
  
Classification (single-

cell) 
Deconvolution (bulk) FACS (single-cell) 

Cell types/ 
Sample ID 

Ascite
s 

7873
M 

Ascite
s 

7882
M 

Ascite
s 

7892
M 

Ascite
s 

7873
M 

Ascite
s 

7882
M 

Ascite
s 

7892
M 

Ascite
s 

7873
M 

Ascite
s 

7882
M 

Ascite
s 

7892
M 

CD4+ T 
cells 

3% 15% 12% 2% 6% 8% 8% 16% 12% 

CD8+ T 
cells 

0% 2% 1% 3% 2% 4% 2% 4% 3% 

regulatory 
T cells 

0% 0% 0% 1% 1% 0% 0% 1% 0% 

B cells 1% 0% 1% 0% 0% 2% 0% 0% 0% 

Macrophag
es/ 

Monocytes 
85% 64% 65% 77% 55% 47% 68% 33% 

missin
g 

Dendritic 
cells 

3% 5% 5% 0% 0% 0% 3% 3% 2% 

Natural 
killer cells 

1% 5% 5% 0% 0% 0% 2% 3% 0% 

Supplementary Table 1: Estimates of cellular composition by three different methods. 
Three ovarian cancer ascites samples were profiled by single-cell and bulk RNA sequencing as 
well as FACS. Estimates of the cellular composition are derived by: 1) Classification based on 
single-cell RNA sequencing data; 2) Computational deconvolution on the bulk RNA sequencing 
data using the single-cell RNA sequencing derived RGEP3; 3) Quantification by FACS. For 
sample 7892, macrophages/monocytes quantification could not be determined by FACS.  



 
Classification (single-cell) Deconvolution (bulk) 

Cell types/ 
Sample ID 

Ascites 
7873M 

Ascites 
7882M 

Ascites 
7892M 

Ascites 
7873M 

Ascites 
7882M 

Ascites 
7892M 

CD4+ T cells -5% -1% 0% -5% -9% -4% 

CD8+ T cells -2% -2% -2% 1% -2% 2% 

regulatory T 
cells 

0% 0% 0% 1% 0% 0% 

B cells 0% 0% 1% 0% 0% 2% 

Macrophages/ 
Monocytes 

17% 31% missing 9% 22% missing 

Dendritic 
cells 

0% 2% 3% -3% -3% -2% 

Natural killer 
cells 

-1% 2% 5% -2% -3% 0% 

Supplementary Table 2: Deviation of estimates of cellular composition relative to FACS 
method. 
Estimates of the cellular composition for each method are shown in Suppl. Tab. 2. For sample 
7892, macrophages/monocytes quantification could not be determined by FACS. 

  



Cell type Required marker gene  
(AND) 

Optional 
marker gene 
(OR) 

Marker gene that 
must be absent 
(NOT) 

T cells CD3D, CD3E, CD3G, CD27, 
CD28 

  

CD4+ T cells CD4  FOXP3, IL2RA, 
CTLA4 

CD8+ T cells CD8B CD8A CD4 

Regulatory T cells CD4, FOXP3, IL2RA, 
CTLA4 

  

B cell CD19, MS4A1, CD79A, 
CD79B, BLNK 

  

Macrophages/ 
Monocyte 

CD14, CD68, CD163, 
CSF1R, FCGR3A 

  

Dendritic cell IL3RA, CLEC4C, NRP1   

Natural killer cells FCGR3A, FCGR3B, 
NCAM1, KLRB1, KLRB1, 
KLRC1, KLRD1, KLRF1, 
KLRK1 

  

Endothelial cell VWF, CDH5, SELE   

Cancer associated 
fibroblasts 

FAP, THY1, COL1A1, 
COL3A1 

  

Ovarian carcinoma 
cells 

WFDC2, EPCAM, MCAM   

Melanoma cell PMEL, MLANA, TYR, MITF   

Supplementary Table 3: Marker genes used to characterise unknown cell types from single-
cell RNA-seq gene expression profiles.  

The normalized gene expression of each marker gene is used for one of three logic gates to 
determine the overall expression for each cell type. 
  



Supplementary Note 1: Problem definition for the CVX package for MATLAB 

cvx_begin quiet 
    cvx_solver sdpt3; 
    variable w(size(B, 2)) nonnegative; 
    minimize( norm((B*w - m), 2) + lambda*norm(f, 2)) 
    subject to 
        w <= 1; 
        sum(w) <= 1; 
cvx_end 

 
  



 
Supplementary Figure 1: t-SNE map with data source-specific colour-coding.  
Single cells (symbols) were arranged in two dimensions based on similarity of their gene 
expression profiles by the dimensionality reduction technique t-SNE. Colours indicate the source 
location of each single cell (triangles for melanoma, squares for PBMCs, and diamonds for 
ascites).  



 
Supplementary Figure 2: t-SNE map with patient-specific colour-coding.  
Single cells (symbols) were arranged in two dimensions based on similarity of their gene 
expression profiles by the dimensionality reduction technique t-SNE. Colours indicate the patient 
sample and symbols show the source location (triangles for melanoma, squares for PBMCs, and 
diamonds for ascites). Red dashed ellipses indicate clusters of malignant tumour cells. 

  



 
Supplementary Figure 3: Detailed deconvolution results based on root-mean-square 
deviation (RMSD) as measure of estimation quality. (a) Scatter plot of true and estimated cell 
proportions for all 27 patient samples. Each dot represents one patient sample. Values close to 
the diagonal correspond to high deconvolution accuracy. Columns depict cell types; rows describe 
the five different configurations (REGP1-3 and CNTR1-2). In configuration REGP1, estimates for 
tumour-associated cell types are not available. (b) RMSD for all five configurations. Dots denote 
the median RMSD; the shading represents the uncertainty based on bootstrapping (upper and 
lower quartile). (Please note the different scaling of the figure axes.) 



