blood pressure, education, air pollution, and alcohol use. We ran sex-
stratified linear regression models on logit prevalence with each risk factor individually as well as dummy variables 
for five-year age groups. The effect estimates (standardised to represent the effect per standard deviation unit of the 
risk factor) are shown below.  

 

We retained covariates for which the direction of the effect estimate was statistically significant and consistent with 
that reported in the 2020 Lancet Commission report for both males and females. This led us to retain education in 
our final models.  
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Effects of age group and risk factors in full forecasting model 
The plots below show the effects of the covariates in the final forecasting model.  

Effects for age group (reference group: 40–44 years old) 

 

Effects for covariates for the prediction of dementia not attributable to GBD risk factors (per standard 
deviation increase in risk) 
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Air pollution estimation methods 
(Adapted from “Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis 
for the Global Burden of Disease Study 2019” by Murray et al., The Lancet 2020; 396: 1223–49.) 
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Input data and modelling strategy 
Exposure 

Definition 

Exposure to ambient particulate matter pollution is defined as the population-weighted annual average mass 
concentration of particles with an aerodynamic diameter less than 2.5 micrometers (PM2.5) in a cubic meter of air. 
This measurement is reported in µg/m3. 

Input data 

The data used to estimate exposure to ambient particulate matter pollution comes from multiple sources, including 
satellite observations of aerosols in the atmosphere, ground measurements, chemical transport model simulations, 
population estimates, and land-use data. Table 1 summarizes exposure input data. 

Table 1: Exposure Input Data 

 Input data Exposure 

Source count (total) 663 

Number of countries with data 114 

 

The following details the updates in methodology and input data used in GBD 2019.  

PM2.5 ground measurement database 

Ground measurements used for GBD 2019 include updated measurements from sites included in 2017 and 
additional measurements from new locations. New and up-to-date data (mainly from the USA, Canada, EU, 
Bangladesh, China and USA embassies and consulates), were added to the data from the 2018 update of the WHO 
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Global Ambient Air Quality Database used in GBD 2017. The updated data included measurements of 
concentrations of PM10 and PM2.5 from 10,408 ground monitors from 116 countries from 2010 to 2017. The majority 
of measurements were recorded in 2016 and 2017 (as there is a lag in reporting measurements, few data from 2018 
or newer were available). Annual averages were excluded if they were based on less than 75% coverage within a 
year. If information on coverage was not available, then data were included unless there were already sufficient data 
within the same country (monitor density greater than 0.1). 

For locations measuring only PM10, PM2.5 measurements were estimated from PM10. This was performed using a 
hierarchy of conversion factors (PM2.5/PM10 ratios): (i) for any location a ‘local’ conversation factor was used, 
constructed as the ratio of the average measurements (of PM2.5 and PM10) from within 50km of the location of the 
PM10 measurement, and within the same country, if such measurements were available; (ii) if there was not 
sufficient local information to construct a conversion factor then a country-wide conversion factor was used; and 
(iii) if there was no appropriate information within a country, then a regional factor was used. In each case, to avoid 
the possible effects of outliers in the measured data (both PM2.5 and PM10), extreme values of the ratios were 
excluded (defined as being greater/lesser than the 95% and 5% quantiles of the empirical distributions of conversion 
factors). As with GBD 2013, 2015, 2016, and 2017 databases, in addition to values of PM2.5 and whether they were 
direct measurement or converted from PM10, the database also included additional information, where available, 
related to the ground measurements such as monitor geo-coordinates and monitor site type.  

Satellite-based estimates 

The global geophysical PM2.5 estimates for the years 2000–2017 are from Hammer and colleagues Version 
V4.GL.03.NoGWR used at 0.1ox0.1o resolution (~11 x 11 km resolution at the equator).1 The method is based on the 
algorithms of van Donkelaar and colleagues (2016) as used in GBD 2017,2 with updated satellite retrievals, 
chemical transport modelling, and ground-based monitoring. The algorithm uses aerosol optical depth (AOD) from 
several updated satellite products (MAIAC, MODIS C6.1, and MISR v23), including finer resolution, increased 
global coverage, and improved long-term stability. Ground-based observations from a global sunphotometer 
network (AERONET version 3) are used to combine different AOD information sources. This is the first time that 
data from MAIAC at 1 km resolution was used to estimate PM2.5 at the global scale. The GEOS-Chem chemical 
transport model with updated algorithms was used for geophysical relationships between surface PM2.5 and AOD. 
Updates to the GEOS-Chem simulation included improved representation of mineral dust and secondary organic 
aerosol, as well as updated emission inventories. The resultant geophysical PM2.5 estimates are highly consistent 
with ground monitors worldwide (R2=0.81, slope = 1.03, n = 2541). 

Population data  

A comprehensive set of population data, adjusted to match UN2015 Population Prospectus, on a high-resolution grid 
was obtained from the Gridded Population of the World (GPW) database. Estimates for 2000, 2005, 2010, 2015, and 
2020 were available from GPW version 4, with estimates for 1990 and 1995 obtained from the GPW version 3. 
These data are provided on a 0.0083o× 0.0083o resolution. Aggregation to each 0.1o×0.1o grid cell was accomplished 
by summing the central 12 × 12 population cells. Populations estimates for 2001–2004, 2006–2009, 2011–2014 and 
2016–2019 were obtained by interpolation using natural splines with knots placed at 2000, 2005, 2010, 2015, and 
2020. This was performed for each grid cell.  

Chemical transport model simulations 

Estimates of the sum of particulate sulfate, nitrate, ammonium, and organic carbon and the compositional 
concentrations of mineral dust simulated using the GEOS Chem chemical transport model, and a measure 
combining elevation and the distance to the nearest urban land surface (as described in van Donkelaar and 
colleagues 20162 and Hammer and colleagues (submitted))1 were available for 2000–2017 for each 0.1o×0.1o grid 
cell.  

http://beta.sedac.ciesin.columbia.edu/data/collection/gpw-v4
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Modelling strategy 
The following is a summary of the modelling approach, known as the Data Integration Model for Air Quality 
(DIMAQ) used in GBD 2015, 2016, 2017, and now in GBD 2019.3,4 

Before the implementation of DIMAQ (ie, in GBD 2010 and GBD 2013), exposure estimates were obtained using a 
single global function to calibrate available ground measurements to a “fused” estimate of PM2.5; the mean of 
satellite-based estimates and those from the TM5 chemical transport model, calculated for each 0.1o×0.1o grid cell. 
This was recognised to represent a tradeoff between accuracy and computational efficiency when utilising all the 
available data sources. In particular, the GBD 2013 exposure estimates were known to underestimate ground 
measurements in specific locations (see discussion in Brauer and colleagues, 2015).5 This underestimation was 
largely due to the use of a single, global calibration function, whereas in reality the relationship between ground 
measurements and other variables will vary spatially.  

In GBD 2015 and GBD 2016, coefficients in the calibration model were estimated for each country. Where data 
were insufficient within a country, information can be “borrowed” from a higher aggregation (region) and, if enough 
information is still not available, from an even higher level (super-region). Individual country-level estimates were 
therefore based on a combination of information from the country, its region, and its super-region. This was 
implemented within a Bayesian hierarchical modelling (BHM) framework. BHMs provide an extremely useful and 
flexible framework in which to model complex relationships and dependencies in data. Uncertainty can also be 
propagated through the model, allowing uncertainty arising from different components, both data sources and 
models, to be incorporated within estimates of uncertainty associated with the final estimates. The results of the 
modelling comprise a posterior distribution for each grid cell, rather than just a single point estimate, allowing a 
variety of summaries to be calculated. The primary outputs here are the median and 95% credible intervals for each 
grid cell. Based on the availability of ground measurement data, modelling and evaluation were focused on the year 
2016.  

The model used in GBD 2017 and GBD 2019 also included within-country calibration variation.6 The model used 
for GBD 2019, henceforth referred to as DIMAQ2, provides a number of substantial improvements over the initial 
formulation of DIMAQ. In DIMAQ, ground measurements from different years were all assumed to have been 
made in the primary year of interest and then regressed against values from other inputs (eg, satellites, etc.) made in 
that year. In the presence of changes over time, therefore, and particularly in areas where no recent measurements 
were available, there was the possibility of mismatches between the ground measurements and other variables. In 
DIMAQ2, ground measurements were matched with other inputs (over time), and the (global-level) coefficients 
were allowed to vary over time, subject to smoothing that is induced by a first-order random walk process. In 
addition, the manner in which spatial variation can be incorporated within the model has developed: where there are 
sufficient data, the calibration equations can now vary (smoothly) both within and between countries, achieved by 
allowing the coefficients to follow (smooth) Gaussian processes. Where there are insufficient data within a country, 
to produce accurate equations, as before, information is borrowed from lower down the hierarchy and it is 
supplemented with information from the wider region.   

DIMAQ2 as described above is used for all regions except for the north Africa and Middle East and sub-Saharan 
Africa super-regions, where there are insufficient data across years to allow the extra complexities of the new model 
to be implemented. In these super-regions, a simplified version of DIMAQ2 is used in which the temporal 
component is dropped. 

Model evaluation 

Model development and comparison was performed using within- and out-of-sample assessment. In the evaluation, 
cross-validation was performed using 25 combinations of training (80%) and validation (20%) datasets. Validation 
sets were obtained by taking a stratified random sample, using sampling probabilities based on the cross-tabulation 
of PM2.5 categories (0-24.9, 25-49.9, 50-74.9, 75-99.9, 100+ µg/m3) and super-regions, resulting in them having the 
same distribution of PM2.5 concentrations and super-regions as the overall set of sites. The following metrics were 
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calculated for each training/evaluation set combination: for model fit – R2 and deviance information criteria (DIC, a 
measure of model fit for Bayesian models); for predictive accuracy – root mean squared error (RMSE) and 
population weighted root mean squared error (PwRMSE). The median R2 was 0.9, and the median PwRMSE was 
10.1 µg/m3. 

All modelling was performed on the log-scale. The choice of which variables were included in the model was made 
based on their contribution to model fit and predictive ability. The following is a list of variables and model 
structures that were included in DIMAQ. 

Continuous explanatory variables: 

o (SAT) Estimate of PM2.5 (in μg/m3) from satellite remote sensing on the log-scale. 
o (POP) Estimate of population for the same year as SAT on the log-scale.  
o (SNAOC) Estimate of the sum of sulfate, nitrate, ammonium, and organic carbon simulated using 

the GEOS Chem chemical transport model. 
o (DST) Estimate of compositional concentrations of mineral dust simulated using the GEOS-Chem 

chemical transport model. 
o (EDxDU) The log of the elevation difference between the elevation at the ground measurement 

location and the mean elevation within the GEOS Chem simulation grid cell multiplied by the 
inverse distance to the nearest urban land surface. 
 

Discrete explanatory variables: 

o (LOC) Binary variable indicating whether exact location of ground measurement is known. 
o (TYPE) Binary variable indicating whether exact type of ground monitor is known. 
o (CONV) Binary variable indicating whether ground measurement is PM2.5 or converted from 

PM10. 
Interactions: 

o Interactions between the binary variables and the effects of SAT. 
 

