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Abstract
A common problem that is encountered in medical applications is the overall homogeneity

of survival distributions when two survival curves cross each other. A survey demonstrated

that under this condition, which was an obvious violation of the assumption of proportional

hazard rates, the log-rank test was still used in 70% of studies. Several statistical methods

have been proposed to solve this problem. However, in many applications, it is difficult to

specify the types of survival differences and choose an appropriate method prior to analy-

sis. Thus, we conducted an extensive series of Monte Carlo simulations to investigate the

power and type I error rate of these procedures under various patterns of crossing survival

curves with different censoring rates and distribution parameters. Our objective was to eval-

uate the strengths and weaknesses of tests in different situations and for various censoring

rates and to recommend an appropriate test that will not fail for a wide range of applications.

Simulation studies demonstrated that adaptive Neyman’s smooth tests and the two-stage

procedure offer higher power and greater stability than other methods when the survival dis-

tributions cross at early, middle or late times. Even for proportional hazards, both methods

maintain acceptable power compared with the log-rank test. In terms of the type I error rate,

Renyi and Cramér—von Mises tests are relatively conservative, whereas the statistics of

the Lin-Xu test exhibit apparent inflation as the censoring rate increases. Other tests pro-

duce results close to the nominal 0.05 level. In conclusion, adaptive Neyman’s smooth tests

and the two-stage procedure are found to be the most stable and feasible approaches for a

variety of situations and censoring rates. Therefore, they are applicable to a wider spectrum

of alternatives compared with other tests.

Introduction
In clinical studies, the task of comparing the overall equality of two survival distributions with
censored observations is a key element in survival analysis. It is well known that the commonly
used log-rank test has optimum power under the assumption of proportional hazard rates.
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However, this assumption is often violated, especially when two survival curves cross each
other. It has been demonstrated that the log-rank test may lose power in this situation [1–5].
The phenomenon of crossing survival curves is common [6–15] when a treatment may offer a
short-term benefit but does not provide long-term advantages. In a study conducted by Mok
[12], the log-rank test was used to evaluate the effects of two treatments even when the two sur-
vival curves crossed. However, Seruga et al. [16] and Bouliotis et al. [17] have observed that if
the curves cross, there is a clear violation of the proportional-hazards assumption, and they
have suggested the use of other statistical methods that do not rely on these assumptions. Kris-
tiansen [18] has reviewed all publications in five notable journals and identified 175 studies
concerning survival analysis, among which crossing survival curves were present in 47% of the
studies. Of those studies in which crossing survival curves were present, the log-rank test was
performed in 70% of the tests, and only 31% of them reported testing for proportional hazards.
Using the log-rank test under conditions of non-proportional hazards may lead to misleading
results, therefore, Bouliotis et al. [17] have stated that “there is a need in the clinical community
to clarify methods that are appropriate when survival curves cross.”

In the literature, there are a fair number of statistical methodologies for addressing the
crossing-curves problem. Gill [19] has proposed a supremum version of the weighted log-rank
test, the Renyi test. Fleming et al. [20] have developed the modified Kolmogorov—Smirnov test
for the correct comparison of crossing survival curves. Koziol [21] and Schumacher [22] have
generalized the Cramér—von Mises test to censored data. The above methods are based on the
integrated difference of the Nelson—Aalen cumulative hazard functions.

Another category of methods is the weighted Kaplan–Meier tests based on the integrated
weighted difference of two Kaplan—Meier estimators. Pepe and Fleming [23] have demon-
strated that weighted Kaplan—Meier tests perform better than the log-rank test in the crossing
hazards scenario. To address the problem of choosing a suitable weight function in advance,
some versatile tests have been developed based on the maximum version of the weighted
Kaplan—Meier test [24] or the combination of the Fleming—Harrington test [25]. Lin and
Wang [4] have proposed a test statistic that measures the squared differences at each time
point. Lin and Xu [1] have designed a specialized method to compare two crossing survival
curves based on the absolute difference between the area under the two curves. Qiu and Sheng
[2] have suggested a two-stage procedure in which the log-rank test serves as the first stage and
a proposed procedure for addressing the crossing hazard rates is applied in the second stage.
Kraus [26] has constructed a class of Neyman’s smooth tests based on the concept of Neyman’s
embedding and a data-driven strategy.

