Search for invisible decays of the Higgs boson produced in association with a hadronically decaying vector boson in \(pp \) collisions at \(\sqrt{s} = 8 \text{ TeV} \) with the ATLAS detector

ATLAS Collaboration*
CERN, 1211 Geneva 23, Switzerland

Received: 17 April 2015 / Accepted: 1 July 2015
© CERN for the benefit of the ATLAS collaboration 2015. This article is published with open access at Springerlink.com

Abstract A search for Higgs boson decays to invisible particles is performed using 20.3 fb\(^{-1}\) of \(pp \) collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the Large Hadron Collider. The process considered is Higgs boson production in association with a vector boson (\(V = W \) or \(Z \)) that decays hadronically, resulting in events with two or more jets and large missing transverse momentum. No excess of candidates is observed in the data over the background expectation. The results are used to constrain \(VH \) production followed by \(H \) decaying to invisible particles for the Higgs boson mass range \(115 < m_H < 300 \text{ GeV} \). The 95 % confidence-level observed upper limit on \(\sigma_{VH} \times BR(H \rightarrow \text{inv.}) \) varies from 1.6 pb at 115 GeV to 0.13 pb at 300 GeV. Assuming Standard Model production and including the \(gg \rightarrow H \) contribution as signal, the results also lead to an observed upper limit of 78 % at 95 % confidence level on the branching ratio of Higgs bosons decays to invisible particles at a mass of 125 GeV.

1 Introduction

Since the discovery of a Higgs boson with a mass of approximately 125 GeV [1,2] at the LHC in 2012, the properties of this new particle have been studied extensively. All results obtained so far [3–9] are consistent with the expectations of the long-sought Standard Model (SM) Higgs boson [10–13]. However, sizeable deviations from the SM expectation cannot be yet excluded; the total branching ratio of beyond-the-SM decays of the Higgs boson is only weakly constrained, and its value could be as high as \(\sim 40 \% \) [8,14]. One possible decay is to weakly interacting particles, as predicted by many extensions of the SM, e.g. Higgs boson portal models [15–18]. In these models, the Higgs boson can decay to a pair of dark-matter particles if kinematically allowed. These decays are generally “invisible” to detectors, resulting in events with large missing transverse momentum (\(E_T^{\text{miss}} \)).

Searches for Higgs boson decays to invisible particles (\(H \rightarrow \text{inv.} \)) have been performed by both the ATLAS and CMS collaborations [14,19]. For example, the ATLAS Collaboration has placed an upper limit of 75 % [19] on the branching ratio of \(H \rightarrow \text{inv.} \) from Higgs boson production in association with a \(Z \) boson identified from its leptonic decays \(Z \rightarrow e e, \mu \mu \). The present paper describes an independent search for the \(H \rightarrow \text{inv.} \) decay in final states with two or more jets and large \(E_T^{\text{miss}} \), motivated by Higgs boson production in association with a vector boson \(V (V = W \) or \(Z) \): \(q\bar{q}' \rightarrow VH \). The vector boson is identified through its decay to a pair of quarks, reconstructed as hadronic jets in the ATLAS detector, \(V \rightarrow jj \). Gluon fusion production \(gg \rightarrow H \) followed by \(H \rightarrow \text{inv.} \) can also lead to events with two or more jets and large \(E_T^{\text{miss}} \), and therefore contributes to the signal of the search. Negligible contributions of approximately 1 and 0.2 % to the sensitivity come from \(q\bar{q}' \rightarrow q\bar{q}'H \) production via vector-boson fusion (VBF) and from \(qq/gg \rightarrow t\bar{t}H \) (\(t\bar{t}H \)) production, respectively. The VBF contribution is strongly suppressed by the \(m_{jj} \) (di-jet invariant mass) window cuts and by the forward-jet veto used to reduce the top quark-antiquark background (\(t\bar{t} \)), as described in Sect. 4. In a previous ATLAS dark-matter search, limits on Higgs boson decays to invisible particles in \(VH \) production were set using events with a hadronically decaying vector boson and \(E_T^{\text{miss}} \) as well [20]. However, the present analysis achieves better sensitivity by using different techniques and performing dedicated optimizations.