Random effects: 
o Regional temporal (random walk) hierarchical random-effects on the intercept   
o Regional hierarchical random-effects for the coefficient associated with SAT  
o Regional hierarchical random-effects for the coefficient associated with POP 
o Smoothed, spatially varying random-effects for the intercept 
o Smoothed, spatially varying random-effects for the coefficient associated with SAT 

 
Inference and prediction 

Due to both the complexity of the models and the size of the data, notably the number of spatial predictions that are 
required, recently developed techniques that perform “approximate” Bayesian inference based on integrated nested 
Laplace approximations (INLA) were used.7 Computation was performed using the R interface to the INLA 
computational engine (R-INLA). GBD 2019 also makes use of an innovation in the way that samples from the 
(Bayesian) model are used to represent distributions of estimated concentrations in each grid-cell. Here estimates, 
and distributions representing uncertainty, of concentrations for each grid are obtained by taking repeated (joint) 
samples from the posterior distributions of the parameters and calculating estimates based on a linear combination of 
those samples and the input variables.8   

DIMAQ2 was used to produce estimates of ambient PM2.5 for 1990, 1995, and 2010–2019 by matching the gridded 
estimates with the corresponding coefficients from the calibration. As there is a lag in reporting ambient air 
pollution based quantities, the input variables were extrapolated (as in GBD 2017), allowing estimates for 2018 and 
2019 to be produced in the same way as other years and, crucially, allowing measures of uncertainty to be produced 
within the BHM framework rather than by using post-hoc approximations.  

http://www.r-inla.org/
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Estimates from the satellites and the GEOS-Chem chemical transport model in 2018 and 2019 were produced by 
extrapolating estimates from 2000–2017 using generalised additive models,9 on a cell-by-cell basis, except in those 
grid cells that saw a >100% increase between 2016 and 2017, in which case only the 2000–2016 estimates were 
used for extrapolating, in order to avoid unrealistic and/or unjustified extrapolation of trends. Population estimates 
for 2018 and 2019 were obtained by interpolation as described above.   
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Alcohol estimation methods 
(Adapted from “Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis 
for the Global Burden of Disease Study 2019” by Murray et al., The Lancet 2020; 396: 1223–49.) 

Flowchart 
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Input data and methodological summary 
 
Definition 

Exposure 

We defined exposure as the grams per day of pure alcohol consumed among current drinkers. We constructed this 
exposure using the indicators outlined below: 

1. Current drinkers, defined as the proportion of individuals who have consumed at least one alcoholic 
beverage (or some approximation) in a 12-month period. 

2. Alcohol consumption (in grams per day), defined as grams of alcohol consumed by current drinkers, per 
day, over a 12-month period. 

3. Alcohol litres per capita stock, defined in litres per capita of pure alcohol, over a 12-month period. 
 

We also used three additional indicators to adjust alcohol exposure estimates to account for different types of bias: 

1. Number of tourists within a location, defined as the total amount of visitors to a location within a 12-month 
period. 

2. Tourists’ duration of stay, defined as the number of days resided in a hosting country. 
3. Unrecorded alcohol stock, defined as a percentage of the total alcohol stock produced outside established 

markets. 

Input data 

A systematic review of the literature was performed to extract data on our primary indicators. The Global Health 
Exchange (GHDx), IHME’s online database of health-related data, was searched for population survey data 
containing participant-level information from which we could formulate the required alcohol use indicators on 
current drinkers and alcohol consumption. Data sources were included if they captured a sample representative of 
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the geographical location under study. We documented relevant survey variables from each data source in a 
spreadsheet and extracted using STATA 13.1 and R 3.3. A total of 6172 potential data sources were available in the 
GHDx, of which 5091 have been screened and 1125 accepted.   

Table 1: Data inputs for exposure for alcohol use. 

Input data Exposure Relative risk 
Sources (total) 10513 495 
Number of countries with data 199 - 

 

Estimates of current drinking prevalence were split by age and sex where necessary. First, studies that reported 
prevalence for both sexes were split using a region-specific sex ratio estimated using MR-BRT.  Second, where 
studies reported estimates across non-GBD age groups, these were split into standard five-year age groups using the 
global age pattern estimated by ST-GPR.  
 
Table 2: MR-BRT sex splitting adjustment factors for current drinking 

Data input Gamma Beta coefficient, log 
(95% CI) 

Adjustment 
factor* 

Female: Male  0 -0.16 (-0.17, -0.14) 0.85 
Age < 50 0 0.06 (0.06, 0.06) 1.07 
East Asia 0.36 -1.02 (-1.74, -0.29) 0.36 
Southeast Asia 0.64 -1.06 (-2.34, 0.22) 0.35 
Central Asia 0.41 -0.35 (-1.16, 0.46) 0.70 
Central Europe 0.18 -0.21 (-0.58, 0.14) 0.80 
Eastern Europe 0.10 -0.07 (-0.28, 0.14) 0.93 
High-income Asia Pacific 1.27 -1.11 (-4.90, 2.68) 0.33 
Western Europe 0.08 0.03 (-0.14, 0.20) 1.03 
Southern Latin America 1.26 -0.67 (-4.18, 2.84) 0.51 
High-income North America 0.09 -0.07 (-0.26, 0.11) 0.93 
Caribbean 0.25 -0.52 (-1.02, -0.03) 0.59 
Andean Latin America 0.76 -0.16 (-1.66, 1.34) 0.85 
Central Latin America 0.30 -0.52 (-1.12, 0.08) 0.59 
Tropical Latin America 0.08 -0.61 (-0.79, -0.44) 0.54 
North Africa and Middle East 1.21 -1.44 (-3.91, 1.03) 0.24 
South Asia 0.71 -1.17 (-2.57, 0.23) 0.31 
Eastern sub-Saharan Africa 0.28 -0.53 (-1.10, 0.03) 0.58 
Southern sub-Saharan Africa 0.20 -0.16 (-0.56, 0.23) 0.85 
Western sub-Saharan Africa 0.32 -0.19 (-0.83, 0.45) 0.83 
Oceania 0.94 -0.54 (-2.42, 1.34) 0.58 

*Adjustment factor is the transformed beta coefficient in normal space and can be interpreted as the factor by which 
the alternative case definition is adjusted to reflect the ratio by which both-sex data points were split.  

 
To allow for the inclusion of data that did not meet our reference definition for current drinking, two crosswalks 
were performed using MR-BRT. The first crosswalk converted estimates of one-month drinking prevalence to what 
they would be if data represented estimates of 12-month drinking prevalence. This crosswalk incorporated two 
binary covariates: male and age ≥ 50. The second crosswalk converted estimates of one-week drinking prevalence to 
12-month drinking prevalence. This crosswalk incorporated age < 20 and male as covariates. The covariates utilised 
in both crosswalks were included as both x and z covariates. A uniform prior of 0 was set as the upper bound for the 
beta coefficients to enforce the logical constraint that one-month and one-week prevalence could not be greater than 
12-month prevalence. 
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Table 3: MR-BRT crosswalk adjustment factors for alcohol use current drinking model 

Data input Reference or 
alternative case 
definition 

Gamma Beta coefficient, 
logit (95% CI) 

12-month prevalence Ref --- --- 
1-month prevalence Alt  0.22 -0.60 (-1.05, -0.16) 

Age ≥ 50 0.13 0.16 (-0.10, 0.43) 
Male 0.29 0.01 (-0.57, 0.59) 

1-week prevalence Alt 0.46 -1.51 (-2.42, -0.59) 
Age < 20 0.47 -0.29 (-1.34, 0.76) 
Male 0.00 0.38 (0.15, 0.60) 

 

The methods for modelling supply-side-level data were changed substantially from those used in GBD 2017. The 
raw data are domestic supply (WHO GISAH; FAO) and retail supply (Euromonitor) of litres of pure ethanol 
consumed. Domestic supply is calculated as the sum of production and imports, subtracting exports. The WHO and 
FAO sources were combined, so that FAO data were only used if there were no data available for that location-year 
from WHO. This was done because the WHO source takes into consideration FAO values when available. Since the 
WHO data are given in more granular alcohol types, the following adjustments were made: 

𝐿𝐿𝑃𝑃𝐶𝐶 𝑃𝑃𝐴𝐴𝑝𝑝𝑝𝑝 𝐸𝐸𝑟𝑟ℎ𝑟𝑟𝐷𝐷𝑝𝑝𝑙𝑙 = 0.13 ∗ �
𝑊𝑊𝑟𝑟𝐷𝐷𝑝𝑝
0.973

� 

𝐿𝐿𝑃𝑃𝐶𝐶 𝑃𝑃𝐴𝐴𝑝𝑝𝑝𝑝 𝐸𝐸𝑟𝑟ℎ𝑟𝑟𝐷𝐷𝑝𝑝𝑙𝑙 = 0.05 ∗ �
𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝
0.989

� 

𝐿𝐿𝑃𝑃𝐶𝐶 𝑃𝑃𝐴𝐴𝑝𝑝𝑝𝑝 𝐸𝐸𝑟𝑟ℎ𝑟𝑟𝐷𝐷𝑝𝑝𝑙𝑙 = 0.4 ∗ �
𝑆𝑆𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑅𝑅

0.91
� 

 

Three outliering strategies are used to omit implausible datapoints and data that created implausible model 
fluctuations. First, estimates from the current drinking model  are used to calculate the grams of alcohol consumed 
per drinker per day. A point is outliered if the grams of pure ethanol per drinker per day for a given source-location-
year is greater than 100 (approximately ten drinks). These thresholds were chosen by using expert knowledge about 
reasonable consumption levels. In the second round of outliering, the mean liters per capita value over a ten-year 
window is calculated. If a point is over 70% of that mean value away from the mean value, it is outliered. The 70% 
limit was chosen using histograms of these distances. Additionally, some manual outliering is performed to account 
for edge cases. Finally, data smoothing is performed by taking a three-year rolling mean over each location-year. 

Next, an imputation to fill in missing years is performed for all series to remove compositional bias from our final 
estimates. Since the data from our main sources cover different time periods, by imputing a complete time series for 
each data series, we reduce the probability that compositional bias of the sources is leading to biased final estimates. 
To impute the missing years for each series, we model the log ratio of each pair of sources as a function of an 
intercept and nested random effects on super-region, region, and location. The appropriate predicted ratio is 
multiplied by the source that we do have, which generates an estimated value for the missing source. For some 
locations where there was limited overlap between series, the predicted ratio did not make sense, and a regional ratio 
was used. 

Finally, variance was calculated both across series (within a location-year) as well as across years (within a location-
source). Additionally, if a location-year had one imputed point, the variance was multiplied by 2. If a location-year 
had two imputed points, the variance was multiplied by 4. The average estimates in each location-year were the 
input to an ST-GPR model. This uses a mixed-effects model modelled in log space with nested location random 
effects. 
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We obtained data on the number of tourists and their duration of stay from the UNWTO.3 We applied a crosswalk 
across different tourist categories, similar to the one used for the litres per capita data, to arrive at a consistent 
definition (ie, visitors to a country). 

We obtained estimates on unrecorded alcohol stock from data available in WHO GISAH database,2 consisting of 
189 locations. For locations with no data available, the national or regional average was used.  

For relative risks, in GBD 2016 we performed a systematic literature review of all cohort and case-control studies 
reporting a relative risk, hazard ratio, or odds ratio for any risk-outcome pairs studied in GBD 2016. Studies were 
included if they reported a categorical or continuous dose for alcohol consumption, as well as uncertainty measures 
for their outcomes, and the population under study was representative.  
 
Modelling strategy 
While population-based surveys provide accurate estimates of the prevalence of current drinkers, they typically 
underestimate real alcohol consumption levels.10-12 As a result, we considered the litre per capita input to be a better 
estimate of overall volume of consumption. Per capita consumption, however, does not provide age- and sex-
specific consumption estimates needed to compute alcohol-attributable burden of disease. Therefore, we use the age-
sex pattern of consumption among drinkers modelled from the population survey data and the overall volume of 
consumption from FAO, GISAH, and Euromonitor to determine the total amount of alcohol consumed within a 
location. In the paragraphs below, we outline how we estimated each primary input in the alcohol exposure model, 
as well as how we combined these inputs to arrive at our final estimate of grams per day of pure alcohol. We 
estimated all models below using 1000 draws. 