For most of the procedures mentioned above, the performances of the corresponding test
statistics have been evaluated by considering several survival scenarios. Simulation studies have
demonstrated that the tests developed by Lin andWang [4] and by Lin and Xu [1] perform bet-
ter than do the log-rank andWilcoxon tests in the case of crossing survival curves. Tubert-
Bitter et al. [27] have considered early, middle and late crossings of the survival curves. More-
over, Liu et al. [3] have conducted a comprehensive simulation study of three different patterns
of crossing hazard rates and have demonstrated that some of weighted log-rank tests (log-rank,
Gehan—Wilcoxon and Peto—Peto) lose power compared with methods that are specifically
designed to address the problem of crossing hazard rates.

As mentioned above, few simulation studies have accounted for the scenario in which two
survival curves cross at some particular location, which is a focal point to be discussed in our
study. Most studies have considered only a few of the new testing approaches and have not
evaluated the statistical properties of these new approaches under high censoring rates. There-
fore, we performed Monte Carlo simulations to investigate whether the power of these methods
was robust under various configurations of crossing survival curves and to determine the
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behavior of these methods with variations in censoring rates. Our objective is to evaluate the
strengths and weaknesses of the tests for a variety of situations and censoring rates and to rec-
ommend an appropriate test that will not fail for a wide range of applications. The article is
structured as follows: In the following section, we briefly introduce several existing methods.
The statistical properties of these methods in a variety of situations are presented in Section
3. All methods are illustrated using three examples in Section 4. Finally, in Section 5, we sum-
marize our findings and present a general discussion.

Methods

Assumptions and notations
Our study focuses on the comparison of methods for testing the omnibus hypothesis:

H0 : S1ðtÞ ¼ S2ðtÞ for all t; H1 : S1ðtÞ 6¼ S2ðtÞ;

for two survival functions S1(t) and S2 (t) that cross each other. If two survival functions cross
each other, then the corresponding hazard rates also cross each other [3].

Consider two censored samples of sample size Ni (i = 1, 2), and let t1 < . . .< tj < . . .< tτ
(j = 1, 2, . . ., τ) be the distinct failure times in the pooled sample, where tτ is the latest event
time at which two groups contain at least one subject at risk. The Kaplan—Meier estimator is

defined as ŜðtÞ ¼ 1 for t< t1 and ŜðtÞ ¼
Q

tj�tð1� dj=njÞ for t� t1, where dj and nj denote the

number of observed failures and the number of individuals who are at risk at time
tj, respectively.

Existing methods
We first consider methods constructed based on the difference between the Nelson—Aalen cu-
mulative hazard functions. It is well known that when different weight functions are selected, the
weighted log-rank test can generate a variety of methods, such as the log-rank (LR) test, the
Gehan—Wilcoxon [28] (GW) test, the Tarone-Ware [29] (TW) test and a general class of Flem-

ing-Harrington [30–31] (Gργ) tests with the weight function ½Ŝðt�Þ�r½1� Ŝðt�Þ�gðr � 0; g � 0Þ.
Even so, when crossing survival curves appear, early positive differences between the two hazard
rates are canceled out by later differences of the opposite sign, which may cause some weighted
log-rank tests to lose power [3]. As a result, considerable efforts have been directed toward im-
proving the sensitivity of testing approaches in such cases. Instead of taking the sum over all time
points, Gill’s [19] Renyi (RY) test improves the testing power by replacing the numerator of the
weighted log-rank statistic with a supremum. Fleming et al. [20] have also modified the classical
Kolmogorov—Smirnov test and generalized it for use with arbitrarily right-censored data. Analo-
gous to the Renyi test, the modified Kolmogorov—Smirnov statistic (MKS) is also a supremum
approach, but this test is more sensitive to apparent differences in survival distributions at a single
point in time. Moreover, Schumacher [22] has generalized the classical Cramér—vonMises test
for application to right-censored data, modifying the test to be based on the integrated squared
difference between two estimated hazard rates [31]. There are two types of Cramér—vonMises
statistics: one is asymptotic to a standard Brownian motion process (CVM1), and the other con-
verges to a Brownian bridge process (CVM2) [32].