2 Experimental setup

This search is based on proton–proton collision data at a centre-of-mass energy of 8 TeV recorded with the ATLAS detector [21] in 2012, corresponding to an integrated lumi-
nosity of 20.3 fb\(^{-1}\). The ATLAS detector is a general-purpose
detector with an inner tracking system, electromagnetic and
hadronic calorimeters, and a muon spectrometer surrounding
the interaction point.\(^1\) The inner tracking system is immersed
in a 2 T axial magnetic field, and the muon spectrometer
employs a toroidal magnetic field. Only data recorded when
all subdetector systems were functional are used in this anal-
ysis.

The trigger system is organised in three levels. The first
level is based on custom-made hardware and uses coarse-
granularity calorimeter and muon information. The second
and third levels are implemented as software algorithms and
use the full detector granularity. At the second level, only
regions deemed interesting at the first level are analysed,
while the third level, called the event filter, makes use of the
full detector read-out to reconstruct and select events, which
are then logged for offline analysis at a rate of up to 400 Hz
averaged over an accelerator fill.

3 Object reconstruction and simulated samples

Jets are reconstructed using the anti-\(k_t\) algorithm [22] with a
radius parameter of \(R = 0.4\). Jet energies are corrected for
the average contributions from minimum-bias interactions
within the same bunch crossing as the hard-scattering process
and within neighboring bunch crossings (pile-up). Further-
more, for jets with \(p_T < 50\) GeV and \(|\eta| < 2.4\), the scalar
sum of the \(p_T\) of tracks matched to the jet and originating
from the primary vertex\(^2\) must be at least 50 % of the scalar
sum of the \(p_T\) of all tracks matched to the jet, to suppress
jets from pile-up interactions. Jets must have \(p_T > 20\) GeV
\((p_T > 30\) GeV\) for \(|\eta| < 2.5\) \((2.5 < |\eta| < 4.5\).\)

Jets containing \(b\)-hadrons \((b\)-jets\) are identified \((b\)-tagged\)
using the MV1\(c\) algorithm, which is an improved version of
the MV1 algorithm [23] with higher rejection of jets
containing \(c\)-hadrons \((c\)-jets\). It combines in a neural net-
work the information from various algorithms based on track
impact-parameter significance or explicit reconstruction of
secondary decay vertices. The operating point of this algo-

\(^1\) The ATLAS experiment uses a right-handed coordinate system with
its origin at the nominal interaction point (IP) in the centre of the detector
and the \(z\)-axis along the beam pipe. The \(x\)-axis points from the IP
to the centre of the LHC ring, and the \(y\)-axis points upward. Cylindrical
coordinates \((r, \phi)\) are used in the transverse plane, \(\phi\) being the azimuthal
angle around the \(z\)-axis. The pseudorapidity is defined in terms of the
polar angle \(\theta\) as \(\eta = -\ln(\tan(\theta/2))\). Transverse momenta are computed
from the three-momenta, \(p\), as \(p_T = |p| \sin \theta\).

\(^2\) The primary vertex is taken to be the reconstructed vertex with the
highest \(\Sigma p_T^2\) of the associated tracks.

Lepton (electron or muon) candidates are identified in
two categories: loose and tight, in order of increasing purity.
Electron candidates are reconstructed from energy clusters
in the electromagnetic calorimeter matched to reconstructed
tracks in the inner tracking system. They are identified using
likelihood-based methods [24, 25]. Loose electrons must sat-
ify “very loose likelihood” identification criteria and are
required to have \(p_T > 7\) GeV and \(|\eta| < 2.47\). Tight electrons
are selected from the loose electrons and must also satisfy
the “very tight likelihood” identification criteria. Muon can-
didates are reconstructed using information from the inner
tracker and the muon spectrometer [26]. Loose muons are
required to have \(p_T > 7\) GeV and \(|\eta| < 2.7\). Tight muons
are then selected from the loose muons, by requiring \(p_T >
25\) GeV and \(|\eta| < 2.5\). They must be reconstructed in both
the muon spectrometer and the inner tracker. For the loose
leptons, the scalar sum of the transverse momenta of tracks
within a cone of size \(\Delta R = \sqrt{(\Delta\phi)^2 + (\Delta\eta)^2} = 0.2\) around
the lepton candidate, excluding its own track, is required to be
less than 10 % of the transverse momentum of the lepton. For
the tight leptons, there are more stringent isolation require-
ments: the sum of the calorimeter energy deposits in a cone
of size \(\Delta R = 0.3\) around the lepton candidate, excluding the
energy associated with it, must be less than 4 % of the lepton
candidate energy, and the track-based isolation requirement
is tightened from 10 to 4 %.