 
Supplementary Figure 4: Impact of missing cell types on estimation accuracy.  
Dots denote the median of the correlation coefficient as measure of estimation accuracy; the 
shading represents the uncertainty based on bootstrapping (lower and upper quartile). For each 
cell type, the deconvolution accuracy for the full RGEP3 profile (left) is compared to a reduced 
RGEP3 leaving out each cell type at a time (to the right). For cases where certain profiles were 
removed from RGEP3 the corresponding estimation of this cell type is missing (e.g., the B cell 
estimation is missing for the case “w/o B cell profile”). 



 
Supplementary Figure 5: Estimation accuracy is dependent on different signature gene 
sets and deconvolution algorithms. 
Dots denote the median of the correlation coefficient as measure of estimation accuracy; the 
shading represents the uncertainty based on bootstrapping (lower and upper quartiles). Individual 
scatter plots are shown in Suppl. Fig. 8-14. (a) Comparison of five different signature gene sets 
used for generating the reference gene expression profiles. Table S12: a published set of 244 
marker genes differentially expressed in regulatory T cell subpopulations based on the scRNA-
seq melanoma data11; Table S3: a published set of 385 marker genes based on the scRNA-seq 
melanoma data11; LM22: gene set which comprises 547 signature genes that were found to 
maximally differentiate various cell types8; Merged: a list of 1076 unique genes combined from the 
LM22, Table S12 and Table S3 gene lists as well as the 45 marker genes used for classification; 
All genes: a list of 17,933 genes that have a non-zero expression in at least one sample. (b) 
Comparison of four different algorithms used in the deconvolution approach. mldivide: exact 
solution using an algorithm for matrix inversion in MATLAB (The MathWorks, Inc.); SDPT3: a 
semidefinite-quadratic-linear programming algorithm from the CVX package23; fitlm: fitting a linear 
model (y = a*x+b) to the data based on least-squares in MATLAB; 𝜈-SVR: a support vector 
regression algorithm used in the CIBERSORT method. 



 
Supplementary Figure 6: Classification of cell types from scRNA-seq expression profiles 
using decision trees.  
(a) DBSCAN clustering is performed on the t-SNE map to identify distinct cell clusters with high 
similarity. (b) The expression of 45 marker genes is evaluated based on three logical gates (AND, 
OR, NOT) and shown on top of the t-SNE mapping. (c) Predominant cell types within each cluster 
are identified based on the marker gene expression and used as a training set for unsupervised 
classification. (d) A decision tree classifier is trained and utilized to predict the cell types of all 
individual cells. (e) The resulting map indicates all nine major cell types by colour and by indication 
(melanoma, ascites) or location (PBMCs) by symbols.  
  



 
Supplementary Figure 7: Classification of T cell subtypes from scRNA-seq expression 
profiles. 
(a) DBSCAN clustering is performed on the t-SNE map to identify distinct cell clusters with high 
similarity. (b) The expression of six T cell marker genes is evaluated based on three logical gates 
(AND, OR, NOT) and shown on top of the t-SNE mapping. (c) Predominant sub types within each 
cluster are identified based on the marker gene expression and used as a training set for 
unsupervised classification. (d) A decision tree classifier is trained and utilized to predict the 
subtype of all individual cells. (e) The resulting map indicates three subtypes of T cells by colours 
and the data source (melanoma, PBMC, ascites) by symbols.  
  



 
Supplementary Figure 8: Detailed deconvolution results based on the “mldivide” algorithm 
and the “Merged” gene set.  
(a) Scatter plot of true and estimated cell proportions for all 27 patient samples. Each dot 
represents one patient sample. Values close to the diagonal correspond to high deconvolution 
accuracy. Columns depict cell types; rows describe the five different configurations (REGP1-3 and 
CNTR1-2). 𝜌 denotes the Pearson’s correlation coefficient. In configuration REGP1, estimates for 
tumour associated cell types are not available. (b) Pearson’s correlation coefficient between 
estimated and true cell fraction for all five configurations. Dots denote the mean of the correlation 
coefficient; the shading represents the uncertainty based on bootstrapping. (Please note the 
different scaling of the figure axes.)



 
Supplementary Figure 9: Detailed deconvolution results based on the “SDPT3” algorithm 
and the “Merged” gene set.  
Description as for Supplementary Figure 2. 
 



 
Supplementary Figure 10: Detailed deconvolution results based on the “fitlm” algorithm 
and the “Merged” gene set.  
Description as for Supplementary Figure 2. 
 



 
Supplementary Figure 11: Detailed deconvolution results based on the “Table S12” gene 
set and the “𝛎-SVR” algorithm.  
Description as for Supplementary Figure 2. 
 



 
Supplementary Figure 12: Detailed deconvolution results based on the “Table S3” gene set 
and the “𝛎-SVR” algorithm.  
Description as for Supplementary Figure 2. 
 



 
Supplementary Figure 13: Detailed deconvolution results based on the “LM22” gene set 
and the “𝛎-SVR” algorithm.  
Description as for Supplementary Figure 2. 
 



 
Supplementary Figure 14: Detailed deconvolution results based on the “All genes” gene 
set and the “𝛎-SVR” algorithm.  
Description as for Supplementary Figure 2. 
 


