
nutrients

Article

High-Glucose or -Fructose Diet Cause Changes of the
Gut Microbiota and Metabolic Disorders in Mice
without Body Weight Change

Moon Ho Do 1,†, Eunjung Lee 2,†, Mi-Jin Oh 1, Yoonsook Kim 1 and Ho-Young Park 1,* ID

1 Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Korea;
Do.Moon-ho@kfri.re.kr (M.H.D.); Oh.Mi-jin@kfri.re.kr (M.-J.O.); kimyus@kfri.re.kr (Y.K.)

2 Research Division of Strategic Food Technology, Korea Food Research Institute, Jeollabuk-do 55365, Korea;
ejlee@kfri.re.kr

* Correspondence: hypark@kfri.re.kr; Tel.: +82-63-219-9347
† These authors contributed equally to this work.

Received: 21 May 2018; Accepted: 11 June 2018; Published: 13 June 2018
����������
�������

Abstract: High fat diet-induced changes in gut microbiota have been linked to intestinal permeability
and metabolic endotoxemia, which is related to metabolic disorders. However, the influence
of a high-glucose (HGD) or high-fructose (HFrD) diet on gut microbiota is largely unknown.
We performed changes of gut microbiota in HGD- or HFrD-fed C57BL/6J mice by 16S rRNA
analysis. Gut microbiota-derived endotoxin-induced metabolic disorders were evaluated by glucose
and insulin tolerance test, gut permeability, Western blot and histological analysis. We found
that the HGD and HFrD groups had comparatively higher blood glucose and endotoxin levels,
fat mass, dyslipidemia, and glucose intolerance without changes in bodyweight. The HGD- and
HFrD-fed mice lost gut microbial diversity, characterized by a lower proportion of Bacteroidetes
and a markedly increased proportion of Proteobacteria. Moreover, the HGD and HFrD groups had
increased gut permeability due to alterations to the tight junction proteins caused by gut inflammation.
Hepatic inflammation and lipid accumulation were also markedly increased in the HGD and HFrD
groups. High levels of glucose or fructose in the diet regulate the gut microbiota and increase
intestinal permeability, which precedes the development of metabolic endotoxemia, inflammation,
and lipid accumulation, ultimately leading to hepatic steatosis and normal-weight obesity.
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1. Introduction

Obesity is now recognized as a global public health issue, as its prevalence is consistently
increasing in most countries [1]. One of the metabolic disorders, obesity, plays an important
role in pathogenesis of chronic diseases and is characterized by low-grade inflammation [2].
Sugar consumption has dramatically increased in the past few decades [3] due to the wide availability
of convenient, high-sugar foods, as well as an abundance of environmental food cues that prime
eating behavior [4]. Overconsumption of sugar is closely linked to obesity and metabolic disease [5].
Thus, the treatment of obesity and its complications has become a major public health focus, and novel
treatment strategies would be highly beneficial.

The microbial community within the gut has been linked with several metabolic diseases,
including diabetes, non-alcoholic fatty liver disease, cardiovascular disease, and obesity [6,7].
In particular, many studies suggest that the intestinal microbiota play a role in determining body
weight [8,9]. Genetically obese ob/ob mice have reduced Bacteroidetes and increased Firmicutes
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abundance compared with C57BL/6J mice [10]. Moreover, germ-free mice are resistant to the
obesogenic effects of a high-fat diet (HFD) [11], whereas transplantation of the gut microbiota from
obese mice into germ-free mice recapitulated the donor phenotype [12]. These observations suggest
that body weight is influenced by the gut microbiota.