In another class of methodologies, which includes those that are constructed in terms of the
difference between two estimated survival functions, Pepe and Fleming [23] have introduced a
class of statistics that constitute the Weighted Kaplan—Meier test (WKM), which is based on
the integrated weighted difference between Kaplan—Meier estimators. Similar to the weighted
log-rank test, a prior misspecification of the weight function may decrease the power of the

Comparison of Two Crossing Survival Curves

PLOS ONE | DOI:10.1371/journal.pone.0116774 January 23, 2015 3 / 18



WKM test. Of greater concern is the fact that a series of trials using different test statistics may
lead to a multiple comparison problem and to the inflation of the overall type I error rate.
These shortcomings of the WKM test motivated Shen and Cai [24] to propose a maximum
WKM test (MKM) using a set of weighted Kaplan—Meier statistics {V1, V2, . . . Vm}, where the
weight functions are generated from all possible combinations of ρ = 0, 1, 2 and γ = 0, 1, 2 in

the function ½Ŝðt�Þ�r½1� Ŝðt�Þ�gðr � 0; g � 0Þ. Meanwhile, with appropriate justification,
the type I error rate is well controlled in a multivariate Gaussian distribution.

In recent years, many scholars have proposed new approaches for detection in a wide range
of circumstances. Lee [25] has developed three versatile tests based on the combination of two
Fleming—Harrington statistics using ρ = 1, γ = 0 and ρ = 0, γ = 1. These combined tests are
based on (1) the absolute value of the average of the two statistics (SHL1), (2) the average of
their absolute values (SHL2) and (3) the maximum of their absolute values (SHL3). Using the
method proposed by Yang et al. [33], the critical values and P values of these latter two versatile
tests can be obtained. Lin and Wang [4] (LW) have proposed a new approach to comparing
the overall homogeneity of survival curves by measuring the squared differences between the
number of observed failures and the number of expected failures over time. Lin and Xu [1]
have suggested a new method for comparing survival distributions based on the absolute differ-
ence between the area under two survival curves; here, the one-sided and two-sided test are de-
noted by LX1 and LX2, respectively. With the intent of addressing all possible alternatives, Qiu
and Sheng [2] have proposed a two-stage procedure (TS). In stage one, a weighted log-rank
test, such as the log-rank test, is conducted. If a rejection of the null hypotheses is obtained in
stage one, then the entire procedure is terminated; otherwise, the result suggests that either the
two hazard rates may be identical or they may cross each other, but these two scenarios cannot
be distinguished by the stage-one procedure. Thus, the method proceeds to stage two, in which
the basic idea is to choose a particular weight for the weighted log-rank test that changes signs
before and after a potential crossing point. Because the two test statistics in two individual
stages are proved to be asymptotically independent of each other under H0, then the p-value of
the entire test can be redefined. Kraus’s test [26] is based on the concept of Neyman’s embed-
ding combined with Schwarz’s selection rule. The null hypothesis h1(t) = h2(t) is tested against
a model in which the hazard ratio of the two survival distributions is expressed by d smooth
functions. By constructing the partial likelihood score statistic Td, d fixed-dimensional smooth
tests are defined. However, one would not know how to specify the number of smooth func-
tions for the test prior to analysis. Therefore, the author introduced Schwarz’s selection rule
and proposed a more reasonable data-driven test statistic, Ts. When the number of high priori-
ty basis functions d0 is specified, the data-driven test statistics of nested subsets or of all subsets
are asymptotically χ2 distributed with different degrees of freedom. The author has demon-
strated that in practice, a test with a relatively small fixed dimension d or with nested subsets of
smaller d0 often performs very well. See Kraus [26] for more details. Based on the results of the
simulation studies cited by Kraus, we selected a fixed-dimensional test statistic Td (d = 4)
(NY1) and a data-driven test statistic Ts

nested (d = 8, d0 = 0) (NY2) for further simulations be-
cause these statistics exhibited the greatest stability of discrimination power among all evaluat-
ed parameters. For consistency with the original text, both tests were performed using 2000
permutations. A brief summary of the methods investigated in this study is listed in S1 Table.

