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Chronic obstructive pulmonary disease (COPD) is a progressive condition characterized
by chronic airway inflammation and airspace remodeling, leading to airflow limitation
that is not completely reversible. Smoking is the leading risk factor for compromised
lung function stemming from COPD pathogenesis. First- and second-hand cigarette
smoke contain thousands of constituents, including several carcinogens and cytotoxic
chemicals that orchestrate chronic lung inflammation and destructive alveolar remodeling.
Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface
receptors primarily expressed by diverse lung cells. RAGE expression increases following
cigarette smoke exposure and expression is elevated in the lungs of patients with
COPD. RAGE is responsible in part for inducing pro-inflammatory signaling pathways
that culminate in expression and secretion of several cytokines, chemokines, enzymes,
and other mediators. In the current review, new transgenic mouse models that
conditionally over-express RAGE in pulmonary epithelium are discussed. When RAGE
is over-expressed throughout embryogenesis, apoptosis in the peripheral lung causes
severe lung hypoplasia. Interestingly, apoptosis in RAGE transgenic mice occurs via
conserved apoptotic pathways also known to function in advanced stages of COPD.
RAGE over-expression in the adult lung models features of COPD including pronounced
inflammation and loss of parenchymal tissue. Understanding the biological contributions
of RAGE during cigarette smoke-induced inflammation may provide critically important
insight into the pathology of COPD.
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INTRODUCTION
Chronic obstructive pulmonary disease (COPD) is defined by
airflow obstruction that is not fully reversible (Carp and Janoff,
1978). In particular, COPD involves chronic airway inflamma-
tion and pulmonary emphysema, which is defined anatomically
via pathology samples as an abnormal permanent enlargement
of airspaces distal to the terminal bronchioles accompanied by
destruction of their walls without obvious fibrosis (Pauwels et al.,
2001). COPD morbidity and mortality continue to rise as physi-
cian diagnoses of COPD increased from approximately 7 million
in 1980 to approximately 13.1 million in 2004 (Adams and
Barnes, 2006). COPD was responsible for 8 million outpatient
visits, 1.5 million emergency room visits, and 672,000 hospitaliza-
tions in the U.S. in 2006 (US Department of Health and Human
Services, 2009) and compared to 1980, deaths in 2007 increased
74% to over 124,000 people (American Lung Association COPD
Fact Sheet, 2011). While as recent as 2010 the cost associated with
COPD was $49.9 billion (Dalal et al., 2010), the precise pathobio-
chemical basis of COPD exacerbated by voluntary or involuntary
tobacco smoke exposure remains enigmatic.

Cigarette smoking is currently the most considerable risk fac-
tor for the development of COPD, consisting of emphysema and
chronic obstructive bronchitis (Anderson et al., 1964; Fletcher
and Peto, 1977; Thun et al., 2000; Hogg, 2004). Notwithstanding,

only one quarter of cigarette smokers develop clinically detectible
airflow limitation and other symptoms of COPD, suggesting an
important role for genetic susceptibility (Sethi and Rochester,
2000; Stockley et al., 2009). Although most people that develop
COPD currently smoke cigarettes or have smoked in the past,
COPD also develops in individuals that have never smoked
(Higgins, 1991). This harmful outcome is due in part to expo-
sure to second-hand smoke (Janson, 2004; Wakefield et al., 2005;
Eisner et al., 2006). Furthermore, because some former smokers
still live with active smokers and are observed to develop COPD
later in life, passive smoke exposure is likely to contribute to
disease progression.