Diet is one of the various factors that influences the microbiota [13]. High levels of fat in
the diet change the gut microbial community, particularly by increasing the ratio of Firmicutes to
Bacteroidetes [14]. Diet-induced changes in the gut microbiota increase the plasma concentration
of the inflammatory bacterial lipopolysaccharide (LPS), which ultimately leads to insulin resistance
and glucose intolerance [15]. Moreover, gut microbiota-derived LPS induces inflammation and
related metabolic diseases [16]. HFD-induced changes in the gut microbial community enhance
intestinal permeability and promote the leakage of LPS into circulation by decreasing the expression
of intestinal tight junction proteins [17]. Therefore, bacterial-derived LPS reaches the liver by
the portal circulation, inducing inflammation and abnormal lipid accumulation in several tissues,
due to increased levels of inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α),
monocyte chemoattractant protein 1 (MCP1), interleukin 1 beta (IL-1β), and interleukin 6, and lipid
synthesis enzymes, such as acetyl-CoA carboxylase 1, fatty acid synthase (FAS), and sterol regulatory
element-binding protein 1 (SREBP1) [18–20].

High-sugar consumption induced changes in gut microbiota, obesity and metabolic disorder are
well-known [5], but few studies have reported that high-dose fructose or glucose intake correlates
with detrimental health outcomes [21]. Crescenzo et al. reported that obesity and insulin resistance
are elicited by a high-fructose diet (HFrD) in adult rats [22]. Moreover, a diet high in fructose
induces inflammation and metabolic dysregulation in the gut and liver due to alterations in gut
microbial communities [23]. However, there is only limited research on high-glucose diet (HGD) or
HFrD-induced changes to gut microbiota and the subsequent effects on metabolic diseases. Therefore,
the aim of this study was to examine the effects of diets high in monosaccharides on gut microbial
diversity, gut permeability, metabolic endotoxemia, and lipid metabolism in C57BL/6J mice.

2. Materials and Methods

2.1. Materials

A 4-kDa fluorescein isothiocyanate (FITC)-dextran and a phosphatase inhibitor cocktail were
purchased from Sigma-Aldrich (St. Louis, MO, USA). The antibodies against TNF-α, IL-1β, MCP1,
toll like receptor 4 (TLR4), tight junction protein-1 (ZO1), occludin, FAS, cluster of differentiation 36
(CD36), and SREBP1 were obtained from Abcam (Cambridge, MA, USA). Secondary antibodies were
purchased from Thermo Fisher Scientific (Waltham, MA, USA).

2.2. Animals and Diets

Six-weeks-old male C57BL/6J mice were purchased from Central Lab Animal Inc. (Seoul, Korea)
and were housed at 23 ◦C in a humidity-controlled (65%) animal room with a 12-h light/12-h dark
cycle and provided with food and water ad libitum. The animal experiments were approved by the
Animal Welfare Committee of the Korea Food Research Institute (KFRI-M-17045). Eight-week-old
mice were assigned to 4 groups (n = 9), which were fed a normal diet (ND), HGD, HFrD, or HFD for
12 weeks, and 3 mice were placed in each cage.

The ND (Teklad Global 2018S, Harlan, Madison, WI, USA) contained 18.0% of calories in fat,
24.0% of calories in protein, and 58.0% of calories in carbohydrate. The HFD contained 61.2% of calories
in fat (8.8% from soybean oil and 91.2% from lard), 18.8% of calories in protein (98.5% from casein
and 1.5% from L-cysteine), and 20.0% of calories in carbohydrate (36% from sucrose and 64% from
maltodextrin), and the HGD and HFrD contained 16.9% of calories in fat (8.8% from soybean oil and
91.2% from lard), 18.1% of calories in protein (97.5% from casein and 2.5% from L-cysteine), and 65.0%
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of calories in carbohydrate (85% from glucose or fructose and 15% from sucrose). Food consumption
and weight gain were recorded twice per week until the end of the study.

2.3. Oral Glucose Tolerance Tests and Insulin Tolerance Tests

Oral glucose tolerance tests (OGTTs) was performed after 12 h fasting at 4, 8, and 12 weeks.
Glucose was orally administered (1 g/kg body weight) and blood glucose levels measured with
a glucometer (Accu-Chek®, Roche Diagnostics, Indianapolis, IN, USA) at 0, 30, 60, 90, and 120 min
after glucose administration. Insulin tolerance tests (ITTs) were performed using human insulin at 4, 8,
and 12 weeks (Sigma-Aldrich, St. Louis, MO, USA). The mice were injected insulin intra-peritoneally
(1 U/kg) after 4–5 h of fasting. The blood glucose levels were measured at 0, 30, 60, 90, and 120 min
after insulin administration.