The missing transverse momentum vector, \(E_T^{\text{miss}}\), is
computed using fully calibrated and reconstructed physics
objects, as well as clusters of calorimeter-cell energy deposits
that are not associated with any object [27]. Only calibrated
jets with \(p_T\) greater than 20 GeV are used in the computa-
tion. The jet energy is also corrected for pile-up effects [28].
A track-based missing transverse momentum vector, \(p_T^{\text{miss}}\), is
calculated as the negative vector sum of transverse momenta
of reconstructed tracks associated with the primary vertex
and within \(|\eta| < 2.5\).

Monte Carlo (MC) simulated samples are produced for
both the signal and background processes. Unless otherwise
stated, the simulation [29] is performed using the ATLFAST-
II package [30], which combines a parameterized simulation
of the ATLAS calorimeter with the GEANT4-based [31] full
simulation for the rest of the subdetector systems.

Signal events from \(q\bar{q}' \rightarrow VH\) with \(H \rightarrow \text{inv}\). are pro-
duced using the NLO POWHEG method as implemented in the
HERWIG++ generator [32]. The \(gg \rightarrow ZH\) production pro-
cess contributes approximately 5 % to the total \(ZH\) cross
section. Events from the \(gg \rightarrow ZH\) production process
are not simulated, but are taken into account by increasing
the \(q\bar{q} \rightarrow ZH\) cross section as a function of the Higgs
boson \(p_T\) by the appropriate amount. The gluon-fusion signal
events are produced using the POWHEG generator interfaced
to PYTHIA8 for parton showering and hadronization. The pro-
duction of \(qq' \rightarrow VH\) followed by the \(SMH \rightarrow bb\) decay is
considered as a background for the search. The \textsc{Pythia8} generator is used to produce these events. The cross sections of all Higgs production processes are taken from Ref. [33].

A significant source of background is the production of $V+$jets and of $t\bar{t}$ events. A sample of $V+$jets events is generated using the \textsc{Sherpa} generator [34] with massive b- and c-quarks. Events from the $t\bar{t}$ process are generated using the \textsc{Powheg} generator interfaced with \textsc{Pythia6}. Other background contributions include diboson (WW, WZ and ZZ) and single top-quark production. The \textsc{Powheg} generator interfaced to \textsc{Pythia6} is used to produce diboson events. The diboson cross sections are calculated at NLO in QCD using the MCFM program [36] with the MSTW2008NLO parton distribution functions (PDFs) [37]. The s-channel and Wt single top-quark events are produced using the \textsc{Powheg} generator, as for $t\bar{t}$ production. The remaining t-channel process is simulated with the \textsc{AcerMC} generator [38] interfaced to \textsc{Pythia6}. Cross sections of the three single top-quark processes are taken from Refs. [39–41]. Table 1 summarizes the MC generators, PDFs and normalization cross sections used in this analysis.

Table 1 List of MC generators, parton distribution functions (PDFs) and cross sections used for the signal and background processes

<table>
<thead>
<tr>
<th>Process</th>
<th>Generator</th>
<th>PDFs</th>
<th>Cross section (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>\textsc{Powheg + Pythia}</td>
<td>CT10 [42]</td>
<td>Normalized to data</td>
</tr>
<tr>
<td>$V+$jets</td>
<td>\textsc{Sherpa}</td>
<td>CT10</td>
<td>Normalized to data</td>
</tr>
<tr>
<td>Single top t-channel</td>
<td>\textsc{AcerMC}</td>
<td>CTEQ6L1 [43]</td>
<td>88</td>
</tr>
<tr>
<td>Single top s-channel</td>
<td>\textsc{Powheg + Pythia}</td>
<td>CT10</td>
<td>5.6</td>
</tr>
<tr>
<td>Wt</td>
<td>\textsc{Powheg + Pythia}</td>
<td>CT10</td>
<td>22</td>
</tr>
<tr>
<td>Diboson WW</td>
<td>\textsc{Powheg + Pythia}</td>
<td>CT10</td>
<td>52</td>
</tr>
<tr>
<td>WZ</td>
<td>\textsc{Powheg + Pythia}</td>
<td>CT10</td>
<td>9.2</td>
</tr>
<tr>
<td>ZZ</td>
<td>\textsc{Powheg + Pythia}</td>
<td>CT10</td>
<td>3.3</td>
</tr>
<tr>
<td>SM VH $q\bar{q} \rightarrow VH(\rightarrow b\bar{b})$</td>
<td>\textsc{Pythia}</td>
<td>CTEQ6L1</td>
<td>0.18</td>
</tr>
<tr>
<td>$gg \rightarrow ZH(\rightarrow b\bar{b})$</td>
<td>\textsc{Powheg + Pythia}</td>
<td>CT10</td>
<td>0.0038</td>
</tr>
</tbody>
</table>