Simulation

Simulation design
To assess the performance of the tests mentioned above, we conducted Monte Carlo simula-
tions for various random censoring rates (0%, 20%, 40% and 60%) and the following situations:
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(A) two groups with proportional hazard rates, (B) two crossing survival curves with the
crossing point located at S(t)>0.6, (C) two survival curves crossing at S(t) = 0.4~0.6 and (D)
two survival curves crossing at S(t) = 0.2~0.4. Meanwhile, we considered equal sample sizes
(N1 = N2 = 20, 50, 100) and unequal sample sizes (N1 = 20, N2 = 30; N1 = 40, N2 = 80; N1 = 20,
N2 = 50; N1 = 50, N2 = 100) in each group. For each sample size, 5000 iterations were per-
formed for each situation and censoring rate. The exact power and size of these test statistics
were estimated by determining the proportion of samples for which the null hypothesis was
rejected at the α = 0.05 significance level.

A simulation of time-to-event data was performed based on a randomly censored
model [34–35]. We generate individual failure times X following the survival functions (A)-(D)
in Fig. 1; (B)-(D) are defined to be approximately equal to the real data described in Example
and (A) a proportional hazards model for reference. Next, the censoring time Cr in two sam-
ples was generated from uniform distributions U (0, a) and U (0, b), where varying the values
of a and bmay result in censoring rates of approximately 20%, 40% or 60% in the two samples.
Each individual was assigned an observed survival time T = min(X, Cr) and an event indicator
δ = I[X�Cr]. Because the lifetime X followed different distributions in each group, it was neces-
sary for the values of a and b to be unequal to keep the average censoring rates in each group
approximately equal to the given censoring rates.

Estimation of statistical power and type I error
Situation 1. When two survival curves have proportional hazard functions (see Fig. 1A), the
powers of various test statistics rise with increasing sample size. By contrast, for a particular
sample size, the powers of the tests decline with increasing censoring rate (see Table 1). As ex-
pected, the LR test demonstrates the optimal power in this situation, followed by the SHL1,
SHL2 and SHL3 tests. When each sample size is equal to 20 and when the censoring rate is in-
creased to 60%, the power of each test becomes less than 40%, a relatively low level. However,
when each sample size is greater than or equal to 50 while the censoring rate is simultaneously
no more than 20%, all tests demonstrate powers above 80%. In general, the LR, SHL1, SHL2
and SHL3 tests are far superior to the other tests under the assumption of proportional
hazard rates.

Situation 2. For the early (S(t)>0.6) crossing of the survival curves (Fig. 1B), Table 2
summarizes the results of the power estimations. When the sample size of each group is not
less than 50, we note that the powers of all tests gradually decrease with increasing censoring
rate. By contrast, for small sample sizes (N1 = N2 = 20), the powers of most tests (except
GW, CVM1 and WKM) increase unexpectedly when the censoring rate reaches 60%. High
censoring rates appears to have considerable influence on the power of the G10, TW, GW
and WKM tests. When the censoring rate is increased to 60%, these four statistics suffer sig-
nificant loss of power (decreasing to 8.14%, 7.66%, 3.26% and 2.24%, respectively). The

weight function of the WKM test is associated with the Kaplan—Meier estimator ŜiðtÞ,
which can be very unstable in the presence of heavy censoring. To remedy this instability,