2.4. Intestinal Permeability

FITC-dextran was used to measure the intestinal permeability at 12 weeks, as previously
described [24]. Briefly, mice were fasted for 6 h, then administered FITC-dextran by oral gavage
(500 mg/kg body weight, 125 mg/mL). One-hundred microliters of blood were collected from the
tail vein after 1 h and 4 h. The blood was centrifuged at 12,000× g for 5 min at 4 ◦C. The plasma
dextran concentration was measured with a microplate reader (Molecular Devices, Sunnyvale, CA,
USA) at an excitation wavelength of 485 nm and emission wavelength of 535 nm. Standard curve
was created by diluting FITC-dextran in non-treated plasma diluted with phosphate-buffered saline
(1:1, v/v).

2.5. Gut Microbiota Analysis

Fresh fecal samples of mice were collected at week 12 and immediately stored at −80 ◦C until
processing. For microbial community analysis, fecal DNA extraction and V3–V4 hypervariable region
of the 16S rRNA gene amplification were carried out using a MiSeq (Illumina, San Diego, CA, USA)
at Macrogen (Seoul, Korea) according to the manufacturer’s instructions.

Paired-end reads were assembled using FLASH [25]. Clustering of 16S rRNA operational
taxonomic units (OTUs) were defined at ≥97% sequence homology using CD-HIT-OUT and identified
using rDnaTools based on reference dataset from the Ribosomal Database Project [26]. And then
taxonomic composition was assigned using QIIME-UCLUST [27]. To measure diversities, QIIME
software was used based on weighted and unweighted Unifrac distance matrices [28]. Principal
coordinate analysis plots and Unweighted Pair Group Method with Arithmetic mean cluster were
visualized using XLSTAT software (Addinsoft®, New York, NY, USA) and cladograms were produced
using GraPhlAn [29].

2.6. Blood Serum Analysis

After 12 weeks, the mice were fasted for 12 h and sacrificed by anesthesia. Blood was collected
into endotoxin free microfuge tubes by cardiac puncture and allowed to clot. The blood samples
were centrifuged at 3000× g for 10 min, then collected the serum, which we froze at −80 ◦C until
biochemical analysis. Serum samples were assayed for levels of total cholesterol, low-density
lipoprotein (LDL) cholesterol, and endotoxin. Total cholesterol and LDL cholesterol levels were
qualified using a Cholesterol Assay Kit (Abcam, Cambridge, MA, USA), and serum endotoxin levels
were analyzed with the Pierce™ LAL Chromogenic Endotoxin Quantitation Kit (Thermo Fisher
Scientific, Waltham, MA, USA), according to the manufacturers’ instructions.

2.7. Western Blotting

Total proteins were extracted from the liver and colon with PRO-PREP™ (iNtRON Biotechnology,
Seongnam, Korea) containing phosphatase inhibitor. Equal amounts of protein (30 µg) were loaded
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for 10%-sodium dodecyl sulfate polyacrylamide gel electrophoresis, which we then transferred to
a membrane. The membranes were blocked with 5% skim milk for 1 h at room temperature (25 ± 2 ◦C)
and incubated with the primary antibodies overnight at 4 ◦C. In all conditions, primary antibodies were
used as 1:1000. Then, the membranes were incubated with peroxidase-labeled secondary antibodies for
1 h at room temperature. Immunoreactive proteins were detected with enhanced chemiluminescence
reagents using a ChemiDoc™ XRS+ imaging system (Bio-Rad, Hercules, CA, USA).

2.8. Histological Analysis

Histological analyses were performed after hematoxylin and eosin (H&E) staining. Liver and
epididymal white adipose tissue (WAT) were fixed in 10% formalin after mice were sacrificed. The fixed
tissues were embedded in paraffin and sliced into 5-µm sections. Then, the tissue sections were stained
with H&E. We acquired digital images using an optical microscope (Nikon Eclipse Ti-E, Nikon,
Kobe, Japan). The hepatic steatosis score was calculated according to the method by Kato et al. [30]
(0, none; 1, <33%; 2, 33–66%; 3, >66%) and adipocyte area was determined using Image J software
(NIH, Bethesda, MD, USA).