For data obtained through surveys, we used spatiotemporal Gaussian process regression (ST-GPR) to construct 
estimates for each location/year/age/sex. We chose to use ST-GPR due to its ability to leverage information across 
the nearby locations or time periods. We also modelled the alcohol litres per capita (LPC) data, as well as the total 
number of tourists, using ST-GPR.  

Given the heterogeneous nature of the estimates on unrecorded consumption, as well as the wide variation across 
countries and time periods, we took 1000 draws from the uniform distribution of the lowest and highest estimates 
available for a given country. We did this to incorporate the diffuse uncertainty within the unrecorded estimates 
reported. We used these 1000 draws in the equation below.  

We adjusted the alcohol LPC for unrecorded consumption using the following equation: 

𝐴𝐴𝑙𝑙𝐸𝐸𝑝𝑝ℎ𝑝𝑝𝑙𝑙 𝐿𝐿𝑃𝑃𝐶𝐶 =
𝐴𝐴𝑙𝑙𝐸𝐸𝑝𝑝ℎ𝑝𝑝𝑙𝑙 𝐿𝐿𝑃𝑃𝐶𝐶

(1 − % 𝑈𝑈𝐷𝐷𝑝𝑝𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝𝐷𝐷𝑝𝑝𝐷𝐷)
 

 

We then adjusted the estimates for alcohol LPC for tourist consumption by adding in the per capita rate of 
consumption abroad and subtracting the per capita rate of tourist consumption domestically.   
 
  

𝐴𝐴𝑙𝑙𝐸𝐸𝑝𝑝ℎ𝑝𝑝𝑙𝑙 𝐿𝐿𝑃𝑃𝐶𝐶𝑑𝑑 = 𝑈𝑈𝐷𝐷𝑟𝑟𝐷𝐷𝑈𝑈𝐴𝐴𝑅𝑅𝑟𝑟𝑝𝑝𝐷𝐷 𝐴𝐴𝑙𝑙𝐸𝐸𝑝𝑝ℎ𝑝𝑝𝑙𝑙 𝐿𝐿𝑃𝑃𝐶𝐶𝑑𝑑 + 𝐴𝐴𝑙𝑙𝐸𝐸𝑝𝑝ℎ𝑝𝑝𝑙𝑙 𝐿𝐿𝑃𝑃𝐶𝐶 𝐷𝐷𝑏𝑏𝑚𝑚𝑚𝑚𝑟𝑟𝑏𝑏𝑚𝑚𝑟𝑟 𝑟𝑟𝑏𝑏𝑚𝑚𝑟𝑟𝑐𝑐𝑚𝑚𝑐𝑐𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚 𝑚𝑚𝑏𝑏𝑟𝑟𝑏𝑏𝑚𝑚𝑑𝑑

− 𝐴𝐴𝑙𝑙𝐸𝐸𝑝𝑝ℎ𝑝𝑝𝑙𝑙 𝐿𝐿𝑃𝑃𝐶𝐶 𝑇𝑇𝑏𝑏𝑐𝑐𝑟𝑟𝑚𝑚𝑟𝑟𝑏𝑏 𝑟𝑟𝑏𝑏𝑚𝑚𝑟𝑟𝑐𝑐𝑚𝑚𝑐𝑐𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚 𝑑𝑑𝑏𝑏𝑚𝑚𝑚𝑚𝑟𝑟𝑏𝑏𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑 
 

𝐴𝐴𝑙𝑙𝐸𝐸𝑝𝑝ℎ𝑝𝑝𝑙𝑙 𝐿𝐿𝑃𝑃𝐶𝐶 𝑚𝑚 =  
∑ 𝑇𝑇𝑏𝑏𝑐𝑐𝑟𝑟𝑚𝑚𝑟𝑟𝑏𝑏 𝑃𝑃𝑏𝑏𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚 𝑙𝑙 ∗ 𝑃𝑃𝑟𝑟𝑏𝑏𝑐𝑐𝑏𝑏𝑟𝑟𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚 𝑏𝑏𝑓𝑓 𝑏𝑏𝑏𝑏𝑐𝑐𝑟𝑟𝑚𝑚𝑟𝑟𝑏𝑏𝑟𝑟 𝑖𝑖,𝑙𝑙 ∗ 𝑈𝑈𝑚𝑚𝑚𝑚𝑑𝑑𝑈𝑈𝑐𝑐𝑟𝑟𝑏𝑏𝑚𝑚𝑑𝑑 𝐴𝐴𝑚𝑚𝑟𝑟𝑏𝑏ℎ𝑏𝑏𝑚𝑚 𝐿𝐿𝑃𝑃𝐿𝐿 𝑙𝑙 ∗ 

𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑚𝑚𝐴𝐴𝐴𝐴 𝑙𝑙𝐴𝐴𝑙𝑙𝐴𝐴𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑠𝑠𝑙𝑙𝑚𝑚𝑠𝑠 𝑖𝑖,𝑙𝑙
365  ∗  𝑙𝑙

𝑃𝑃𝑏𝑏𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚 𝑑𝑑
  

where: 

𝑙𝑙 𝑟𝑟𝑅𝑅 𝑟𝑟ℎ𝑝𝑝 𝑅𝑅𝑝𝑝𝑟𝑟 𝑝𝑝𝑜𝑜 𝑟𝑟𝑙𝑙𝑙𝑙 𝑙𝑙𝑝𝑝𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝐷𝐷𝑅𝑅, 𝑟𝑟 𝑟𝑟𝑅𝑅 𝑝𝑝𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑝 Domestic consumption abroad 𝑝𝑝𝑝𝑝 Tourist consumption domestically, 

𝑟𝑟𝐷𝐷𝐷𝐷 𝐷𝐷 𝑟𝑟𝑅𝑅 𝑟𝑟 𝐷𝐷𝑝𝑝𝐷𝐷𝑝𝑝𝑅𝑅𝑟𝑟𝑟𝑟𝐸𝐸 𝑙𝑙𝑝𝑝𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝐷𝐷. 
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After adjusting alcohol LPC by tourist consumption and unrecorded consumption for all location/years reported, 
sex-specific and age-specific estimates were generated by incorporating estimates modelled in ST-GPR for 
percentage of current drinkers within a location/year/sex/age, as well as consumption trends modelled in the ST-
GPR grams per day model. We do this by first calculating the proportion of total consumption for a given 
location/year by age and sex, using the estimates of alcohol consumed per day, the population size, and the 
percentage of current drinkers. We then multiply this proportion of total stock for a given location/year/sex/age by 
the total stock for a given location/year to calculate the consumption in terms of litres per capita for a given 
location/year/sex/age. We then convert these estimates to be in terms of grams/per day. The following equations 
describe these calculations: 

 
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝐷𝐷 𝑝𝑝𝑜𝑜 𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑙𝑙 𝐸𝐸𝑝𝑝𝐷𝐷𝑅𝑅𝐴𝐴𝐷𝐷𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝐷𝐷 𝑚𝑚,𝑑𝑑,𝑟𝑟,𝑚𝑚

=  
𝐴𝐴𝑙𝑙𝐸𝐸𝑝𝑝ℎ𝑝𝑝𝑙𝑙  𝑙𝑙/𝐷𝐷𝑟𝑟𝑀𝑀  𝑚𝑚,𝑑𝑑,𝑟𝑟,𝑚𝑚 ∗  𝑃𝑃𝑝𝑝𝑝𝑝𝐴𝐴𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝐷𝐷 𝑚𝑚,𝑑𝑑,𝑟𝑟,𝑚𝑚 ∗  % 𝐶𝐶𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝑟𝑟 𝐷𝐷𝑝𝑝𝑟𝑟𝐷𝐷𝑅𝑅𝑝𝑝𝑝𝑝𝑅𝑅 𝑚𝑚,𝑑𝑑,𝑟𝑟,𝑚𝑚

∑ 𝐴𝐴𝑙𝑙𝐸𝐸𝑝𝑝ℎ𝑝𝑝𝑙𝑙  𝑙𝑙/𝐷𝐷𝑟𝑟𝑀𝑀 𝑚𝑚,𝑑𝑑,𝑟𝑟,𝑚𝑚  ∗  𝑃𝑃𝑝𝑝𝑝𝑝𝐴𝐴𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝐷𝐷 𝑚𝑚,𝑑𝑑,𝑟𝑟,𝑚𝑚 ∗  % 𝐶𝐶𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝑟𝑟 𝐷𝐷𝑝𝑝𝑟𝑟𝐷𝐷𝑅𝑅𝑝𝑝𝑝𝑝𝑅𝑅 𝑚𝑚,𝑑𝑑,𝑟𝑟,𝑚𝑚 𝑟𝑟,𝑚𝑚
 

 
 

𝐴𝐴𝑙𝑙𝐸𝐸𝑝𝑝ℎ𝑝𝑝𝑙𝑙 𝐿𝐿𝑃𝑃𝐶𝐶 𝑚𝑚,𝑑𝑑,𝑟𝑟,𝑚𝑚 =  
𝐴𝐴𝑙𝑙𝐸𝐸𝑝𝑝ℎ𝑝𝑝𝑙𝑙 𝐿𝐿𝑃𝑃𝐶𝐶 𝑚𝑚,𝑑𝑑  ∗  𝑃𝑃𝑝𝑝𝑝𝑝𝐴𝐴𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝐷𝐷 𝑚𝑚,𝑑𝑑  ∗  𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝐷𝐷 𝑝𝑝𝑜𝑜 𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑙𝑙 𝐸𝐸𝑝𝑝𝐷𝐷𝑅𝑅𝐴𝐴𝐷𝐷𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝐷𝐷 𝑚𝑚,𝑑𝑑,𝑟𝑟,𝑚𝑚

 % 𝐶𝐶𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝑟𝑟 𝐷𝐷𝑝𝑝𝑟𝑟𝐷𝐷𝑅𝑅𝑝𝑝𝑝𝑝𝑅𝑅 𝑚𝑚,𝑑𝑑,𝑟𝑟,𝑚𝑚 ∗ 𝑃𝑃𝑝𝑝𝑝𝑝𝐴𝐴𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝐷𝐷 𝑚𝑚,𝑑𝑑,𝑟𝑟,𝑚𝑚
 

 

𝐴𝐴𝑙𝑙𝐸𝐸𝑝𝑝ℎ𝑝𝑝𝑙𝑙 𝑙𝑙/𝐷𝐷𝑟𝑟𝑀𝑀 𝑚𝑚,𝑑𝑑,𝑟𝑟,𝑚𝑚 = 𝐴𝐴𝑙𝑙𝐸𝐸𝑝𝑝ℎ𝑝𝑝𝑙𝑙 𝐿𝐿𝑃𝑃𝐶𝐶 𝑚𝑚,𝑑𝑑,𝑟𝑟,𝑚𝑚 ∗
1000
365

 

 
where: 
 𝑙𝑙 𝑟𝑟𝑅𝑅 𝑟𝑟 𝑙𝑙𝑝𝑝𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝐷𝐷,𝑀𝑀 𝑟𝑟𝑅𝑅 𝑟𝑟 𝑀𝑀𝑝𝑝𝑟𝑟𝑝𝑝, 𝑅𝑅 𝑟𝑟𝑅𝑅 𝑟𝑟 𝑅𝑅𝑝𝑝𝐸𝐸,𝑟𝑟𝐷𝐷𝐷𝐷 𝑟𝑟 𝑟𝑟𝑅𝑅 𝑟𝑟𝐷𝐷 𝑟𝑟𝑙𝑙𝑝𝑝 𝑙𝑙𝑝𝑝𝑝𝑝𝐴𝐴𝑝𝑝. 
 
We then used the gamma distribution to estimate individual-level variation within location, year, sex, age drinking 
populations, following the recommendations of other published alcohol studies.7,8 We chose parameters of the 
gamma distribution based on the mean and standard deviation of the 1,000 draws of alcohol g/day exposure for a 
given population. Standard deviation was calculated using the following formula.15 We tested several alternative 
models using our data and found this model performed best.  
 