First- and second-hand smokers diagnosed with moderate
COPD have altered expression of several genes, including tran-
scription factors, growth factors, and extracellular matrix proteins
(Ning et al., 2004). These and other gene products likely func-
tion to stimulate the recruitment of inflammatory cells, cytokine
secretion, cell death, and elevated protease production observed
after prolonged cigarette smoke exposure (Carp and Janoff, 1978;
Wright and Churg, 1990; Kuschner et al., 1996; Hautamaki et al.,
1997; Sopori, 2002). As such, it is critical to examine how
genes influence disease presentation so that precise mechanisms
through which passive and active cigarette smoke contribute to
COPD/emphysema can be identified.
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GENERAL MECHANISMS OF COPD PATHOGENESIS
Numerous reviews that address COPD pathogenesis, its impact,
and plausible therapies have been composed (Bridevaux and
Rochat, 2011; Budinger and Mutlu, 2011; Caramori et al., 2011;
Lugade et al., 2011; Rooney and Sethi, 2011). The intent of the
current work is to concisely provide a foundational summary of
conserved COPD modalities and discuss the plausible influence
of receptors for advanced glycation end-products (RAGE) sig-
naling. The prevailing pathogenic concept states that COPD is
associated with chronic inflammation, imbalances between pro-
teases/antiproteases, oxidative stress, and an elevated apoptotic
index. Inflammation arising predominantly from neutrophilic
contributions has been proposed due to enhanced neutrophil
abundance in bronchoalveolar lavage (BAL) and sputum from
COPD patients (Thompson et al., 1989; Stanescu et al., 1996;
O’Donnell et al., 2004). Levels of chemoattractants that recruit
neutrophils and other potent inflammatory mediators are also
elevated in COPD, including leukotriene B4 (Beeh et al., 2003),
CXCL2 and 8 (Keatings et al., 1996; Tanino et al., 2002; Beeh et al.,
2003), CXCL1 (Keatings et al., 1996), CXCL5 (Tanino et al., 2002),
IFN-γ (Hodge et al., 2007), IL-1β (Thacker, 2006; Churg et al.,
2009), and TNF-α (Barnes and Karin, 1997). Matrix metallopro-
teinases (MMPs) produced by macrophages and neutrophils are
also misregulated in COPD (Shapiro, 1994). In particular, levels
of MMP-1, MMP-2, MMP-7, MMP-9, and MMP-12 are all up-
regulated in pulmonary tissue, BAL, and/or sputum of patients
with COPD (Shapiro et al., 1993; Hautamaki et al., 1997; Ohnishi
et al., 1998; Pratico et al., 1998; Shaykhiev et al., 2009), how-
ever because smoke exposed MMP-9 knockout mice are protected
from emphysema, MMP-9 may require cooperation with other
proteases during adverse lung remodeling (Atkinson et al., 2011)
The chemical assessment of tobacco smoke reveals that it contains
high levels of reactive oxygen species (ROS) that are in excess of
intrinsic antioxidant defense mechanisms (Pauwels et al., 2001;
Barnes et al., 2003). Generated in the airways, oxidants lead to
cell dysfunction and/or death and also influence inflammatory
signaling and protease augmentation via NF-κB-mediated mech-
anisms (Moodie et al., 2004). During the last decade, enhanced
apoptosis stemming from diverse signaling pathways has also
been implicated in alveolar septal cell loss observed in COPD
patients (Kasahara et al., 2000, 2001; Tuder et al., 2003; Petrache
et al., 2006). As a programmed event of removing unwanted
cells and debris, apoptosis occurs via extrinsic signaling processes
(Degterev et al., 2003), and intrinsic mitochondria or endoplas-
mic reticulum-mediated processes (Darmon et al., 1995; Slee
et al., 1999). In summary, COPD is characterized by progres-
sive destruction of the distal lung and small airway obstruction
resulting from chronic inflammation and elevated cell death.

CONSTITUENTS OF TOBACCO SMOKE
Tobacco smoke is a toxic and carcinogenic mixture of more than
5000 chemicals (Talhout et al., 2011). Of these, around 400 have
been quantified, at least 200 are toxic to humans and/or exper-
imental animals, and over 50 have been identified as known,
probable, or possible human carcinogens (Kirsti, 2004). Studies
indicate that compared with mainstream smoke collected under
standard FTC/ISO smoking parameters, sidestream smoke has

higher levels of PAHs (Grimmer et al., 1987; Evans et al., 1993),
nitrosamines (Brunnemann et al., 1977, 1980; Hoffmann et al.,
1979a; Ruhl et al., 1980), aza-arenes (Dong et al., 1978; Grimmer
et al., 1987), aromatic amines (Patrianakos and Hoffmann, 1979),
carbon monoxide (Hoffmann et al., 1979b; Rickert et al., 1984),
nicotine (Rickert et al., 1984; Pakhale and Maru, 1998), ammo-
nia (Brunnemann and Hoffmann, 1975), pyridine (Johnson
et al., 1973; Brunnemann and Hoffmann, 1978), and the gas
phase components 1,3-butadiene, acrolein, isoprene, benzene,
and toluene (Brunnemann et al., 1990). In addition to these dele-
terious compounds, other factors such as the type of tobacco, the
chemicals added to the tobacco, the way the tobacco product is
smoked, and, for cigarettes and cigars, the material in which the
tobacco is wrapped can also affect second-hand smoke chemical
composition (International Agency for Research on Cancer, 2002;
National Toxicology Program, 2005; US Department of Health
and Human Services, 2006).

Cigarette smoke is also an important exogenous source of reac-
tive glycation products capable of promoting formation of AGEs,
advanced glycation end-products, which are irreversibly glycated
proteins that efficiently bind RAGE (Cerami et al., 1997). Studies
have shown that both aqueous extracts of tobacco and cigarette
smoke contain glycotoxins, highly reactive glycation products that
can rapidly induce AGE formation on proteins in vitro and in vivo
(Nicholl and Bucala, 1998; Nicholl et al., 1998). These activities
can be eliminated by passing the samples through a dry packed
column of aminoguanidine, a potent and specific inhibitor of
AGE formation. Additional studies have shown that serum AGEs
and apolipoprotein B-linked AGE levels are significantly ele-
vated in cigarette smokers relative to non-smokers and AGEs or
immunochemically related molecules are present at higher levels
in the tissues of smokers compared to non-smokers, regardless of
the presence of diabetes (Nicholl et al., 1998).