2.9. Statistical Analysis

The data are presented as the mean ± standard error of the mean. The statistical significance
of the differences among groups were determined by one-way analysis of variance with Tukey’s
analysis using GraphPad Prism software (San Diego, CA, USA). A p-value < 0.05 was considered
statistically significant.

3. Results

3.1. Effects of Diet on Body Weight and Metabolic Parameters

At the end point of the experiment, the HFD-fed mice had significantly higher body weights
than the ND-fed mice (Figure 1A). As expected based on their increased body weight, the mice in the
HFD-fed group also had a markedly higher epididymal WAT mass (Figure 1B). The body weights of
the HGD- and HFrD-fed mice were not increased over those of the ND-fed mice, although their WAT
masses were significantly increased.
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(C) fasting blood glucose; (D) serum total cholesterol; (E) serum low-density lipoprotein
(LDL)-cholesterol; (F) serum endotoxin. Data are presented as the mean ± SEM for 9 mice per
group (* p < 0.05, ** p < 0.01, and *** p < 0.001 vs. ND).

The fasting blood glucose concentration was significantly increased in the HFD, HGD, and HFrD
groups (Figure 1C), as well as the total and LDL cholesterol (Figure 1D,E). Moreover, these mice had
significantly higher serum endotoxin levels than the ND-fed mice (Figure 1F). These results suggest
that not only high levels of fat, but also high levels of glucose or fructose, in the diet induce lipid
accumulation and endotoxemia.

3.2. Effects of Diet on Gut Microbial Diversity and Composition

Many studies have reported that a high fat concentration in the diet alters the gut microbiota and
increases endotoxemia [31,32]. We confirmed this finding by 16S RNA analysis. We observed fewer
operational taxonomic units and lower Shannon indices in the HFD, HGD, and HFrD groups than in
the ND group (Figure 2A,B). We assessed the phylogenetic differences in the gut microbiota among
the groups by principal coordinates analysis. The ND group had a distinct microbial composition
that clustered separately from those of the HFD, HGD, and HFrD groups (Figure 2C). We performed
hierarchical clustering analysis according to the data matrix of the unweighted pair group method
with arithmetic mean; we found that the microbial communities in the feces of the HGD- and HFrD-fed
mice were more closely related to those of the HFD-fed mice than those of the ND-fed mice (Figure 2D).

Taxon-based analysis showed marked changes in the gut microbial compositions of the HFD,
HGD, and HFrD groups. At the phylum level, these groups had a significantly lower relative
abundance of Bacteroidetes and significantly increased abundance of Proteobacteria compared to the
ND group (Figure 2E). In particular, the proportions of Muribaculum intestinale (phylum, Bacteroidetes)
were significantly lower in the HFD-, HGD-, and HFrD-fed mice and the proportions of Desulfovibrio
vulgaris were increased (phylum, Proteobacteria). Interestingly, we observed a higher proportion of
Akkermansia muciniphila in the HGD and HFrD groups than in the HFD group (Figure 2F).
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Figure 2. Analysis of the gut microbial community by 16S rRNA pyrosequencing from feces of HFD,
HGD and HFrD groups. (A) operational taxonomic units levels; (B) Shannon’s diversity indices;
(C) principal coordinate analysis of unweighted UniFrac analysis; (D) sample clustering results based
on the unweighted UniFrac analysis; (E) relative abundances plot of bacterial phyla; (F) relative
abundance cladogram of bacterial taxa. Data are presented as the mean ± SEM for 3 cages per group
(** p < 0.01, and *** p < 0.001 vs. ND).