Table 2 The E^miss_T-dependent event selections of the signal region for the four E^miss_T ranges

<table>
<thead>
<tr>
<th>E^miss_T range (GeV)</th>
<th>120–160</th>
<th>160–200</th>
<th>200–300</th>
<th>>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Selection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔR_{jj}, 2- and 3-jet events</td>
<td>0.7–2.0</td>
<td>0.7–1.5</td>
<td><1.0</td>
<td><0.9</td>
</tr>
<tr>
<td>m_{jj}, 2-jet events (GeV)</td>
<td>70–100</td>
<td>70–100</td>
<td>70–100</td>
<td>75–100</td>
</tr>
<tr>
<td>m_{jj}, 3-jet events (GeV)</td>
<td>50–100</td>
<td>55–100</td>
<td>60–100</td>
<td>70–100</td>
</tr>
</tbody>
</table>

4 Event selection

Events are required to pass an E^miss_T trigger with a threshold of 80 GeV, which is a cut applied at the third level. The E^miss_T trigger is fully efficient for $E^\text{miss}_T > 160$ GeV and 97% efficient for $E^\text{miss}_T = 120$ GeV. An efficiency correction is derived from $W \rightarrow \mu\nu+$jets and $Z \rightarrow \mu^+\mu^−$+jets events. This correction is below 1% for 120 GeV < E^miss_T < 160 GeV. Events are also required to have $E^\text{miss}_T > 120$ GeV, $p_T^{\text{missing}} > 30$ GeV, no loose leptons and two or three “signal jets” (satisfying $|\eta| < 2.5$, $p_T > 20$ GeV and leading jet $p_T > 45$ GeV). The inclusion of 3-jet events improves the signal efficiency. A requirement is made on H_T, defined as

Table 3 Definition of the signal region, A, and the three regions B, C and D used to estimate the multijet background in the signal region

<table>
<thead>
<tr>
<th>Region</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta\phi(E^\text{miss}_T, p_T^{\text{miss}})$</td>
<td>< $\pi/2$</td>
<td>< $\pi/2$</td>
<td>> $\pi/2$</td>
<td>> $\pi/2$</td>
</tr>
<tr>
<td>min($\Delta\phi(E^\text{miss}_T, \text{jet})$)</td>
<td>> 1.5</td>
<td>< 0.4</td>
<td>> 1.5</td>
<td>< 0.4</td>
</tr>
</tbody>
</table>
Table 4 Predicted and observed numbers of events for the six categories in the signal region. The yields and uncertainties of the backgrounds are shown after the profile likelihood fit to the data. In this fit all categories share the same signal-strength parameter. The quoted uncertainties combine the statistical and systematic contributions. These can be smaller for the total background than for individual components due to anti-correlations. The yields and uncertainties of the signals are shown as expected before the fit for \(m_H = 125\) GeV and \(\text{BR}(H \rightarrow \text{inv.}) = 100\%\). Signal contributions from VBF and \(t\bar{t}H\) production are estimated to be negligible.