𝑅𝑅𝑟𝑟𝑟𝑟𝐷𝐷𝐷𝐷𝑟𝑟𝑝𝑝𝐷𝐷 𝐷𝐷𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝐷𝐷 = 𝐷𝐷𝑝𝑝𝑟𝑟𝐷𝐷 ∗ (0.087 ∗ 𝑜𝑜𝑝𝑝𝐷𝐷𝑟𝑟𝑙𝑙𝑝𝑝 +  1.171 ) 
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Body mass index estimation methods 
(Adapted from “Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis 
for the Global Burden of Disease Study 2019” by Murray et al., The Lancet 2020; 396: 1223–49.) 

Flowchart 

 

 

 

Input data and methodological summary  
Case definitions 
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High body-mass index (BMI) for adults (ages 20+) is defined as BMI greater than 20 to 25 kg/m2. High BMI for 
children (ages 1–19) is defined as being overweight or obese based on International Obesity Task Force standards. 

Data sources 

In GBD 2019, new data were added from sources included in the annual GHDx update of known survey series. We 
conducted a systematic review in GBD 2017 to identify studies providing nationally or subnationally representative 
estimates of overweight prevalence, obesity prevalence, or mean body-mass index (BMI). We limited the search to 
literature published between January 1, 2016, and December 31, 2016, to update the systematic literature search 
previously performed as part of GBD 2015.  

The search for adults was conducted on 4 January 2017, using the following terms:  

((("Body Mass Index"[Mesh] OR "Overweight"[Mesh] OR "Obesity"[Mesh]) AND ("Geographic Locations"[Mesh] 
NOT “United States”[Mesh]) AND ("humans"[Mesh] AND "adult"[MeSH]) AND ("Data Collection"[Mesh] OR 
"Health Services Research"[Mesh] OR "Population Surveillance"[Mesh] OR "Vital statistics"[Mesh] OR 
"Population"[Mesh] OR "Epidemiology"[Mesh] OR "surve*"[TiAb]) NOT (Comment[ptyp] OR Case Reports[ptyp] 
OR "hospital"[TiAb])) AND ("2016/01/01"[Date - Publication] : "2016/12/31"[Date - Publication])) 

The search for children was conducted on 4 August 2016, using the following terms: 
((("Body Mass Index"[Mesh] OR "Overweight"[Mesh] OR "Obesity"[Mesh]) AND ("Geographic Locations"[Mesh] 
NOT “United States”[Mesh]) AND ("humans"[Mesh] AND "child"[MeSH]) AND ("Data Collection"[Mesh] OR 
"Health Services Research"[Mesh] OR "Population Surveillance"[Mesh] OR "Vital statistics"[Mesh] OR 
"Population"[Mesh] OR "Epidemiology"[Mesh] OR "surve*"[TiAb]) NOT (Comment[ptyp] OR Case Reports[ptyp] 
OR "hospital"[TiAb])) AND ("2016/01/01"[Date - Publication] : "2016/12/31"[Date - Publication])) 

Table 1: Data inputs for exposure for high body-mass index. 

 Input data Exposure 
Source count (total) 2022 
Number of countries with data 190 

 

Table 2: Data inputs for relative risks for high body-mass index. 

 Input data Relative risk 
Source count (total) 267 
Number of countries with data  32 

 

 

Eligibility criteria 

We included representative studies providing data on mean BMI or prevalence of overweight or obesity among 
adults or children. For adults, studies were included if they defined overweight as BMI≥25 kg/m2 and obesity as 
BMI≥30 kg/m2, or if estimates using those cutoffs could be back-calculated from reported categories. For children 
(children ages 2–19), studies were included if they used International Obesity Task Force (IOTF) standards to define 
overweight and obesity thresholds. We only included studies reporting data collected after January 1, 1980. Studies 
were excluded if they used non-random samples (eg, case-control studies or convenience samples), conducted 
among specific subpopulations (eg, pregnant women, racial or ethnic minorities, immigrants, or individuals with 
specific diseases), used alternative methods to assess adiposity (eg, waist-circumference, skin-fold thickness, or 
hydrodensitometry), had sample sizes of less than 20 per age-sex group, or provided inadequate information on any 
of the inclusion criteria. We also excluded review articles and non-English-language articles.  
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Data collection process  

Where individual-level survey data were available, we computed mean BMI using weight and height. We then used 
BMI to determine the prevalence of overweight and obesity. For individuals aged over 19 years, we considered them 
to be overweight if their BMI was greater than or equal to 25 kg/m2, and obese if their BMI was greater than or 
equal to 30 kg/m2. For individuals aged 2 to 19 years, we used monthly IOTF cutoffs2 to determine overweight and 
obese status when age in months was available. When only age in years was available, we used the cutoff for the 
midpoint of that year. Obese individuals were also considered to be overweight. We excluded studies using the 
World Health Organization (WHO) standards or country-specific cutoffs to define childhood overweight and 
obesity. At the individual level, we considered BMI<10 kg/m2 and BMI>70 kg/m2 to be biologically implausible and 
excluded those observations. 

The rationale for choosing to use the IOTF cutoffs over the WHO standards has been described elsewhere.1 Briefly, 
the IOTF cutoffs provide consistent child-specific standards for ages 2–18 derived from surveys covering multiple 
countries. By contrast, the WHO growth standards apply to children under age 5, and the WHO growth reference 
applies to children ages 5–19. The WHO growth reference for children ages 5–19 was derived from United States 
data, which are less representative than the multinational data used by IOTF. Additionally, the switch between 
references at age 5 can produce artificial discontinuities. Given that we estimate global childhood overweight and 
obesity for ages 2–19 (with ages 19 using standard adult cutoffs), the IOTF cutoffs were preferable. Additionally, 
we found that IOTF cutoffs were more commonly used in scientific literature covering childhood obesity. 

From report and literature data, we extracted data on mean BMI, prevalence of overweight, and prevalence of 
obesity, measures of uncertainty for each, and sample size, by the most granular age and sex groups available. 
Additionally, we extracted the same study-level covariates as were extracted from microdata (measurement, 
urbanicity, and representativeness), as well as location and year.  

In addition to the primary indicators described above, we extracted relevant survey-design variables, including 
primary sampling unit, strata, and survey weights, which were used to tabulate individual-level microdata and 
produce accurate measures of uncertainty. We extracted three study-level covariates: 1) whether height and weight 
data were measured or self-reported; 2) whether the study was predominantly conducted in an urban area, rural area, 
or both; and 3) the level of representativeness of the study (national or subnational).  

Finally, we extracted relevant demographic indicators, including location, year, age, and sex. We estimated the 
standard error of the mean from individual-level data, where available, and used the reported standard error of the 
mean for published data. When multiple data sources were available for the same country, we included all of them in 
our analysis. If data from the same data source were available in multiple formats such as individual-level data and 
tabulated data, we used individual-level data.  

Modelling strategy  
Age and sex splitting 

Any report or literature data provided in age groups wider than the standard five-year age groups or as both sexes 
combined were split using the approach used by Ng and colleagues.2 Briefly, age-sex patterns were identified using 
sources with data on multiple age-sex groups and these patterns were applied to split aggregated report and 
literature data. Uncertainty in the age-sex split was propagated by multiplying the standard error of the data by the 
square root of the number of splits performed. We did not propagate the uncertainty in the age pattern and sex 
pattern used to split the data as they seemed to have small effect. 

Self-report bias adjustment 

We included both measured and self-reported data. We tested for bias in self-report data compared to measured data, 
which is considered to be the gold-standard. There was no clear direction of bias for children ages 2–14, so for these 
age groups we only included measured data. For individuals ages 15 and above, we adjusted self-reported data for 
overweight prevalence and obesity prevalence. In GBD 2017, the self-report bias adjustment used a nested 
hierarchical mixed-effects regression model. This approach was updated in GBD 2019 to utilise the power of MR-
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BRT. For both overweight and obesity, we fit sex-specific MR-BRT models on the logit difference between measured 
and self-reported with a fixed effect on super-region. The bias coefficients derived from these two models are in 
Table 1 and 2. 

Table 1: MR-BRT self-report crosswalk adjustment factors for overweight prevalence 

Model Data input Reference or 
alternative case 
definition 

Gamma Beta coefficient, logit 
(95% CI) 

Females Measured data Ref 0.26 
 

--- 
Self-reported data (southeast Asia, east Asia, 
and Oceania) 

Alt  -0.53 (-1.03, -0.04) 

Self-reported data (central Europe, eastern 
Europe, and central Asia) 

Alt -0.20 (-0.69, 0.30) 

Self-reported data (high-income) Alt  -0.25 (-0.75, 0.24) 
Self-reported data (Latin America and 
Caribbean) 

Alt -0.19 (-0.69, 0.31) 

Self-report data (north Africa and Middle 
East) 

Alt -0.38 (-0.89,0.11) 

Self-report data (south Asia) Alt 0.36 (-0.14, 0.85) 
Self-report data (sub-Saharan Africa) Alt -0.26 (-0.76, 0.24) 

Males Measured data Ref 0.43 
 

--- 
Self-reported data (southeast Asia, east Asia, 
and Oceania) 

Alt  -0.36 (-1.17, 0.50) 

Self-reported data (central Europe, eastern 
Europe, and central Asia) 

Alt -0.03 (-0.84, 0.82) 

Self-reported data (high-income) Alt  0.05 (-0.77, 0.87) 
Self-reported data (Latin America and 
Caribbean) 

Alt -0.02 (-0.84, 0.81) 

Self-report data (north Africa and Middle 
East) 

Alt -0.21 (-1.04, 0.61) 

Self-report data (south Asia) Alt 0.53 (-0.28, 1.37) 
Self-report data (sub-Saharan Africa) Alt -0.27 (-1.09, 0.55) 

 

Table 2: MR-BRT self-report crosswalk adjustment factors for obesity prevalence  

Model Data input Reference or 
alternative case 
definition 

Gamma Beta coefficient, logit 
(95% CI) 

Females Measured data Ref 0.38 
 

--- 
Self-reported data (southeast Asia, east Asia, 
and Oceania) 

Alt  -0.11 (-0.86, 0.64) 

Self-reported data (central Europe, eastern 
Europe, and central Asia) 

Alt -0.95 (-1.70, -0.19) 

Self-reported data (high-income) Alt  -0.42 (-1.16, 0.34) 
Self-reported data (Latin America and 
Caribbean) 

Alt -0.41 (-1.16, 0.34) 

Self-report data (north Africa and Middle 
East) 

Alt -0.48 (-1.23, 0.27) 

Self-report data (south Asia) Alt 0.50 (-0.25, 1.26) 
Self-report data (sub-Saharan Africa) Alt -0.41 (-1.16, 0.34) 

Males Measured data Ref 0.74 
 

 
Self-reported data (southeast Asia, east Asia, 
and Oceania) 

Alt  0.04 (-1.41, 1.53) 
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Self-reported data (central Europe, eastern 
Europe, and central Asia) 

Alt -0.79 (-2.25, 0.71) 

Self-reported data (high-income) Alt  -0.13 (-1.58, 1.40) 
Self-reported data (Latin America and 
Caribbean) 

Alt -0.26 (-1.70, 1.21) 

Self-report data (north Africa and Middle 
East) 

Alt -0.33 (-1.77, 1.16) 

Self-report data (south Asia) Alt 0.66 (-0.78, 2.15) 
Self-report data (sub-Saharan Africa) Alt -0.41 (-1.86, 1.08) 

 
 

Prevalence estimation for overweight and obesity 

After adjusting for self-report bias and splitting aggregated data into five-year age-sex groups, we used 
spatiotemporal Gaussian process regression (ST-GPR) to estimate the prevalence of overweight and obesity. This 
modelling approach has been described in detail elsewhere.  