the statistic down-weights the contribution of Ŝ1ðtÞ � Ŝ2ðtÞ2 if the censoring is heavy, and as
a result, the WKM test loses power in such a situation. In contrast, the TW, GW and G10
tests assign a greater weight to earlier failure times, causing these tests to be insensitive to
differences at later times. Overall, the G01, G11, SHL3, LW, LX, TS, NY1 and NY2 tests per-
form better than do the others. Among them, the NY1 and NY2 tests are the most stable,
and except for small (N1 = N2 = 20) sample sizes, the powers of both statistics exceed 80%
for various combinations of sample sizes and censoring rates.
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Situation 3. When considering middle (S(t) = 0.4~0.6) crossing of the survival curves
(Fig. 1C), the NY2, NY1, G01 and SHL3 tests, followed by the TS, G11, MKS, SHL2, LW and
LX tests, exhibit much better performances than the remaining tests for low and moderate cen-
soring rates. However, as Table 3 demonstrates, when the censoring rates are gradually in-
creased to 60%, the powers of the G01, G11, SHL2, SHL1 and LW tests decrease sharply to
4.58%, 5.14%, 6.70%, 6.70% and 2.60%, respectively. This result implies that these five tests are
more likely to be affected by high censoring rates. Meanwhile, tests that are not designed to ad-
dress the crossing-hazard problem, such as the LR, GW and TW tests, maintain a relatively low

Figure 1. Survival configurations for simulation of power. * λi denotes the hazard function of Si(t), a piecewise exponential distribution. †W(η, θ) denotes
a Weibull distribution having S(t) = exp{(-t / θ)η}, where η>0 is the shape parameter, θ>0 is the scale parameter.

doi:10.1371/journal.pone.0116774.g001
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power in most cases. After a comprehensive comparison of these tests, it is apparent that NY1,
NY2, TS, MKS and SHL3 are most applicable for scenarios with middle crossings of survival
curves and with high censoring rates. When each sample size is increased 100, these four tests
(NY1, NY2, TS and MKS) maintain powers of greater than 80% for censoring rates between
0% and 60%. When a small sample size (N1 = N2 = 20) is considered, NY1 and NY2 perform
slightly better at various censoring rates.

Situation 4. For late (S(t) = 0.2~0.4) crossing of the survival curves (Fig. 1D), the results are
presented in Table 4. For increasing censoring rates, the MKS, TS, NY1 and NY2 tests exhibit
gradually decreasing power, whereas the powers of the LR, G10, GW, TW, RY, CVM1, WKM
and MKM tests increase, and the other tests exhibit various degrees of fluctuation. However,
for small (N1 = N2 = 20) and unequal (N1 = 20, N2 = 50) sample sizes and for high censoring
rates, the NY2, NY1 and TS tests are the most powerful tests, followed by the MKS, SHL3,
CVM2, SHL2, MKM, CVM1 and RY tests. When each sample size is equal to 100, the tests
listed above demonstrate powers greater than 98% regardless of the censoring rate. Although
the LW and LX tests are both specialized methods for detecting differences when the survival
curves cross, they exhibit lower power for small (N1 = N2 = 20) and unequal (N1 = 20, N2 = 30;
N1 = 20, N2 = 50) sample sizes. In addition, it is evident that the LW test is more likely to be af-
fected by high censoring rates and unbalanced design. Therefore, the NY2, NY1 and TS tests
are most robust for late crossings of the survival curves.

Situation 5. To investigate type I errors, two samples were independently generated from
an exponential distribution with a hazard rate of λ1 = λ2 = 0.25. Various censoring rates were
also considered by setting various uniform distribution parameters. The estimated type I error
rates are presented in Table 5. For all combinations of sample sizes and censoring rates, the
type I error rates for G01, SHL1, SHL2 and SHL3 are slightly inflated, whereas the RY test is
more conservative. Although the CVM1 and CVM2 tests are relatively conservative for small
sample sizes (N1 = N2 = 20), both statistics gradually approach the nominal level of 0.05 as the
sample sizes increase. Note that the type I error rates of the LX1 (one-sided) and LX2 (two-
sided) tests appear to increase with increasing censoring rates, increasing from 0.0328 to
0.0868 and from 0.0194 to 0.0606, respectively. When the censoring rate reaches 60%, the type
I error rate of the LX1 test exceeds the nominal level for all combinations of sample sizes. In ad-
dition to the above tests, all statistics are quite close to the nominal level of 0.05.

Applications
In this section, we apply the above testing procedures to three real data examples that corre-
spond to Situations 2–4. The first example consists of data from kidney dialysis patients, which
are described in detail by Klein and Moeschberge [31]. The second consists of data regarding
breast cancer patients obtained from the Surveillance, Epidemiology, and End Results (SEER)
database. The last example concerns the comparison of two types of treatments for gastric can-
cer [36].