<table>
<thead>
<tr>
<th>b-tag category</th>
<th>0-tag</th>
<th>1-tag</th>
<th>2-tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Background</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Z+\text{jets})</td>
<td>24400 ± 1100</td>
<td>1960 ± 200</td>
<td>164 ± 13</td>
</tr>
<tr>
<td>(W+\text{jets})</td>
<td>20900 ± 770</td>
<td>1160 ± 130</td>
<td>47 ± 7</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>403 ± 74</td>
<td>343 ± 65</td>
<td>57 ± 10</td>
</tr>
<tr>
<td>Single top</td>
<td>149 ± 16</td>
<td>107 ± 14</td>
<td>11 ± 2</td>
</tr>
<tr>
<td>Diboson</td>
<td>1670 ± 180</td>
<td>227 ± 25</td>
<td>64 ± 7</td>
</tr>
<tr>
<td>SM VH(bb)</td>
<td>1.5 ± 0.5</td>
<td>6 ± 2</td>
<td>3 ± 1</td>
</tr>
<tr>
<td>Multijet</td>
<td>26 ± 43</td>
<td>8 ± 7</td>
<td>0.7 ± 0.9</td>
</tr>
<tr>
<td>Total</td>
<td>47560 ± 490</td>
<td>3804 ± 64</td>
<td>347 ± 15</td>
</tr>
<tr>
<td>Signal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(gg \rightarrow H)</td>
<td>403 ± 95</td>
<td>25 ± 6</td>
<td>2.1 ± 0.5</td>
</tr>
<tr>
<td>(W(\rightarrow jj)H)</td>
<td>425 ± 45</td>
<td>44 ± 6</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>(Z(\rightarrow jj)H)</td>
<td>217 ± 19</td>
<td>42 ± 4</td>
<td>26 ± 2</td>
</tr>
<tr>
<td>Data</td>
<td>47404</td>
<td>3831</td>
<td>344</td>
</tr>
</tbody>
</table>

3-jet events			
Background			
\(Z+\text{jets}\)	9610 ± 580	795 ± 93	53 ± 7
\(W+\text{jets}\)	7940 ± 510	479 ± 70	21 ± 4
\(t\bar{t}\)	443 ± 53	437 ± 53	63 ± 7
Single top	97 ± 14	66 ± 9	6.4 ± 0.9
Diboson	473 ± 54	55 ± 6	13 ± 2
SM VH(bb)	0.8 ± 0.3	2.6 ± 0.9	1.4 ± 0.5
Multijet	22 ± 29	4 ± 4	0.6 ± 0.6
Total	18580 ± 200	1840 ± 40	158 ± 7
Signal			
\(gg \rightarrow H\)	224 ± 55	15 ± 4	1.2 ± 0.5
\(W(\rightarrow jj)H\)	110 ± 16	11 ± 1	0.14 ± 0.03
\(Z(\rightarrow jj)H\)	65 ± 7	12 ± 1	6.1 ± 0.7
Data	18442	1842	159

The scalar sum of the \(p_T\) of all jets: \(H_T > 120\) (150) GeV for events with two (three) jets. This cut is employed to avoid a trigger bias introduced by the dependence of the trigger efficiency on the jet activity, as also discussed in Ref. [44]. Events are discarded if they have additional jets with \(p_T > 20\) (30) GeV and \(|\eta| < 2.5\) (2.5 < \(|\eta| < 4.5\) to reduce the contribution from the \(t\bar{t}\) background process.

For \(V H\) signal events, \(E_T^{\text{miss}}\) resulting from the \(H \rightarrow \text{inv.}\) decay is expected to be strongly correlated with the transverse momentum of the vector boson \(V\) (\(p_T^V\)). Since the \(E_T^{\text{miss}}\) distribution of the signal is harder than that of the background, additional sensitivity in the analysis is gained by optimizing the selection cuts separately for four \(E_T^{\text{miss}}\) ranges. Here and in the following, the dijet refers to the two leading jets in events with three jets. The dijet invariant mass, \(m_{jj}\), is required to be consistent with that of the \(W/Z\) boson. In addition a requirement on the radial separation between the two jets, \(\Delta R_{jj}\), is made as the jets are expected to be close in for highly boosted \(V\)-bosons. Both the \(m_{jj}\) and the \(\Delta R_{jj}\) cuts reduce the \(V\)+jets and the \(t\bar{t}\) background, and depend on \(E_T^{\text{miss}}\). The cut values are given in Table 2. Multijet events are copiously produced in hadron collisions. Fluctuations in jet energy measurements in the calorimeters can create \(E_T^{\text{miss}}\) in these events and there-
Table 5 Impacts of sources of systematic uncertainty on the uncertainty of the fitted signal strength, $\Delta \mu$, in the data. Only sources with contributions larger than ± 0.03 are listed.