3.3. Effects of Diet on Glucose Intolerance and Insulin Resistance

To investigate if the diet-induced microbiota changes were associated with changes in glucose
intolerance and insulin resistance in mice, we performed OGTTs and ITTs. As shown in Figure 3A,
after 12 weeks HFD-feeding significantly increased blood glucose levels over those in the control mice.
Moreover, HGD- and HFrD-fed mice also had significantly increased glucose intolerance (Figure 3A,B).
As shown in Figure 3C, we found a higher fasting glucose concentration in the HFD group than in the
ND group, after 12 weeks. However, the plasma glucose levels of the HGD and HFrD groups showed
similar pattern compared to the ND group after insulin injection (Figure 3C,D).
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Figure 3. Glucose metabolism in HFD, HGD or HFrD fed mice. (A) blood glucose levels during an oral
glucose tolerance tests; (B) area under the curve (AUC) of blood glucose levels; (C) blood glucose
levels during an insulin tolerance tests; (D) AUC of blood glucose levels. Data are presented as the
mean ± SEM for 9 mice per group (* p < 0.05, ** p < 0.01, and *** p < 0.001 vs. ND).
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3.4. Effects of Diet on Gut Permeability and Inflammation

We assessed gut permeability using the paracellular tracer FITC-dextran just prior to the end of
the experiment. Following oral administration, HFD-fed mice exhibited a 2.5-fold greater area under
the curve for plasma FITC-dextran than the ND-fed mice (Figure 4A,B). The HGD- and HFrD-fed
mice also showed significantly higher plasma FITC-dextran levels. Gut permeability is controlled by
tight junction proteins, such as ZO-1 and occludin [24]. The HFD, HGD, and HFrD groups had less
abundant ZO-1 and occludin expression in the colon than ND mice (Figure 4D,E).

Nutrients 2018, 10, x FOR PEER REVIEW  7 of 14 

glucose levels during an insulin tolerance tests; (D) AUC of blood glucose levels. Data are presented 
as the mean ± SEM for 9 mice per group (* p < 0.05, ** p < 0.01, and *** p < 0.001 vs. ND). 

3.4. Effects of Diet on Gut Permeability and Inflammation 

We assessed gut permeability using the paracellular tracer FITC-dextran just prior to the end 
of the experiment. Following oral administration, HFD-fed mice exhibited a 2.5-fold greater area 
under the curve for plasma FITC-dextran than the ND-fed mice (Figure 4A,B). The HGD- and 
HFrD-fed mice also showed significantly higher plasma FITC-dextran levels. Gut permeability is 
controlled by tight junction proteins, such as ZO-1 and occludin [24]. The HFD, HGD, and HFrD 
groups had less abundant ZO-1 and occludin expression in the colon than ND mice (Figure 4D,E). 

Increased gut permeability induced by diet-induced obesity has been reported to cause 
metabolic endotoxemia and inflammation [33]. To assess the effects of diet on intestinal 
inflammation, we investigated the expression of inflammatory cytokines. The HFD, HGD, and 
HFrD groups had significantly higher expression of inflammatory cytokines, such as TNF-α and IL-
1β, in the colon than ND mice (Figure 4F,G). Taken together, these findings indicate that diet-
induced changes in the gut microbiota affect the expression of tight junction proteins and 
inflammatory cytokines, which leads to increased gut permeability and inflammation. 

 
Figure 4. HFD, HGD or HFrD-induced changes of gut permeability and related proteins expression.
(A) plasma fluorescein isothiocyanate (FITC)-dextran concentration; (B) AUC of Plasma FITC-dextran
levels; (C) representative images of Western blots for tight junction proteins (Occludin and ZO1) and
inflammatory cytokines (IL-1β and TNF-α); (D–G) relative band intensities of Occludin (D), ZO1 (E),
IL-1β (F) and TNF-α (G) normalized to those of β-actin. Data are presented as mean ± SEM for 9 mice
per group (A,B) and mean percentage of ND ± SEM of three independent experiments (C-G) (* p < 0.05,
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Increased gut permeability induced by diet-induced obesity has been reported to cause metabolic
endotoxemia and inflammation [33]. To assess the effects of diet on intestinal inflammation,
we investigated the expression of inflammatory cytokines. The HFD, HGD, and HFrD groups had
significantly higher expression of inflammatory cytokines, such as TNF-α and IL-1β, in the colon than
ND mice (Figure 4F,G). Taken together, these findings indicate that diet-induced changes in the gut
microbiota affect the expression of tight junction proteins and inflammatory cytokines, which leads to
increased gut permeability and inflammation.