The linear model, which when added to the smoothed residuals forms the mean prior for GPR is as follows:  
 
logit(overweight)c,a,t

= β0 + β1energyc,t + β2SDIc,t + β3vehiclesc,t + β4agriculturec,t + �βkIA[a]

21

k=5

+ αs + αr + αc 

logit(obesity/overweight)c,a,t = β0 + β1energyc,t + β2SDIc,t + β3vehiclesc,t + �βkIA[a]

21

k=4

+ αs + αr + αc 

 
where energy is ten-year lag-distributed energy consumption per capita, SDI is a composite index of development 
including lag-distributed income per capita, education, and fertility, vehicles is is the number of two- or four-wheel 
vehicles per capita, and agriculture is the proportion of the population working in agriculture. IA[a] is a dummy 
variable indicating specific age group A that the prevalence point captures, and αs,αr, and αc are super-region, 
region, and country random intercepts, respectively. Random effects were used in model fitting but were not used in 
prediction. 
 
We tested all combinations of the following covariates to see which performed best in terms of in-sample AIC for 
the overweight linear model and the obesity as a proportion of overweight linear model: ten-year lag-distributed 
energy per capita, proportion of the population living in urban areas, SDI, lag-distributed income per capita, 
educational attainment (years) per capita, proportion of the population working in agriculture, grams of sugar 
adjusted for energy per capita, grams of sugar not adjusted for energy per capita, and the number of two- or four-
wheeled vehicles per capita. We selected these candidate covariates based on theory as well as reviewing covariates 
used in other publications. The final linear model was selected based on 1) if the direction of covariates matched 
what is expected from theory, 2) all the included covariates were significant, and 3) minimising in-sample AIC. The 
covariate selection process was performed using the dredge package in R. 
 
Estimating mean BMI 

To estimate the mean BMI for adults in each country, age, sex, and time period 1980–2019, we first used the 
following nested hierarchical mixed-effects model, fit using restricted maximum likelihood on data from sources 
containing estimates of all three indicators (prevalence of overweight, prevalence of obesity, and mean BMI), in 
order to characterise the relationship between overweight, obesity, and mean BMI:  

log (BMIc,a,s,t) = β0 + β1owc,a,s,t + β2obc,a,s,t + β3sex + �βkIA[a]

20

k=4

+ αs(1 + owc,a,s,t + obc,a,s,t) + αr(1

+ owc,a,s,t + obc,a,s,t) + αc(1 + owc,a,s,t + obc,a,s,t) + ϵc,a,s,t 
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where owc,a,s,t is the prevalence of overweight in country c, age a, sex s, and year t, obc,a,s,t is the prevalence of 
obesity in country c, age a, sex s, and year t, sex is a fixed effect on sex, IA[a] is an indicator variable for age, and αs, 
αr, and αc are random effects at the super-region, region, and country, respectively. The model was run in Stata 13. 

We applied 1000 draws of the regression coefficients to the 1000 draws of overweight prevalence and obesity 
prevalence produced through ST-GPR to estimate 1000 draws of mean BMI for each country, year, age, and sex. 
This approach ensured that overweight prevalence, obesity prevalence, and mean BMI were correlated at the draw 
level and uncertainty was propagated. 

Estimating BMI distribution 

We used the ensemble distribution approach described in the GBD 2019 Risk Factors paper. We fit ensemble 
weights by source and sex, with source- and sex-specific weights averaged across all sources included to produce 
the final global weights. The ensemble weights were fit on measured microdata. The final ensemble weights were 
exponential = 0.002, gamma = 0.028, inverse gamma = 0.085, log-logistic = 0.187, Gumbel = 0.220, Weibull = 
0.011, log-normal = 0.058, normal = 0.012, beta = 0.136, mirror gamma = 0.008, and mirror Gumbel = 0.113. 
 
One thousand draws of BMI distributions for each location, year, age group, and sex estimated were produced by 
fitting an ensemble distribution using 1000 draws of estimated mean BMI, 1000 draws of estimated standard 
deviation, and the ensemble weights. Estimated standard deviation was produced by optimising a standard deviation 
to fit estimated overweight prevalence draws and estimated obesity prevalence draws. 
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Education estimation methods 
(Adapted from “Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population 
estimates in 204 countries and territories,1950-2019: a comprehensive demographic analysis for the Global Burden 
of Disease Study 2019” by Wang et al., The Lancet 2020; 396: 1160–203.) 

We based our estimates of average years of education on a collection of 3675 censuses and household surveys. The 
approach we used to estimate educational attainment, which we describe below, was based on previously published 
methods.1 Each data source we used had information about the distribution of educational attainment by country or 
territory, year, sex, and five-year or ten-year age group. We only used data sources that included information on the 
distribution of educational attainment by country or territory, year, sex, and five-year or ten-year age groups. Some 
sources only provided education data for multi-year bins (eg, the percentage of the population with between two and 
five years of completed schooling), so for those sources we split data into single-year distributions from 0 to 18 
years based on a database of 1226 sources that did report single years of educational attainment. We used the 
average of the 12 single-year distributions that were closest in terms of geographical proximity and year. From each 
data source, we calculated mean years of schooling by age and sex.  

Next, we used age-cohort imputation to carry educational attainment in observed cohorts forward through time, 
since education levels are relatively constant after age 25. For datapoints from cohorts aged 25 or older, we 
extrapolated the data forward and backward in time so all year-age combinations in that cohort contained that data 
(eg, a datapoint for a cohort aged 40–44 in 1995 was projected forward for 45–49-year-olds in 2000, 50–54-year-
olds in 2005, etc. and backward for 35–39-year-olds in 1990, 30–34-year-olds in 1985, etc.).  

After imputation, we fit age-period models to all the original input data and to the imputed cohort data. This allowed 
us to estimate a complete single-year series of educational attainment from 1950 through 2019 by age, sex, and 
location.  

For each sex and GBD location, we calculated the mean level of educational attainment of the country-age-year-
specific population𝐸𝐸𝐷𝐷𝐴𝐴𝑟𝑟,𝑚𝑚, 𝑟𝑟,𝑏𝑏, using the following formula: 

  

𝑙𝑙𝑝𝑝𝑙𝑙𝑟𝑟𝑟𝑟 �
𝐸𝐸𝐷𝐷𝐴𝐴𝑟𝑟,𝑚𝑚,𝑟𝑟,𝑏𝑏

𝐸𝐸𝐷𝐷𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
� =  𝛽𝛽𝑟𝑟,𝑟𝑟 + 𝛿𝛿𝑟𝑟,𝑟𝑟  𝑌𝑌𝑝𝑝𝑟𝑟𝑝𝑝 + 𝐼𝐼𝑟𝑟,𝑟𝑟 +  ∝𝑟𝑟,𝑚𝑚,𝑟𝑟 

𝛼𝛼𝑟𝑟,𝑚𝑚,𝑟𝑟 ∼ 𝑁𝑁(0,𝜎𝜎𝛼𝛼2)  

where: 
𝐸𝐸 is location, 𝑟𝑟 is age, 𝑅𝑅 is sex, 𝑟𝑟 is time 

𝐸𝐸𝐷𝐷𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum mean educational attainment for each age group, defined as 3 for ages 5-9, 8 for 
ages 10-14, 13 for ages 15-19, and 18 for all age groups 20-24 and up 

𝛽𝛽𝑟𝑟,𝑟𝑟is a sex- and region-specific intercept   

𝛿𝛿𝑟𝑟,𝑟𝑟  captures the linear secular trend for each sex and region  

𝐼𝐼𝑟𝑟,𝑟𝑟is a natural spline on age to capture the non-linear age pattern by sex and region, with knots at 45 and 65 
years of age 

∝𝑟𝑟,𝑟𝑟 is a country-sex-specific random intercept. 

Last, we used GPR to smooth the age-period model residuals. This step allowed us to account for uncertainty in each 
datapoint and combine data and model uncertainty to estimate UIs.   
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High LDL cholesterol estimation methods 
(Adapted from “Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis 
for the Global Burden of Disease Study 2019” by Murray et al., The Lancet 2020; 396: 1223–49.) 

Flowchart 
 

 
 
Input data and methodological summary 
 
Exposure 

Case definition 

In earlier iterations of the GBD study, we estimated burden attributable to total cholesterol. Beginning in GBD 2017, 
we modelled blood concentration of low-density lipoprotein (LDL) in units of mmol/L. 
 
Input data 

We used data on blood levels for low-density lipoprotein, total cholesterol, triglyceride, and high-density lipoprotein 
from literature and from household survey microdata and reports. We adjusted data for total cholesterol, 
triglycerides, and high-density lipoprotein using the correction approach described in the Lipid Crosswalk section 
below. Counts of the data inputs used for GBD 2019 are show in Tables 1 and 2 below. Details of inclusion and 
exclusion criteria and data processing steps follow. 
 
Table 1: Data inputs for exposure for low-density lipoprotein 

 Input data Exposure 
Total sources 711 
Number of countries with data 145 

 
Table 2: Data inputs for relative risks for low-density lipoprotein 

 Input data Relative risk 
Source count (total) 1 

 
Inclusion criteria  
Studies were included if they were population-based and measured total LDL, total cholesterol (TC), high-density 
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lipoprotein (HDL), and/or triglycerides (TG) were available from blood tests or if LDL was calculated using the 
Friedewald equation. We assumed the data were representative of the location if the geography or population chosen 
were not related to the diseases and if it was not an outlier compared to other data in the country or region. 
 
Outliers 
Data were utilised in the modelling process unless an assessment of data strongly suggested that the data were 
biased. A candidate source was excluded if the quality of study did not warrant a valid estimate because of selection 
(non-representative populations) or if the study did not provide methodological details for evaluation. In a small 
number of cases, a data point was considered to be an outlier candidate if the level was implausibly low or high 
based on expert judgement and other country data. 
 
Data extraction 
Where possible, individual-level data on LDL estimates were extracted from survey microdata and these were 
collapsed across demographic groupings to produce mean estimates in the standard GBD five-year age-sex groups. 
If microdata were unavailable, information from survey reports or from literature were extracted along with any 
available measure of uncertainty including standard error, uncertainty intervals, and sample size. Standard 
deviations were also extracted. Where LDL was reported split out by groups other than age, sex, location, and year 
(eg, by diabetes status), a weighted mean was calculated. 
 