Example 1 Kidney dialysis data
The kidney-dialysis trial was designed to assess the time to the first exit-site infection (in
months) in patients with renal insufficiency. In 43 patients, the catheter was surgically im-
planted, whereas in 76 patients, the catheter was percutaneously placed. Catheter failure was
the primary reason for censoring. There were 27 patients censored in the first group and 65 in
the second, corresponding to censoring rates of 62.79% and 85.53%, respectively. As is appar-
ent in Fig. 2A, the two survival curves cross at an early time, and there is a clear difference at
later times. Moreover, a test of the proportional-hazards assumption [37] indicated that the
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assumption is indeed violated in this case (χ2 = 8.696, P = 0.003). The relevant statistics from
various tests and the corresponding P-values are listed in Table 6. The conventional LR, G10,
GW and TW tests offer relatively low power in this situation because the positive differences
are cancelled out by the negative differences, leaving them unable to detect the overall differ-
ences. As Table 2 indicates, the RY, CVM1, CVM2, WKM and MKM tests are unstable in the
case of heavy censoring. As a result, the above tests fail to identify significant differences

Figure 2. Estimated survival functions for Example 1, 2, and 3.

doi:10.1371/journal.pone.0116774.g002

Table 6. The results of various procedures for three Examples.

Methods Example 1 Example 2 Example 3

Statistic P-value Statistic P-value Statistic P-value

LR 1.5904 0.1117 0.2409 0.8096 0.4745 0.6351

GW -0.0456 0.9636 -0.8569 0.3915 -1.9909 0.0465*

TW 0.6346 0.5257 -0.3562 0.7217 -1.3795 0.1677

G01 3.1093 0.0019* 2.0784 0.0377* 1.4338 0.1516

G10 1.1775 0.2390 -0.3968 0.6915 -1.9909 0.0465*

G11 3.1359 0.0017* 1.7672 0.0772 0.1176 0.9064

RY 1.5904 0.2235 1.5888 0.2242 2.1998 0.0556

MKS 1.3612 0.0294* 0.8705 0.3734 1.7078 0.0059*

CVM1 0.5763 0.2595 1.0477 0.0700 1.9586 0.0345*

CVM2 0.1127 0.1890 0.2344 0.0110* 0.4394 0.0105*

WKM 0.8789 0.3795 -0.7268 0.4673 -0.0396 0.9684

MKM 2.0457 0.0652 1.3904 0.2353 2.4496 0.0315*

SHL1 2.1434 0.0189* 0.8408 0.3655 0.2785 0.7524

SHL2 2.1434 0.0189* 1.2376 0.1835 1.7124 0.0527

SHL3 3.1093 0.0035* 2.0784 0.0627 1.9909 0.0830

LW 2.2516 0.0243* 0.6986 0.4848 1.0829 0.2788

LX1 2.3334 0.0098* 1.7673 0.0386* 1.0371 0.1498

LX2 2.3334 0.0196* 1.7673 0.0772 1.0371 0.2997

TS NA 0.0273* NA 0.0253* NA 0.0253*

NY1 12.9680 0.0120* 12.7881 0.0110* 13.5879 0.0095*

NY2 10.2554 0.0095* 11.9332 0.0070* 13.4548 0.0030*

* Statistical results with P<0.05; TS test did not provide the final statistic.

doi:10.1371/journal.pone.0116774.t006
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between the two groups. However, the G01, SHL1, SHL2, SHL3, MKS, LW, LX, TS, NY1 and
NY2 tests yield significant results, and this finding is consistent with the simulation results.