3.5. Effects of Diet on Liver Inflammation and Lipid Metabolism

Increased endotoxemia can induce liver inflammation [34]. To link the changes in the gut
microbiota to diet-induced markers of metabolic disease, we assessed the expression of inflammatory
cytokines. As shown in Figure 5A, the protein expression of MCP1, TLR4, IL-1β, and TNF-α in
the liver were quantified to evaluate hepatic inflammation. As expected, inflammatory cytokines
were significantly increased in the HFD-fed mice over their levels in the ND-fed mice. The HGD-
and HFrD-fed mice also had markedly increased inflammatory cytokine expression. These changes
suggest strong relationships among the gut microbiota, gut permeability, and tissue inflammation in
a diet-induced mouse inflammation model.

Hepatic inflammation is normally accompanied by hepatic lipid accumulation. We analyzed
the expression of regulatory proteins involved in lipid metabolism, such as FAS, CD36, and SREBP1,
in the liver (Figure 5B). As expected, HFD-fed mice exhibited increased expression of these proteins.
Interestingly, HGD- and HFrD-fed mice also significantly increased the FAS, CD36 and SREBP1 to
a level similar to the ND group. These results suggest that the HGD and HFrD up-regulate lipid
metabolism-related protein expression, thereby contributing to hepatic steatosis.
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Figure 5. HFD, HGD or HFrD-induced hepatic inflammation and change of lipid metabolism.
(A,B) representative images of Western blots for inflammatory cytokines (MCP1, TLR4, IL-1β and
TNF-α) and lipid metabolism (FAS, CD36 and SREBP1); (C–I) relative band intensities of MCP1 (C),
TLR4 (D), IL-1β (E), TNF-α (F), FAS (G), CD36 (H) and SREBP1 (I) normalized to those of β-actin.
Bar values are presented as mean percentage of ND ± SEM of three independent experiments (* p < 0.05,
** p < 0.01, and *** p < 0.001 vs. ND).
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3.6. Histological Changes

We confirmed the development of hepatic steatoses in H&E-stained liver sections (Figure 6).
As expected, the HFD induced severe hepatic lipid accumulation. The HGD and HFrD also increased
lipid deposition in the liver compared to the level caused by the ND (Figure 6A).

Histological analysis of WAT showed that the increase in body weight was associated with
an increase in the size of the adipocytes in the HFD mice (Figure 6B). There were no significant changes
in body weight between the ND mice and the HGD or HFrD mice; however, steatosis scores and the
size of adipocytes were markedly increased in the HGD and HFrD mice (Figure 6C,D). These results
suggest that the HGD and HFrD can cause hepatic steatosis and obesity in the absence of weight gain.

Nutrients 2018, 10, x FOR PEER REVIEW  9 of 14 

3.6. Histological Changes 

We confirmed the development of hepatic steatoses in H&E-stained liver sections (Figure 6). 
As expected, the HFD induced severe hepatic lipid accumulation. The HGD and HFrD also 
increased lipid deposition in the liver compared to the level caused by the ND (Figure 6A). 

Histological analysis of WAT showed that the increase in body weight was associated with an 
increase in the size of the adipocytes in the HFD mice (Figure 6B). There were no significant 
changes in body weight between the ND mice and the HGD or HFrD mice; however, steatosis 
scores and the size of adipocytes were markedly increased in the HGD and HFrD mice (Figure 
6C,D). These results suggest that the HGD and HFrD can cause hepatic steatosis and obesity in the 
absence of weight gain. 

 
Figure 6. HFD, HGD or HFrD-induced hepatic steatosis and adipocyte hypertrophy. (A,B) 
representative histological results of liver and WAT by hematoxylin and eosin staining; (C) steatosis 
score of liver; (D) quantification of adipocyte area. Values are expressed as means ± SEM for 3 mice 
per group (** p < 0.01, and *** p < 0.001 vs. ND). 