Lipid crosswalk 
Total cholesterol consists of three major components: LDL, HDL, and TG. LDL is often calculated for an individual 
using the Friedewald equation, shown below: 
 

𝐿𝐿𝐷𝐷𝐿𝐿 = 𝑇𝑇𝐶𝐶 − �𝐻𝐻𝐷𝐷𝐿𝐿 +
𝑇𝑇𝐺𝐺𝐿𝐿
2.2

� 
 
We utilised this relationship at the individual level to impute the mean LDL for a study population when only data 
on TC, HDL, and TGL were available. Because studies report different combinations of TC, HDL, and TGL, we 
constructed a single regression to utilise all available data to evaluate the relationship between each lipid and LDL at 
the population level. We used the following regression:  
 

𝐿𝐿𝐷𝐷𝐿𝐿 = 𝑟𝑟𝐷𝐷𝐷𝐷𝑏𝑏𝑟𝑟𝛽𝛽1𝑇𝑇𝐶𝐶 − �𝑟𝑟𝐷𝐷𝐷𝐷ℎ𝑑𝑑𝑚𝑚𝛽𝛽2𝐻𝐻𝐷𝐷𝐿𝐿 + 𝑟𝑟𝐷𝐷𝐷𝐷𝑏𝑏𝑡𝑡𝑚𝑚𝛽𝛽3𝑇𝑇𝐺𝐺𝐿𝐿� + �𝛼𝛼𝑚𝑚𝐼𝐼𝑚𝑚 
 
Where 𝑟𝑟𝐷𝐷𝐷𝐷𝑏𝑏𝑟𝑟 ,  𝑟𝑟𝐷𝐷𝐷𝐷ℎ𝑑𝑑𝑚𝑚 , and 𝑟𝑟𝐷𝐷𝐷𝐷𝑏𝑏𝑡𝑡𝑚𝑚 are indicator variables for whether data are available for a given lipid, 𝐼𝐼𝑚𝑚 is an 
indicator variable a given set of available lipids 𝑙𝑙. 𝛼𝛼𝑚𝑚 is a unique intercept for each set of available lipid 
combinations. For example, for sources that only reported TC and HDL, 𝛼𝛼𝑚𝑚=𝑇𝑇𝐿𝐿,𝐻𝐻𝐷𝐷𝐿𝐿 should account for the missing 
lipid data, ie, TGL. The form of this regression allows us to estimate the betas for each lipid using all available data. 
As a sensitivity analysis, we also ran separate regressions for each set of available lipids and found that the single 
regression method had much lower root-mean-squared error. We found almost no relationship between LDL and 
HDL or TGL when TC was not available, so only studies that reported TC were adjusted to LDL. 
 
Incorporating United States prevalence data 
 
Survey reports and literature often report information only about the prevalence, but not the level, of 
hypercholesterolemia in the population studied.  These sources were not used to model LDL, with the exception of 
data from the Behavioral Risk Factors Surveillance System (BRFSS) because of the availability of a similarly 
structured exam survey covering the identical population (NHANES).  BRFSS is a telephone survey conducted in 
the United States for all counties.  It collects self-reported diagnosis of hypercholesterolemia.  These self-reported 
values of prevalence of raised total cholesterol in each age group, sex, US state, and year were used to predict a 
mean total cholesterol for the same strata with a regression using data from the National Health and Nutrition 
Examination Survey, a nationally representative health examination survey of the US adult population. The 
regression was: 
 

TCl,a,t,s =  β0 + β1prevl,a,t,s  
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where TCl,a,t,s is the location, age, time, and sex specific mean total cholesterol and prevl,a,t,s is the location, age, 
time, and sex specific prevalence of raised total cholesterol.  The coefficients for both models are reported in Table 
1. 
Table 3.  Coefficients in the sex-specific US states TC prediction models 

Term Male model Female model 

Intercept 4.23 4.36 

Prevalence 6.25 5.22 
 
 
Out of sample RMSE was used to quantify the predictive validity of the model. The regression was repeated 10 times 
for each sex, each time randomly holding out 20% of the data. The RMSEs from each holdout analysis were 
averaged to get the average out of sample RMSE. The results of this holdout analysis are reported in Table 2. Total 
cholesterol estimates were crosswalked to LDL using the lipid crosswalk reported above.  
 
Table 4. Out of sample RMSEs of the sex-specific US states TC prediction models 

 
Male model Female model 

Out of sample RMSE 0.21 mmol/L 0.20 mmol/L 

   
 
Age and sex splitting 
Prior to modelling, data provided in age groups wider than the GBD five-year age groups were processed using the 
approach outlined in Ng and colleagues.2 Briefly, age-sex patterns were identified using person-level microdata (58 
sources), and estimate age-sex-specific levels of total cholesterol from aggregated results reported in published 
literature or survey reports. In order to incorporate uncertainty into this process and borrow strength across age 
groups when constructing the age-sex pattern, we used a model with auto-regression on the change in mean LDL 
over age groups: 
 

𝜇𝜇𝑚𝑚 = 𝜇𝜇𝑚𝑚−1 + 𝜔𝜔𝑚𝑚 
𝜔𝜔𝑚𝑚~𝑁𝑁(𝜔𝜔𝑚𝑚−1, 𝜏𝜏) 

 
Where 𝜇𝜇𝑚𝑚 is the mean predicted value for age group a, 𝜇𝜇𝑚𝑚−1 is the mean predicted value for the age group previous 
to age group a,  𝜔𝜔𝑚𝑚 is the difference in mean between age group a and age group a-1, 𝜔𝜔𝑚𝑚−1 is the difference between 
age group a-1 and age group a-2, and 𝜏𝜏 is a user-input prior on how quickly the mean LDL changes for each unit 
increase in age. We used a 𝜏𝜏 of 0.05 mmol/L for this model. Draws of the age-sex pattern were combined with draws 
of the input data needing to be split in order to calculate the new variance of age-sex-split data points. 
 
Modelling strategy 
Exposure estimates were produced from 1980 to 2019 for each national and subnational location, sex, and for each 
five-year age group starting from 25. As in GBD 2017, we used a spatiotemporal Gaussian process regression (ST-
GPR) framework to model the mean LDL at the location-, year-, age-, and sex- level. Details of the ST-GPR method 
used in GBD 2019 can be found elsewhere in the appendix.  
 
 
 
Covariate selection 
The first step of the ST-GPR framework requires the creation of a linear model for predicting LDL at the location-, 
year-, age-, sex- level. Covariates for this model were selected in two stages. First a list of variables with an 
expected causal relationship with LDL was created based on significant association found within high-quality 
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prospective cohort studies reported in the published scientific literature. The second stage in covariate selection was 
to test the predictive validity of every possible combination of covariates in the linear model, given the covariates 
selected above. This was done separately for each sex. Predictive validity was measured with out of sample root-
mean-squared error.  
 
In GBD 2016, the linear model with the lowest root-mean-squared error for each sex was then used in the ST-GPR 
model. Beginning in GBD 2017, we used an ensemble model of the 50 models with the lowest root-mean-squared 
error for each sex. This allows us to utilise covariate information from many plausible linear mixed-effects models. 
The 50 models were each used to predict the mean LDL for every age, sex, location, and year, and the inverse-
RMSE-weighted average of this set of 50 predictions was used as the linear prior. The relative weight contributed by 
each covariate is plotted by sex in Figure 2. 
 
Figure 2. Results of the ensemble linear model covariate selection 

  
 
The results of the ensemble linear model were used for the first stage in an ST-GPR model. The result of the ST-
GPR model are estimates of the mean LDL for each age, sex, location, and year. 
 
Estimate of standard deviation 
The standard deviation of LDL within a population was estimated for each national and subnational location, sex, 
and five-year age group starting from age 25 using the standard deviation from person-level and some tabulated data 
sources. Person-level microdata accounted for 3009 of the total 4001 rows of data on standard deviation. The 
remaining 992 rows came from tabulated data. Tabulated data were only used to model standard deviation if they 
were sex-specific and five-year-age-group-specific and reported a population standard deviation LDL. The LDL 
standard deviation function was estimated using a linear regression: 

log�SDc,a,t,s� =  β0 + β1log (mean_LDLc,a,t,s)+β4sex + �βkIA[a]

16

k=2

 

where mean_LDLc,a,t,s is the country-, age-, time-, and sex-specific mean LDL estimate from ST-GPR, and IA[a] is a 
dummy variable for a fixed effect on a given five-year age group. 
 
Distribution shape modelling 
The shape of the distribution of LDL was estimated using all available person-level microdata sources, which was a 
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subset of the input data into the modelling process. The distribution shape modelling framework for GBD 2019 is 
detailed in the GBD 2019 Risk Factors paper. Briefly, an ensemble distribution created from a weighted average of 
distribution families was fit for each individual microdata source, separately by sex. The weights for the distribution 
families for each individual source were then averaged and weighted to create a global ensemble distribution for 
each sex. 
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High systolic blood pressure estimation methods 
(Adapted from “Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis 
for the Global Burden of Disease Study 2019” by Murray et al., The Lancet 2020; 396: 1223–49.) 

Flowchart 

 
 
Input data and methodological summary 

Case definition 

Brachial systolic blood pressure in mmHg. 

Input data 

We utilised data on mean systolic blood pressure from literature and from household survey microdata and reports 
(e.g. STEPS, NHANES). For GBD 2019, we did not carry out a systematic review of the literature for new data. 
Counts of the data inputs used for GBD 2019 are show in Tables 1 and 2 below. Details of inclusion and exclusion 
criteria and data processing steps follow. 

Table 1: Data inputs for exposure for systolic blood pressure. 
 Input data Exposure 
Total sources 1112 
Number of countries with data 166 

 
Table 2: Data inputs for relative risks for systolic blood pressure. 

 Input data Relative risk 
Source count (total) 3 

 
Inclusion criteria 
Studies were included if they were population-based and directly measured systolic blood pressure using a 
sphygmomanometer. We assumed the data were representative if the geography or the population were not selected 
because it was related to hypertension or hypertensive outcomes. 
 
Outliers 
Data were utilised in the modelling process unless an assessment strongly suggested that the source was biased. A 
candidate source was excluded if the quality of study did not warrant a valid estimate because of selection (non-
representative populations) or if the study did not provide methodological details for evaluation. In a small number 
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of cases, a data point was considered to be an outlier candidate if the level was implausibly low or high based on 
expert judgement and data from other country data. 
 
Data extraction 
Where possible, individual-level data on blood pressure estimates were extracted from survey microdata. These data 
points were collapsed across demographic groupings to produce mean estimates in the standard GBD five-year age-
sex groups. If microdata were unavailable, information from survey reports or from literature were extracted along 
with any available measure of uncertainty including standard error, uncertainty interval, and sample size. Standard 
deviations were also extracted. Where mean systolic blood pressure was reported split out by groups other than age, 
sex, location, and year (e.g. by hypertensive status), a weighted mean was calculated. 
 
Incorporating United States prevalence data 
Survey reports and literature often report information only about the prevalence, but not the level, of hypertension in 
the population studied.  These sources were not used to model systolic blood pressure, with the exception of data 
from the Behavioral Risk Factors Surveillance System (BRFSS) because of the availability of a similarly structured 
exam survey that is representative of the same population (NHANES).  BRFSS is a telephone survey conducted in 
the United States for all US counties.  It collects self-reported diagnosis of hypertension.  These self-reported values 
of prevalence of raised blood pressure were adjusted for self-report bias and tabulated by age group, sex, US state, 
and year.  These prevalence values were used to predict a mean systolic blood pressure for the same strata with a 
regression using data from the National Health and Nutrition Examination Survey, a nationally representative health 
examination survey of the US adult population.  The regression was run separately by sex, and was specified as: 

SBPl,a,t,s =  β0 + β1prevl,a,t,s 
 
where SBPl,a,t,s is the location, age, time, and sex specific mean systolic blood pressure and prevl,a,t,s is the location, 
age, time, and sex specific prevalence of raised blood pressure.  The coefficients for both models are reported in 
Table 3.   
 
Table 3.  Coefficients in the sex-specific US states blood pressure prediction models 

Term Male model Female model 
Intercept (𝛽𝛽0) 114.65 108.28 
Prevalence (𝛽𝛽1) 51.86 68.87 

 
Out of sample RMSE was used to quantify the predictive validity of the model. The regression was repeated 10 
times for each sex, each time randomly holding out 20% of the data. The RMSEs from each holdout analysis were 
averaged to get the average out of sample RMSE. The results of this holdout analysis are reported in Table 4. 
 