<table>
<thead>
<tr>
<th>Source</th>
<th>Impact on $\Delta \mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jets & E_T^{miss}</td>
<td>$+0.22$ -0.22</td>
</tr>
<tr>
<td>Luminosity</td>
<td>$+0.04$ -0.03</td>
</tr>
<tr>
<td>b-tagging</td>
<td>$+0.05$ -0.04</td>
</tr>
<tr>
<td>Background systematic uncertainties</td>
<td></td>
</tr>
<tr>
<td>Diboson</td>
<td>$+0.26$ -0.29</td>
</tr>
<tr>
<td>Z+jets</td>
<td>$+0.21$ -0.22</td>
</tr>
<tr>
<td>W+jets</td>
<td>$+0.15$ -0.16</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>$+0.06$ -0.05</td>
</tr>
<tr>
<td>Multijet</td>
<td>$+0.07$ -0.07</td>
</tr>
<tr>
<td>Total</td>
<td>$+0.41$ -0.43</td>
</tr>
<tr>
<td>Data statistical uncertainty</td>
<td>$+0.12$ -0.12</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>$+0.43$ -0.44</td>
</tr>
</tbody>
</table>

The transverse mass, m_W, is calculated from the transverse momentum and the azimuthal angle of the charged lepton, p_T^ℓ and ϕ^ℓ, and from the missing transverse momentum’s magnitude, E_T^{miss}, and azimuthal angle, ϕ^{miss}, $m_W = \sqrt{2 p_T^\ell E_T^{miss}(\cos(\phi^\ell - \phi^{miss}))}$. The transverse momentum of the W boson, p_T^W, is reconstructed as the magnitude of the vector sum of the lepton transverse momentum and the E_T^{miss}.

5 The transverse mass, m_W, is calculated from the transverse momentum and the azimuthal angle of the charged lepton, p_T^ℓ and ϕ^ℓ, and from the missing transverse momentum’s magnitude, E_T^{miss}, and azimuthal angle, ϕ^{miss}, $m_W = \sqrt{2 p_T^\ell E_T^{miss}(\cos(\phi^\ell - \phi^{miss}))}$. The transverse momentum of the W boson, p_T^W, is reconstructed as the magnitude of the vector sum of the lepton transverse momentum and the E_T^{miss}.
Fig. 1 The missing transverse momentum (E_{T}^{miss}) distributions of the 2-jet events in the signal region for the a 0-\(b\)-tag, b 1-\(b\)-tag and c 2-\(b\)-tag categories. The data are compared with the background model after the likelihood fit. The bottom plots show the ratio of the data to the total background. The signal expectation for $m_{H} = 125$ GeV and BR($H \rightarrow \text{inv.}$) = 100 % is shown on top of the background and additionally as an overlay line, scaled by the factor indicated in the legend. The total background before the fit is shown as a dashed line. The hatched bands represent the total uncertainty on the background.

The dominant contributions from the background uncertainties are at the level of $\pm 2-3$ % over most of the jet p_{T} range, but reach ± 5 % for $p_{T} = 20$ GeV and ± 8 % above $p_{T} = 200$ GeV [45]. The uncertainty on the integrated luminosity is ± 2.8 %. It is derived following the same methodology as that detailed in Ref. [46].

For the backgrounds, a large number of modelling systematic uncertainties are considered, which account for possible differences between the data and the MC models. These uncertainties are estimated following the studies of Ref. [44] and are briefly summarized here. The uncertainties on the $V+$jets backgrounds come mainly from the knowledge of jet flavour composition and the p_{T}^{V}, E_{T}^{miss}, and p_{T} distributions. For $t\bar{t}$ production, uncertainties on the top quark transverse momentum and the m_{jj}, E_{T}^{miss}, and p_{T} distributions are considered. The diboson background uncertainties are dominated by the theoretical uncertainties of the cross-section predictions, which include contributions from the renormalization and factorization scales and the choice of PDFs. The robustness of the multijet background estimation is assessed by varying the definition of the control regions B and D and an uncertainty of ± 100 % is assigned for this small background (<1 % in the signal regions).