4. Discussion 

The phylogenetic and metagenomic analysis of gut microbiota have been extensively studied 
in the context of metabolic disorders. HFD-induced inflammation and metabolic disorders are 
clearly linked to changes in gut microbiota [35,36]. A long-term HFD results in obesity, lipid 
accumulation, and dyslipidemia [37]. Moreover, glucose intolerance and insulin resistance can 
result from HFD-induced obesity [38]. Our findings supported the published findings on the effects 
of a HFD. We also found that high glucose and fructose levels in the diet had similar effects in the 
absence of elevated body weight. Although glucose tolerance differed between the ND-fed mice 
and those on the modified diets, only the HFD-fed mice were clearly insulin-resistant, suggesting 
that increased fasting blood glucose levels, dyslipidemia, and glucose intolerance may be caused by 
increased endotoxin levels. 

Several lines of evidence suggest that gut microbiota play an important role in obesity and 
associated disorders, such as dyslipidemia, inflammation, and glucose intolerance [39,40]. A diet 
that is high in fat can reshape the gut microbiota, particularly by increasing the Firmicutes-to-
Bacteroidetes ratio [41]. Moreover, the proportion of Proteobacteria, which are known to be among 
the best sources of LPS, is increased in HFD-fed mice [42]. Jang et al. reported that low doses of 
fructose are cleared by the small intestine, but high doses of fructose are digested by microbiota and 
liver and one of the possible mechanism of fatty liver is the conversion of fructose into a 

Figure 6. HFD, HGD or HFrD-induced hepatic steatosis and adipocyte hypertrophy.
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for 3 mice per group (** p < 0.01, and *** p < 0.001 vs. ND).

4. Discussion

The phylogenetic and metagenomic analysis of gut microbiota have been extensively studied in
the context of metabolic disorders. HFD-induced inflammation and metabolic disorders are clearly
linked to changes in gut microbiota [35,36]. A long-term HFD results in obesity, lipid accumulation,
and dyslipidemia [37]. Moreover, glucose intolerance and insulin resistance can result from
HFD-induced obesity [38]. Our findings supported the published findings on the effects of a HFD.
We also found that high glucose and fructose levels in the diet had similar effects in the absence of
elevated body weight. Although glucose tolerance differed between the ND-fed mice and those on
the modified diets, only the HFD-fed mice were clearly insulin-resistant, suggesting that increased
fasting blood glucose levels, dyslipidemia, and glucose intolerance may be caused by increased
endotoxin levels.

Several lines of evidence suggest that gut microbiota play an important role in obesity and
associated disorders, such as dyslipidemia, inflammation, and glucose intolerance [39,40]. A diet that
is high in fat can reshape the gut microbiota, particularly by increasing the Firmicutes-to-Bacteroidetes
ratio [41]. Moreover, the proportion of Proteobacteria, which are known to be among the best sources
of LPS, is increased in HFD-fed mice [42]. Jang et al. reported that low doses of fructose are cleared
by the small intestine, but high doses of fructose are digested by microbiota and liver and one of
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the possible mechanism of fatty liver is the conversion of fructose into a hepatotoxic metabolite [43].
Based on these observation, we hypothesized that high-dose monosaccharides were not cleared by the
small intestine, thereby changing the gut microbiota and inducing metabolic disorder. In the present
study, we observed increased Firmicutes-to-Bacteroidetes ratios and widespread changes in gut
microbial communities, including increased proportions of Proteobacteria and decreased proportions
of Actinobacteria in the HFD, HGD, and HFrD groups compared to in the ND group. These results
indicate that the HGD and HFrD, as well as the HFD, modulate gut microbiota and cause gut
microbiota-induced inflammation and fatty liver.