Table 4. Out of sample RMSEs of the sex-specific US states blood pressure prediction models  

Male model Female model 
Out of sample RMSE 2.37 mmHg 3.27 mmHg 

 
 
Age and sex splitting 
Prior to modelling, data provided in age groups wider than the GBD five-year age groups were processed using the 
approach outlined in Ng and colleagues.2 Briefly, age-sex patterns was identified using 115 sources of microdata 
with multiple age-sex groups, and these patterns were applied to estimate age-sex-specific levels of mean systolic 
blood pressure from aggregated results reported in published literature or survey reports. In order to incorporate 
uncertainty into this process and borrow strength across age groups when constructing the age-sex pattern, we used a 
model with auto-regression on the change in mean SBP over age groups: 

𝜇𝜇𝑚𝑚 = 𝜇𝜇𝑚𝑚−1 + 𝜔𝜔𝑚𝑚 
𝜔𝜔𝑚𝑚~𝑁𝑁(𝜔𝜔𝑚𝑚−1, 𝜏𝜏) 

 
Where 𝜇𝜇𝑚𝑚 is the mean predicted value for age group a, 𝜇𝜇𝑚𝑚−1 is the mean predicted value for the age group previous 
to age group a, 𝜔𝜔𝑚𝑚 is the difference in mean between age group a and age group a-1, 𝜔𝜔𝑚𝑚−1 is the difference between 
age group a-1 and age group a-2, and 𝜏𝜏 is a user-input prior on how quickly the mean SBP changes for each unit 
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increase in age. We used a 𝜏𝜏 of 1.5 mmHg for this model. Draws of the age-sex pattern were combined with draws 
of the input data needing to be split in order to calculate the new variance of age-sex split data points. 
 
Modelling 
Exposure estimates were produced from 1980 to 2019 for each national and subnational location, sex, and for each 
five-year age group starting from 25+. As in GBD 2017, we used a spatiotemporal Gaussian process regression (ST-
GPR) framework to model the mean systolic blood pressure at the location-, year-, age-, sex- level. Details of the 
ST-GPR method used in GBD 2019 can be found elsewhere in the appendix. 
 
Covariate selection 
The first step of the ST-GPR framework requires the creation of a linear model for predicting SBP at the location-, 
year-, age-, sex- level. Covariates for this model were selected in two stages. First a list of variables with an 
expected causal relationship with SBP was created based on significant association found within high-quality 
prospective cohort studies reported in the published scientific literature. The second stage in covariate selection was 
to test the predictive validity of every possible combination of covariates in the linear model, given the covariates 
selected above. This was done separately for each sex. Predictive validity was measured with out of sample root-
mean-squared error. 
 
In GBD 2016, the linear model with the lowest root-mean-squared error for each sex was then used in the ST-GPR 
model. Beginning in GBD 2017, we used an ensemble model of the 50 models with the lowest root-mean-squared 
error for each sex. This allows us to utilise covariate information from many plausible linear mixed-effects models. 
The 50 models were each used to predict the mean SBP for every age, sex, location, and year, and the inverse-
RMSE-weighted average of this set of 50 predictions was used as the linear prior. The relative weight contributed by 
each covariate is plotted by sex in Figure 1. 
 
Figure 1. Results of the ensemble linear model covariate selection 
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The results of the ensemble linear model were used for the first stage in an ST-GPR model. The result of the ST-
GPR model are estimates of the mean SBP for each age, sex, location, and year. 
 
Estimate of standard deviation  
Currently, the ST-GPR model only produces an estimate of mean exposure level without standard deviation. 
Therefore, the standard deviation of systolic blood pressure within a population was estimated for each national and 
subnational location, sex, and five-year age group starting from age 25 using the standard deviation from person-
level and some tabulated data sources. Person-level microdata accounted for 10 375 of the total 12 570 rows of data 
on standard deviation. The remaining 2195 rows came from tabulated data. Tabulated data were only used to model 
standard deviation if it was sex-specific and five-year-age-group-specific and reported a population standard 
deviation of systolic blood pressure. The systolic blood pressure standard deviation function was estimated using a 
linear regression: 

log�SDl,a,t,s� =  β0 + β1log (mean_SBPl,a,t,s)+β4sex + �βkIA

16

k=2

 

where mean_SBPl,a,t,s is the location-, age-, time-, and sex-specific mean SBP estimate from ST-GPR, and IA is a 
dummy variable for a fixed effect on a given five-year age group. 
 
Adjustment for usual levels of blood pressure 
To account for in-person variation in systolic blood pressure, a “usual blood pressure” adjustment was done. The 
need for this adjustment has been described elsewhere.5 Briefly, measurements of a risk factor taken at a single time 
point may not accurately capture an individual’s true long-term exposure to that risk. Blood pressure readings are 
highly variable over time due to measurement error as well as diurnal, seasonal, or biological variation. These 
sources of variation result in an overestimation of the variation in cross-sectional studies of the distribution of SBP. 
 
To adjust for this overestimation, we applied a correction factor to each location-, age-, time-, and sex-specific 
standard deviation. These correction factors were age-specific and represented the proportion of the variation in 
blood pressure within a population that would be observed if there were no within-person variation across time. Four 
longitudinal surveys were used to estimate these factors: the China Health and Retirement Longitudinal Survey 
(CHRLS), the Indonesia Family Life Survey (IFLS), the National Health and Nutrition Examination Survey I 
Epidemiological Follow-up Study (NHANES I/EFS), and the South Africa National Income Dynamics Survey 
(NIDS). The sample size and number of blood pressure measurements at each measurement period for each survey 
is reported in Table 5.   
 
Table 1. Characteristics of longitudinal surveys used for the usual blood pressure adjustment 

Source Measurement 
periods 

Number of 
measurements Sample size 

CHRLS 
2008 3 1967 
2012 3 1419 

IFLS 
1997 1 19 418 
2000 1 16 626 
2007 3 14 136 

NIDS 
1997 2 14 084 
2000 2 9612 
2007 2 9098 

NHANES I/EFS 
1971–1976 2 20 716 
1982–1984 3 9932 

 
For each survey, the following regression was created for each age group: 

SBPi,a =  β0 + β1sex+β3age + +υi  
where SBPi,a is the systolic blood pressure of an individual i at age a, sex is a dummy variable for the sex of an 
individual, age is a continuous variable for the age of an individual, and υi is a random intercept for each individual. 
Then, a blood pressure value SBP� i,b was predicted for each individual i for his/her age at baseline b. The correction 
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factor cf for each age group within each survey was calculated as variation in these predicted blood pressures was 
divided by the variation in the observed blood pressures at baseline, SBPi,b: 

cf = �var�SBP�  b�
var(SBP b) 

 
The average of the correction factors was taken over the three surveys to get one set of age-specific correction 
factors, which were then multiplied by the square of the modelled standard deviations to estimate standard deviation 
of the “usual blood pressure” of each age, sex, location, and year. Because of low sample sizes, the correction 
factors for the 75–79 age group was used for all terminal age groups.  The final correction factors for each age group 
are reported in Table 6. Figure 2 shows the correction factors by survey and age group ID. 
Table 2. Age-specific usual blood pressure correction factors 

Age group Correction factor 

25–29 0.665 

30–34 0.713 

35–39 0.737 

40–44 0.733 

45–49 0.798 

50–54 0.771 

55–59 0.764 

60–64 0.753 

65–69 0.719 

70–74 0.689 

75+ 0.678 

 
Figure 2: Correction factor by survey and age group id. The correction factor is equal to the variance of the 
predictions divided by the variance of the raw dataset. In pink is the average correction factor for each age group, 
summarised in Table 6. 

 
A visualisation of how the uncorrected blood pressure measurements overestimate the “usual” blood pressure 
variation is shown in Figure 3. This image shows the density of the distribution of the observed blood pressure 
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values SBPi,b in participants in the Indonesian Family Life Study survey in red, and the density of the predicted 
blood pressure values SBP� i,b in blue. The ratio of the variance of the blue distribution to the variance of the red 
distribution is an example of the scalar adjustment factor being applied to the modelled standard deviations. 
 
Figure 3: Raw and predicted distributions of blood pressure in the Indonesia Family Life Survey 
 

 
 
Estimating the exposure distribution shape 
The shape of the distribution of systolic blood pressure was estimated using all available person-level microdata 
sources, which was a subset of the input data into the modelling process. The distribution shape modelling 
framework for GBD 2019 is detailed in the GBD 2019 Risk Factors paper. Briefly, an ensemble distribution created 
from a weighted average of distribution families was fit for each individual microdata source, separately by sex. The 
weights for the distribution families for each individual source were then averaged and weighted to create a global 
ensemble distribution for each sex. 
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Smoking estimation methods 
(Adapted from “Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis 
for the Global Burden of Disease Study 2019” by Murray et al., The Lancet 2020; 396: 1223–49.) 

Flowchart 

 

 
Input data and methodological summary  
 

Definition  

Exposure 

As in GBD 2017, we estimated the prevalence of current smoking and the prevalence of former smoking using data 
from cross-sectional nationally representative household surveys. We defined current smokers as individuals who 
currently use any smoked tobacco product on a daily or occasional basis. We defined former smokers as individuals 
who quit using all smoked tobacco products for at least six months, where possible, or according to the definition 
used by the survey. 

Input data 

Our extraction method has not changed from GBD 2017. We extracted primary data from individual-level microdata 
and survey report tabulations. We extracted data on current, former, and/or ever smoked tobacco use reported as any 
combination of frequency of use (daily, occasional, and unspecified, which includes both daily and occasional 
smokers) and type of smoked tobacco used (all smoked tobacco, cigarettes, hookah, and other smoked tobacco 
products such as cigars or pipes), resulting in 36 possible combinations. Other variants of tobacco products, for 
example hand-rolled cigarettes, were grouped into the four type categories listed above based on product 
similarities. 
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For microdata, we extracted relevant demographic information, including age, sex, location, and year, as 
well as survey metadata, including survey weights, primary sampling units, and strata. This information 
allowed us to tabulate individual-level data in the standard GBD five-year age-sex groups and produce 
accurate estimates of uncertainty. For survey report tabulations, we extracted data at the most granular 
age-sex group provided. 

 

Table 1: Data inputs for exposure for smoking. 

 Input data Exposure 
Source count (total) 3439 

Number of countries with data 201 

 

Table 2: Data inputs for relative risks for smoking. 

 Input data Relative risk 
Source count (total) 673 

Number of countries with data 16 

 

Crosswalk 

Our GBD smoking case definitions were current smoking of any tobacco product and former smoking of any 
tobacco product. All other data points were adjusted to be consistent with either of these definitions. Some sources 
contained information on more than one case definition and these sources were used to develop the adjustment 
coefficient to transform alternative case definitions to the GBD case definition. The adjustment coefficient was the 
beta value derived from a linear model with one predictor and no intercept. We used the same crosswalk adjustment 
coefficients as in GBD 2017, and thus we have not included a methods explanation in this appendix, as it has been 
detailed previously. 

Age and sex splitting  

As in GBD 2017, we split data reported in broader age groups than the GBD 5-year age groups or as both sexes 
combined by adapting the method reported in Ng et al1 to split using a sex- geography- time-specific reference age 
pattern. We separated the data into two sets: a training dataset, with data already falling into GBD sex-specific 5-
year age groups, and a split dataset, which reported data in aggregated age or sex groups. We then used 
spatiotemporal Gaussian process regression (ST-GPR) to estimate sex-geography-time-specific age patterns using 
data in the training dataset. The estimated age patterns were used to split each source in the split dataset.  
 
The ST-GPR model used to estimate the age patterns for age-sex splitting used an age weight parameter value that 
minimises the effect of any age smoothing. This parameter choice allowed the estimated age pattern to be driven by 
data, rather than being enforced by any smoothing parameters of the model. Because these age-sex split data points 
were to be incorporated in the final ST-GPR exposure model, we did not want to doubly enforce a modelled age 
pattern for a given sex-location-year on a given aggregate data point.  