The uncertainty on the signal acceptance is evaluated by changing the factorization and renormalization scale parameters, parton distribution function choices and the parton...
Fig. 2 The missing transverse momentum (E_T^{miss}) distributions of the 3-jet events in the signal region for the a 0-tag, b 1-tag and c 2-tag categories. The data are compared with the background model after the likelihood fit. The bottom plots show the ratio of the data to the total background. The signal expectation for $m_H = 125$ GeV is shown on top of the background and additionally as an overlay line, scaled by the factor indicated in the legend. The total background before the fit is shown as a dashed line. The hatched bands represent the total uncertainty on the background.

shower choices. For the VH signal, the dominant uncertainty is from parton shower modelling, which can be as large as ±8%. For the $gg \rightarrow H$ signal, the dominant uncertainty originates from the renormalization and factorization scales and can be as large as ±15% in the high E_T^{miss} regions. Additional corrections to the Higgs boson p_T distribution of the $gg \rightarrow H$ signal are applied to match the distribution from a calculation at NNLO+NNLL provided by HRes2.1 [47,48]. The detailed procedures are following the ones used in the $H \rightarrow \gamma\gamma$ and $H \rightarrow WW^*$ analyses as described in Refs. [49,50]. The related uncertainties are also taken into account.

7 Results

The potential $H \rightarrow \text{inv}$ signal is extracted through a combined likelihood fit to the observed E_T^{miss} distributions of the signal region and its sideband and the p_T^V distributions of the control regions (p_T^V is defined as p_T^W, p_T^Z and $p_T^{t\bar{t}}$ for the $W+jets, Z+jets$ and $t\bar{t}$ control regions, respectively). The normalizations of the $V+jets$ and $t\bar{t}$ backgrounds are free parameters in this fit. The E_T^{miss} distributions are binned in such a way that each bin yields approximately the same amount of expected signal. The 2-jet categories of the signal region are split into ten bins, while fewer bins are used in the 3-jet categories and the sideband. Most $V+jets$ control regions are split into five p_T^V bins, each yielding approximately the same amount of expected background. The 0-tag category of the $V+jets$ control regions and the $t\bar{t}$ control region are used inclusively in the fit. The signal strength μ, defined as the ratio of the signal yield ($\sigma_{VH} \times \text{BR}(H \rightarrow \text{inv.})$ relative to the SM production cross section and assuming $\text{BR}(H \rightarrow \text{inv.}) = 100\%$, is used to parameterize the signal in the data. A binned likelihood function is constructed
Fig. 3 The dijet invariant mass (m_{jj}) distributions in the signal region for the 0-\(b\)-tag category, for events with E_{miss}^T in the range (a) (120–160 GeV), (b) (160–200 GeV), (c) (200–300 GeV) and (d) (>300 GeV).

The data are compared with the background model after the likelihood fit. The bottom plots show the ratio of the data to the total background.

The signal expectation for $m_H = 125$ GeV is shown on top of the background and additionally as an overlay line, scaled by the factor indicated in the legend. The total background before the fit is shown as a dashed line. The hatched bands represent the total uncertainty on the background as the product of Poisson probability terms comparing the numbers of events observed in the data to those expected from the assumed signals and estimated background contributions for all categories of the signal and control regions. The likelihood takes into account the background normalization and the systematic uncertainties. It is maximized to extract the most probable signal-strength value, $\hat{\mu}$.

Table 4 shows the numbers of observed events in the data compared to the numbers of estimated background events from the likelihood fit for each signal category. In all categories the data agrees with the background estimation. The backgrounds are dominated by Z+jets and W+jets events. Subleading backgrounds come from top and diboson production. The SM VH and multijet background contributions are very small with the final event selection.

The fit reveals no significant excess of events over the background expectations and yields a best-fit signal-strength value of $\hat{\mu} = -0.13^{+0.44}_{-0.44}$, which is consistent with zero. The contributions from the individual systematic uncertainties are summarized in Table 5. The systematic uncertainty sources which have the largest impacts are the energy scale of the jets and of E_{miss}^T along with the modelling (shape and normalization) of the diboson and V+jets backgrounds. The E_{miss}^T distributions of the events passing the signal region selection are shown in Figs. 1 and 2 after the profile likelihood fit to the data. The fit results are also propagated to the m_{jj} distributions of the events passing the signal region selection (without the m_{jj}-window cuts). The corresponding plots are shown in Figs. 3, 4 and 5 for the three b-tag categories separately.
Fig. 4 The dijet invariant mass \((m_{bj}) \) distributions in the signal region for the 1-\(b \)-tag category, for events with \(E_{\text{miss}} \) in the range

(a) (120–160 GeV),
(b) (160–200 GeV),
(c) (200–300 GeV) and
(d) (>300 GeV).