Example 2 Breast cancer data from SEER
The Surveillance, Epidemiology, End Results (SEER) Program collects data concerning cancer
cases in various locations and from sources throughout the United States. We extracted the
data regarding 144 black patients who were first diagnosed with breast cancer after the year
2000. Among these patients, we focus only on the comparison between the following two
groups: Group 1 consists of 35 patients who underwent radiation therapy as their first course
of treatment, and group 2 consists of 109 patients whose guardians refused radiation therapy.
The censoring rates of the two groups were 51.43% and 57.80%, respectively. As Fig. 2B illus-
trates, the two survival curves cross each other near S(t)=0.6. Meanwhile, a test of the propor-
tional-hazards assumption yielded a result of χ2 = 9.470, P =0.002. From Fig. 2B, it is evident
that radiation therapy could improve a patient’s survival rate if administered in the early peri-
od; however, it could not provide long-term benefits, as patients in group 2 survived longer
than did those in group 1 after 50 months. The median survival time of each group was 50
months and 79 months, respectively. As shown in Table 6, the G01, CVM2, LX1, TS, NY1 and
NY2 tests conclude that the treatment effects in the two groups are significantly different. Be-
cause Fig. 2B is analogous to the configurations observed for Situation 3, the result is
also comparable.

Example 3 Gastric cancer data
Stablein and Koutrouvelis [36] have compared two types of therapies (chemotherapy versus
chemotherapy combined with radiotherapy) in the treatment of locally unresectable gastric
cancer. In this study, 45 patients were each randomly allocated to one of two groups, with cen-
soring rates of 4.44% and 13.33%, respectively. Fig. 2C presents the two survival functions,
which cross at approximately S(t) = 0.2, and the corresponding test indicated a severe violation
of the proportional-hazards assumption (χ2 = 13.127, P< 0.001). As observed in Table 6, the
G10 and GW tests are most sensitive to early differences. Moreover, the MKS, CVM1, CVM2,
MKM, TS, NY1 and NY2 tests, which demonstrated powers of over 80% in the corresponding
simulation scenario, also yielded significant results, as expected. During the initial 1000 days,
the use of chemotherapy resulted in a superior survival rate, whereas chemotherapy combined
with radiation therapy was associated with an increased number of early deaths, which may be
attributable to the progression of tumors within the radiation field or to nutritional and hema-
tological complications. However, chemotherapy combined with radiation therapy appeared to
offer better prospects for long-term survival during the late follow-up period.

Discussion
In clinical research, the violation of the proportional-hazards assumption is often encountered,
particularly when two survival curves cross each other. In this paper, we considered a number
of tests for the comparison of two survival distributions and investigated their performances
for various sample sizes and censoring rates. The objective of our study was to choose a statisti-
cal inference method that is appropriate for use when survival curves cross. Because survival
functions are more common and intuitive than hazard functions when investigating the surviv-
al differences between two groups, simulations were performed for situations in which the sur-
vival distributions crossed at early, middle and late times. The simulation results demonstrated
that the NY1, NY2 and TS tests had a robust power under various situations of crossing surviv-
al curves with reasonable type I error rates. The study confirmed that the location of the
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crossing point may affect the discrimination power of the test statistic employed. Pepe and
Fleming [23] have claimed that the WKM test performs much better than does the LR test in
the case of crossing hazards; however, the simulation results confirmed this conclusion only
for the late crossing of the survival curves (Situation 4). Moreover, the simulation results also
suggested that when the two survival curves cross at an early time (Situation 2) and when the
censoring rate is low (�20%), the LR test maintains a reasonable power of greater than 80%,
which is consistent with the results of Tubert-Bitter [27].

A simulation of time-to-event data was performed using a randomly censored model. To
ensure that the average censoring rates in each tested group were consistent with the specified
censoring rates, it was necessary for the uniform parameters of the two groups to be unequal.
In Situaion 4, as the censoring rate was increased from 20% to 40%, the powers of several
weighted log-rank tests (LR, G10, GW and TW) improved, as observed by Tubert-Bitter [27].
Such an increase in the censoring rate may lead to a shortening of the maximum length of the
follow-up, which reduces the cancellation of positive differences by negative ones, thereby
causing the powers of the four conventional tests to unexpectedly increase. However, for the
methods specifically designed to address crossing hazards, such as the MKS, TS, NY1 and NY2
tests, their powers gradually decrease as the censoring rate increases. When the censoring rate
reaches 60%, the maximum follow-up length (t = 2.5) is below the theoretical crossing point
(t = 5.482). In this particular situation, late crossings cannot be observed for some samples. In a
test of the proportional-hazards assumption [37], we found that in 5000 iterations, only 551
samples (11.02%) were non-proportional, whereas 88.98% of the samples satisfied the propor-
tional-hazards assumption. This significant difference in statistics might explain the sudden in-
crease in power of some tests when the censoring rate reached 60%. Moreover, for higher
censoring rates, the estimated rate of type I errors for the LX test is quite unstable. Lin and Xu
[1] have suggested that the value of the correlation coefficient ρj, j’might influence the type I
error rate; therefore, these authors set the correlation coefficient to 0.5 to maintain a reasonable
type I error rate and a high power. However, as is demonstrated by Tables 1–5 and by the sensi-
tivity analysis presented in S1 Text, better performance can be achieved if the value of ρj, j’ is
varied based on the specific conditions of the problem.