 
Modelling strategy  
Smoking prevalence modelling 

We used ST-GPR to model current and former smoking prevalence. The model is nearly identical to that in GBD 
2017. Full details on the ST-GPR method are reported elsewhere in the appendix. Briefly, the mean function input to 
GPR is a complete time series of estimates generated from a mixed effects hierarchical linear model plus weighted 
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residuals smoothed across time, space, and age. The linear model formula for current smoking, fit separately by sex 
using restricted maximum likelihood in R, is: 
 

𝑙𝑙𝑝𝑝𝑙𝑙𝑟𝑟𝑟𝑟�𝑝𝑝𝑡𝑡,𝑚𝑚,𝑏𝑏� = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝑃𝑃𝐶𝐶𝑡𝑡,𝑏𝑏 + �𝛽𝛽𝑟𝑟𝐼𝐼𝐴𝐴[𝑚𝑚] + 𝛼𝛼𝑟𝑟 + 𝛼𝛼𝑟𝑟 + 𝛼𝛼𝑡𝑡 + 𝜖𝜖𝑡𝑡,𝑚𝑚,𝑏𝑏

19

𝑟𝑟=2

  

 

Where 𝐶𝐶𝑃𝑃𝐶𝐶𝑡𝑡,𝑏𝑏 is the tobacco consumption covariate by geography 𝑙𝑙 and time 𝑟𝑟, described above, 𝐼𝐼𝐴𝐴[𝑚𝑚] is a dummy 
variable indicating specific age group 𝐴𝐴 that the prevalence point 𝑝𝑝𝑡𝑡,𝑚𝑚,𝑏𝑏 captures, and 𝛼𝛼𝑟𝑟,𝛼𝛼𝑟𝑟 , and 𝛼𝛼𝑡𝑡 are super-region, 
region, and geography random intercepts, respectively. Random effects were used in model fitting but not in 
prediction.  

The linear model formula for former smoking is:  

𝑙𝑙𝑝𝑝𝑙𝑙𝑟𝑟𝑟𝑟�𝑝𝑝𝑡𝑡,𝑚𝑚,𝑏𝑏� = 𝛽𝛽0 + 𝛽𝛽1𝑃𝑃𝐸𝐸𝑟𝑟𝐶𝐶ℎ𝑟𝑟𝐷𝐷𝑙𝑙𝑝𝑝𝐴𝐴[𝑚𝑚],𝑡𝑡,𝑏𝑏 + 𝛽𝛽3𝐶𝐶𝑆𝑆𝑃𝑃𝐴𝐴[𝑚𝑚],𝑡𝑡,𝑏𝑏 + �𝛽𝛽𝑟𝑟𝐼𝐼𝐴𝐴[𝑚𝑚] + 𝛼𝛼𝑟𝑟 + 𝛼𝛼𝑟𝑟 + 𝛼𝛼𝑡𝑡 + 𝜖𝜖𝑡𝑡,𝑚𝑚,𝑏𝑏

20

𝑟𝑟=3

  

 
Where 𝑃𝑃𝐸𝐸𝑟𝑟𝐶𝐶ℎ𝑟𝑟𝐷𝐷𝑙𝑙𝑝𝑝𝐴𝐴[𝑚𝑚],𝑡𝑡,𝑏𝑏 is the percentage change in current smoking prevalence from the previous year, and 
𝐶𝐶𝑆𝑆𝑃𝑃𝐴𝐴[𝑚𝑚],𝑡𝑡,𝑏𝑏 is the current smoking prevalence by specific age group 𝐴𝐴, geography 𝑙𝑙, and time 𝑟𝑟 that point 𝑝𝑝𝑡𝑡,𝑚𝑚,𝑏𝑏 
captures, both derived from the current smoking ST-GPR model defined above.  

 
Supply-side estimation 

The methods for modelling supply-side-level data were changed substantially from those used in GBD 2017. The 
raw data were domestic supply (USDA Global Surveillance Database and UN FAO) and retail supply (Euromonitor) 
of tobacco. Domestic supply was calculated as production + imports - exports. The data went through three rounds 
of outliering. First, they were age-sex split using daily smoking prevalence to generate number of cigarettes per 
smoker per day for a given location-age-sex-year. If more than 12 points for a particular source-location-year (equal 
to over 1/3 of the split points) were above the given thresholds, that source-location-year was outliered. A point 
would not be outliered if it was (in cigarettes per smoker): under five (10–14 year olds); under 20 (males, 15–19 
year olds); under 18 (females, 15–19 year olds); under 38/35 and over three (males/females, 20+ year olds). These 
thresholds were chosen by visualising histograms of the data for each age-sex, as well as with expert knowledge 
about reasonable consumption levels. In the second round of outliering, the mean tobacco per capita value over a 10-
year window was calculated. If a point was over 70% of that mean value away from the mean value, it was 
outliered. The 70% limit was chosen using histograms of these distances. Additionally, some manual outliering was 
performed to account for edge cases. Finally, data smoothing was performed by taking a three-year rolling mean 
over each location-year. 

Next, a simple imputation to fill in missing years was performed for all series to remove compositional bias from 
our final estimates. Since the data from our main sources covered different time periods, by imputing a complete 
time series for each data series, we reduced the probability that compositional bias of the sources was leading to 
biased final estimates. To impute the missing years for each series, we modelled the log ratio of each pair of sources 
as a function of an intercept and nested random effects on super-region, region, and location. The appropriate 
predicted ratio was multiplied by each source that we did have, and then the predictions were averaged to get the 
final imputed value. For example, if source A was missing for a particular location-year, but sources B and C were 
present, then we predicted A twice: once from the modelled ratio of A to B, and again from the modelled ratio of A 
to C. These two predictions were then averaged. For some locations where there was limited overlap between series, 
the predicted ratio did not make sense, and a regional ratio was used. 

Finally, variance was calculated both across series (within a location-year) as well as across years (within a location-
source). Additionally, if a location-year had one imputed point was, the variance was multiplied by 2. If a location-
year had two imputed points, the variance was multiplied by 4. The average estimates in each location-year were the 
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input to an ST-GPR model. For this, we used a simple mixed effects model, which was modelled in log space with 
nested location random effects. Subnational estimates were then further modelled by splitting the country-level 
estimates using current smoking prevalence. 

References 
1. Ng M, Freeman MK, Fleming TD, Robinson M, Dwyer-Lindgren L, Thomson B, et al. Smoking Prevalence and 
Cigarette Consumption in 187 Countries, 1980–2012. JAMA. 2014 Jan 8;311(2):183–92. 
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Estimation of relative risks for GBD dementia risk factors 
High fasting-plasma glucose 
Due to data limitations and a sparsity of sources reporting on dose-response curves for fasting plasma 
glucose, for GBD 2019, we used a previously published meta-analysis on the risk of Alzheimer’s disease 
given an exposure of diabetes:  

• Zhang J, Chen C, Hua S, Liao H, Wang M, Xiong Y, Cao F. An updated meta-analysis of cohort 
studies: diabetes and risk of Alzheimer's disease. Diabetes Res Clin Pract. 2017; Feb (124): 41-
47. 

 
Based on this study a relative risk of 1.516 (1.084 to 2.295) was used for males and a relative risk of 
1.520 (1.08 to 2.301) was used for females.  
 
High body-mass index 
Relative risks for BMI were calculated using two-step generalized least squares methods for time-trend 
estimation methods. These methods allowed for the estimation of a log-linear relative risk curves 
describing the increase in the risk per additional 5 kg/m2 units of BMI. For the relationship between BMI 
and dementia, this analysis leveraged information from the following data sources:  

• Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kåreholt I, Winblad B, Helkala E-L, 
Tuomilehto J, Soininen H, Nissinen A. Obesity and vascular risk factors at midlife and the risk of 
dementia and Alzheimer disease. Arch Neurol. 2005; 62(10): 56–60 

• Hassing LB, Dahl AK, Pedersen NL, Johansson B. Overweight in midlife is related to lower 
cognitive function 30 years later: a prospective study with longitudinal assessments. Dement 
Geriatr Cogn Disord. 2010; 29(6): 543-52 

• Whitmer RA, Gunderson EP, Quesenberry CP, Zhou J, Yaffe K. Body Mass Index in Midlife and 
Risk of Alzheimer Disease and Vascular Dementia. Curr Alzheimer Res. 2007; 4(2): 103–9 

• Luchsinger JA, Patel B, Tang M-X, Schupf N, Mayeux R. Measures of adiposity and dementia 
risk in elderly persons. Arch Neurol. 2007; 64(3): 392–8 

• Hayden KM, Zandi PP, Lyketsos CG, Khachaturian AS, Bastian LA, Charoonruk G, Tschanz JT, 
Norton MC, Pieper CF, Munger RG, Breitner JCS, Welsh-Bohmer KA, Cache County 
Investigators. Vascular risk factors for incident Alzheimer disease and vascular dementia: the 
Cache County study. Alzheimer Dis Assoc Disord. 2006; 20(2): 93–100 

• Xu W, Qiu C, Winblad B, Fratiglioni L. The Effect of Borderline Diabetes on the Risk of 
Dementia and Alzheimer’s Disease. Diabetes. 2007; 56(1): 211–6 

 
Based on these sources, we estimated relative risks of 1.218 (1.054 to 1.409) in males and 1.214 (1.047 to 
1.404) in females per additional 5 kg/m2 of BMI.  
 
Smoking 
Relative risk curves for smoking were estimated using the DisMod ordinary differential equations 
Bayesian meta-regression model. The methods allowed for the estimation of a non-linear relationship 
between smoking exposure and relative risk. For the relationship between smoking and dementia, this 
analysis leveraged information from the following data sources:  

• Ohara T, Ninomiya T, Hata J, Ozawa M, Yoshida D, Mukai N, Nagata M, Iwaki T, Kitazono T, 
Kanba S, Kiyohara Y. Midlife and Late-Life Smoking and Risk of Dementia in the Community: 
The Hisayama Study. J Am Geriatr Soc. 2015; 63(11): 2332–9 
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• Rusanen M, Kivipelto M, Quesenberry CP, Zhou J, Whitmer RA. Heavy smoking in midlife and 
long-term risk of Alzheimer disease and vascular dementia. Arch Intern Med. 2011; 171(4): 333–
9 

• Ikeda A, Yamagishi K, Tanigawa T, Cui R, Yao M, Noda H, Umesawa M, Chei C, Yokota K, 
Shiina Y, Harada M, Murata K, Asada T, Shimamoto T, Iso H. Cigarette smoking and risk of 
disabling dementia in a Japanese rural community: a nested case-control study. Cerebrovasc Dis. 
2008; 25(4): 324-31 

• Prince M, Cullen M, Mann A. Risk factors for Alzheimer's disease and dementia: a case-control 
study based on the MRC elderly hypertension trial. Neurology. 1994; 44(1): 97-104 

• Garcia AM, Ramon-Bou N, Porta M. Isolated and joint effects of tobacco and alcohol 
consumption on risk of Alzheimer's disease. J Alzheimers Dis. 2010; 20(2): 577-86 

• Shalat SL, Seltzer B, Pidcock C, Baker EL Jr. Risk factors for Alzheimer's disease: a case-control 
study. Neurology. 1987; 37(10): 1630-3 
 

Based on the information in these sources, the estimated relative risks for all ages and both sexes were the 
following:  

Cigarette Equivalent Relative Risk 
0 1.00 (1.00-1.00) 
12 2.08 (1.40–2.84) 
24 2.94 (1.78–4.47) 
36 3.74 (1.97–6.02) 
48 4.10 (2.07–7.23) 
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GBD world regions 
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Supplemental Figure S1 
 

 

Figure S1. Both-sex prevalence rates by GBD super-region from 1990 to 2050 by age group  
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Supplemental Figure S2 
 

 

Figure S2. Comparison of both-sex age-standardised dementia prevalence (per 100,000) by country in 2020 
and 2050 
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