The data are compared with the background model after the likelihood fit. The bottom plots show the ratio of the data to the total background.

The null results are used to set 95% confidence level (CL) upper limits on the product of the \(VH \) cross sections and the \(V \rightarrow jj \) and \(H \rightarrow \text{inv.} \), decay branching ratio, \(\sigma_{VH} \times \text{BR}(H \rightarrow \text{inv.}) \), as a function of the Higgs boson mass in the range \(115 < m_H < 300 \) GeV as shown in Fig. 6. The limits are computed with a modified frequentist method, also known as CL \(_s\) [51], and a profile-likelihood-based test statistic [52]. At \(m_H = 125 \) GeV, for \(VH \) production, a limit of 1.1 pb is observed compared with 1.1 pb expected. These combined results for \(VH \) production assume the SM proportions of the \(WH \) and \(ZH \) contributions. Observed (expected) limits are also derived for the two contributions separately, 1.2 (1.3) pb for \(WH \) and 0.72 (0.59) pb for \(ZH \). As shown in Table 4, the 2-tag categories are almost only sensitive to \(ZH \), the 1-tag categories are equally sensitive to \(WH \) and \(ZH \), and the 0-tag categories are more sensitive to \(WH \) production. The two processes contribute approximately equally to the sensitivity. For the discovered Higgs boson at \(m_H = 125 \) GeV, an observed (expected) upper limit of 78% (86%) at 95% CL on the branching ratio of the Higgs boson to invisible particles is set. These limits are derived assuming SM production and combining contributions from \(VH \) and gluon-fusion processes. The gluon-fusion production process contributes about 39% (29%) to the observed (expected) combined sensitivity.

8 Summary

In summary, Higgs boson decays to particles that are invisible to the ATLAS detector are searched for in the final states...
Fig. 5 The dijet invariant mass \((m_{bb}) \) distributions in the signal region for the 2-\(b \)-tag category, for events with \(E_{\text{miss}}^{\text{inv.}} \) in the range \(a \) (120–160 GeV), \(b \) (160–200 GeV), \(c \) (200–300 GeV) and \(d \) (>300 GeV). The data are compared with the background model after the likelihood fit. The bottom plots show the ratio of the data to the total background.

The signal expectation for \(m_H = 125 \text{ GeV} \) is shown on top of the background and additionally as an overlay line, scaled by the factor indicated in the legend. The total background before the fit is shown as a dashed line. The hatched bands represent the total uncertainty on the background.

Fig. 6 Upper limits on \(\sigma_V \times \text{BR}(H \to \text{inv.}) \) at 95% CL for a Higgs boson with \(115 < m_H < 300 \text{ GeV} \). The full and dashed lines show the observed and expected limits, respectively.
without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; STFC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DLR and DFKI, Germany; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GIRES and FCT, Portugal; MINE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR, MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

References

6. ATLAS Collaboration, Determination of spin and parity of the Higgs boson in the W^+W^- → $e\mu
c Also at Novosibirsk State University, Novosibirsk, Russia
d Also at TRIUMF, Vancouver, BC, Canada
e Also at Department of Physics, California State University, Fresno, CA, USA
f Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
g Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal
h Also at Tomsk State University, Tomsk, Russia
i Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
j Also at Università di Napoli Parthenope, Naples, Italy
k Also at Institute of Particle Physics (IPP), Victoria, Canada
l Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
m Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
n Also at Louisiana Tech University, Ruston, LA, USA
o Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
p Also at Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
q Also at Department of Physics, The University of Texas at Austin, Austin, TX, USA
r Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
s Also at CERN, Geneva, Switzerland
t Also at Georgian Technical University (GTU), Tbilisi, Georgia
u Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
v Also at Manhattan College, New York, NY, USA
w Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
x Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
y Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
z Also at School of Physics, Shandong University, Shandong, China
aa Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
ab Also at Section de Physique, Université de Genève, Geneva, Switzerland
ac Also at International School for Advanced Studies (SISSA), Trieste, Italy
ad Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA
ae Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
af Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
ag Also at National Research Nuclear University MEPhI, Moscow, Russia
ah Also at Department of Physics, Stanford University, Stanford CA, USA
ai Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
aj Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA
ak Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
al Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
* Deceased