When comparing the limitations and strengths of the various methods, we first find that the
performances of the WKM and weighted log-rank tests (LR, G01, G10, G11, GW and TW) are
subject to the choice of weight functions. A misspecification of the weights can lead to a sub-
stantial loss of power. Moreover, the creation of multiple comparison problems and the infla-
tion of the overall type I error rate might cause difficulties for the user. Second, some modified
tests such as the SHL1, SHL2 and SHL3 tests are more likely to be influenced by a high censor-
ing rate. Third, the LW test exhibits lower power in the cases of heavy censoring rates and un-
balanced design, and the estimated type I error rate of the LX test often deviates from the
nominal level of 0.05. Both methods require much future research. By contrast, as evidenced by
the performances of all tests in various scenarios, the NY1, NY2 and TS tests exhibit higher
power and greater stability than the other methods even for heavy censoring rates, and the type
I error rates for these tests are also close to the nominal level. Because the TS test is not subject
to weight functions, it is a particularly convenient method for addressing all possible alterna-
tives. In conclusion, for the testing of the equality of two survival distributions, the NY1, NY2
and TS tests are the most appropriate and robust of all tests evaluated here, especially in the
case of two crossing survival curves.

All testing approaches mentioned above are intended for overall hypothesis testing. Howev-
er, sometimes the greatest interest is focused on which treatment can provide the better short-
or long-term survival rate, even when the survival curves cross. Klein et al. [38] have reviewed
a number of methods for comparing two survival curves at a fixed point in time. Moreover,
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Logan et al. [39] have considered several methods for the long-term survival comparison after
a pre-specified time point.

For non-proportional hazards problem, Liu et al. [3] have highlighted the relationship be-
tween the crossing of survival functions and the crossing of hazard rates: “if two continuous
survival functions cross each other once, then the corresponding hazard rates must cross each
other at least once.However, it is possible that survival functions do not cross, but their hazard
rates cross very often.” Overall, methods based on hazard rates are more sensitive in terms of
capturing the differences and contain more information. Therefore, analyzing the survival
curves is not sufficient. In clinical practice, it is necessary to explore the crossing time point of
two crossing hazard functions at which the new treatment effect may change reversely, in com-
parison with the standard treatment. Cheng et al. [40] have developed a nonparametric proce-
dure for constructing the confidence intervals for the first crossing point of two hazard
functions. In addition to the patients’ survival data, longitudinal data regarding some time-
dependent covariates should be considered to assess the effect of treatment. Recently, Park and
Qiu [41] have proposed a joint modeling procedure for analyzing both the survival and longi-
tudinal data with crossing hazard rate functions. In summary, depending on the particular con-
ditions of the study, researchers may wish to consider overall hypothesis testing in
combination with the various methods for a more reliable and comprehensive statistical analy-
sis of the survival data.

Supporting Information
S1 Table. Hypothesis tests for two-sample survival data.
(PDF)

S1 Text. Factors affected the power and type I error rate of Lin-Xu test. The relations
among the censoring rate, the correlation coefficient and the power and type I error rate for
N1 = N2 = 50 with 5000 iterations for LX1 and LX2 tests. In Fig. 1, it can be observed that the
power decreases as the censoring rate and correlation coefficient increase. In Fig. 2, when the
censoring rate is specified, the type I error rate decreases as the correlation
coefficient increases.
(PDF)
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