An altered gut microbiota composition can increase the level of the Gram-negative bacterial
product LPS [44]. Rainone et al. demonstrated that obesity in children and adolescents is characterized
by up-regulation of LPS and subsequent inflammation [45]. Recently, researchers have proposed
that high levels of endotoxemia are related to gut permeability and decreased tight junction protein
expression such as ZO1 and occludin [16,46]. In this study, we confirmed that HFD-fed mice exhibit
increased gut permeability and an altered gut barrier, characterized by disruption of the tight junction
proteins. Moreover, we found that the HGD and HFrD also increased gut permeability and disrupted
the gut barrier. The damaged gut barriers observed in HFD-, HGD-, and HFrD-fed mice correlate with
higher plasma endotoxin levels. Among the mechanisms involved in this phenomenon, over-expressed
TNF-α is known to increase local or systemic inflammation, which can trigger alterations in tight
junction proteins [47]. In this study, we found increased expression of the tight junction-disrupting
cytokines TNF-α and IL-1β in the colons of the HFD-, HGD-, and HFrD-fed mice. Together,
these data suggest that diet-induced changes in the gut microbiota can cause endotoxemia and
colon inflammation, thereby damaging the intestinal barrier and contributing to metabolic disorders.

Intestinal inflammation-induced leakage of gut microbiota-derived endotoxin is a potent inducer
of hepatic steatosis, characterized by abnormal fat deposition in the liver [46]. Hepatic lipid
accumulation upregulates pro-inflammatory cytokines and apoptotic signals in liver through directly
activating the TLR-4 pathways [48]. Hence, we measured the protein levels of factors associated with
inflammation and lipid metabolism in the liver. The HFD, HGD, and HFrD caused marked increases
in TNF-α, IL-1β, TLR-4, and MCP1 expression. These results suggest that the HGD and HFrD can
induce hepatic inflammation via gut microbiota-derived endotoxin. Furthermore, we found markedly
increased CD36 expression in the HFD, HGD, and HFrD groups. CD36 plays an important role in
promoting hepatic fat uptake and triglyceride storage in HFD-fed mice [49]. Moreover, mice in the
HFD, HGD, and HFrD groups exhibited increased levels of FAS and SREBP1 compared with the
levels in the ND group. FAS is a key enzyme in lipogenesis, which may play an important role in
the pathogenesis of hepatic steatosis through fatty acid synthesis [50]. SREBP1 promotes lipogenesis
via regulation of the fatty acid biosynthesis enzymes [51]. Thus, the higher inflammatory cytokine
expression observed in the HFD-, HGD-, and HFrD-fed mice could induce up-regulation of CD36,
FAS, and SREBP1, thereby contributing to the development of a fatty liver.

We confirmed the abnormal accumulation of fat in the liver induced by enhanced lipid metabolism
and inflammatory cytokine expression by H&E staining. As expected, fat deposition was markedly
increased in the HFD-, HGD-, and HFrD-fed mice. The effects of diet-induced changes in the intestinal
microbial community were observed not only in the colon and liver, but also in the adipose tissue.
Our H&E staining revealed markedly larger adipocytes in the mice on the modified diets. This
phenomenon is also reportedly caused by inflammation and altered lipid metabolism downstream
of excessive gut microbiota-induced endotoxin release [52]. These findings suggested that HGD- or
HFrD-induced increase of gut microbiota-derived endotoxin and the pathogenesis of fatty liver were
closely linked, evidencing a key role for the gut microbiota as regulator of the gut-liver axis.

In this study, we revealed that a diet high in glucose or fructose can induce changes in gut
microbiota, gut permeability, inflammation, hepatic steatosis, and lipid accumulation. It is well-known
that high-sugar diets promote obesity [53], however the present study showed high-monosaccharide
diet groups did not change the body weight compared with ND group. The HGD and HFrD promoted
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an increased abundance of Akkermansia compared to the HFD group (Figure 2F), which reduces body
weight and improves body composition without changes in food intake [54]. Thus, we attribute the
normal body weight of the HGD- and HFrD-fed mice to the increased abundance of Akkermansia.
Currently, normal-weight obesity in Asians may play an important role in the development of metabolic
complications [55,56]. We propose that the increase in the prevalence of normal-weight obesity is
caused by high levels of monosaccharides in the body due to a carbohydrate-rich diet.

In summary, we have demonstrated that the modulation of gut microbiota is associated with
increased intestinal permeability, which coincides with the development of metabolic endotoxemia,
inflammation, and lipid accumulation in HGD- and HFrD-fed mice, ultimately leading to hepatic
steatosis and normal-weight obesity. Further studies should be undertaken to determine the
mechanisms that regulate obesity induced by a diet high in glucose or fructose.
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