RECEPTOR FOR ADVANCED GLYCATION END-PRODUCTS
RAGE are cell-surface receptors of the immunoglobulin super-
family expressed in many cell types including endothelial and vas-
cular smooth muscle cells, fibroblasts, macrophages/monocytes,
and epithelium (Brett et al., 1993). RAGE expression is most
abundant in the lung, from which it was initially isolated,
and is selectively localized to well-differentiated alveolar type I
(ATI) epithelial cells (Schmidt, 2001). Identification in respira-
tory epithelium (Dahlin et al., 2004; Koslowski et al., 2004) and
studies that document RAGE-mediated adherence to collagen IV
(Demling et al., 2006) have led to the implication of RAGE in
important developmental processes such as the spreading, thin-
ning, and adherence that characterize the transitioning of ATII
cells to squamous ATI cells. RAGE was first described as a progres-
sion factor in cellular responses induced by AGEs that accumulate
in hyperglycemia and oxidant stress. Subsequent studies have
distinguished RAGE as a pattern recognition receptor that also
binds S100/calgranulins, amyloid-β-peptide, and HMGB-1 (or
amphoterin), to influence gene expression via divergent signal
transduction pathways (Reddy et al., 2006; Hudson et al., 2008;
Kim et al., 2008; Toure et al., 2008). Because RAGE expression can
also increase when ligands accumulate (Schmidt, 2001), RAGE-
ligand interaction may contribute to chronic pathological states
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where ligands are common including diabetic complications,
neurodegenerative disorders, atherosclerosis, and inflammation
(Hofmann et al., 1999; Taguchi et al., 2000). Specifically, a host
of pro-inflammatory responses such as those coordinated by
MAP kinases (ERK, JNK, and p38), NF-κB, ROS, and other pro-
inflammatory mediators such as TNF and IL-1 (Bianchi et al.,
2010) result from RAGE-ligand interactions (Figure 1). In con-
trast to short-lived cellular activation mediated by LPS, engage-
ment of RAGE by its ligands results in prolonged inflammation
(Lin et al., 2009). If left unchecked, such chronic inflammation
results in severe tissue injury.

The full length membrane bound form of RAGE (mRAGE)
contains an extracellular variable V-region-like immunoglobulin
domain crucial for ligand binding and two constant C-region-
like immunoglobulin domains, a single-pass hydrophobic trans-
membrane domain and a short, 43 amino acid, highly charged
cytoplasmic domain essential for intracellular signaling (Buckley
and Ehrhardt, 2010). The cytoplasmic domain of RAGE con-
tains four possible phosphorylation sites, S391, S399, S400, and

T401, of which only S391 is conserved among humans, mice,
guinea pigs, rats, rabbits, dogs, and cats (Sakaguchi et al., 2011).
Replacement of S391 to alanine was sufficient to abrogate PKCζ-
dependent phosphorylation and subsequent signal transduction
in vitro (Sakaguchi et al., 2011). Although not explicitly stated,
RAGE behaves similarly to a receptor tyrosine kinase (RTK)
cell surface receptor, requiring homodimerization to effectively
potentiate intracellular signaling cascades (Zong et al., 2010).
Distinct alternative isoforms also exist for the receptor due to dif-
ferential splicing variants of the RAGE message. Dominant neg-
ative RAGE (dn-RAGE) is a membrane anchored splice variant
of RAGE capable of ligand binding but lacking the intracellular
domain necessary for signal transduction. Endogenous secreted
RAGE (esRAGE) is generated via alternative splicing at exon 9
yielding the same V and C-regions of the full length-RAGE but
lacks both the hydrophobic transmembrane and the intracellular
domains (Buckley and Ehrhardt, 2010). Additionally, full-length
RAGE can be cleaved by MMPs to render sRAGE, a non-splice
variant of RAGE closely resembling esRAGE in structure and

FIGURE 1 | Deleterious effects characteristic of COPD are elicited

via several pro-inflammatory signaling pathways observed in

RAGE-expressing alveolar epithelial cells and resident alveolar

macrophages (∗). Direct stimulation of RAGE by tobacco smoke,

de novo AGE generation in a tobacco smoke environment, or genetic
up-regulation of RAGE in the lungs of conditional bi-transgenic mice
results in characteristics of COPD including inflammation, matrix
destabilization, and apoptosis.
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function (Yamakawa et al., 2011). These altered variants of RAGE
incapable of transducing signals are thought to function as decoy
receptors that prevent the interaction of mRAGE with its ligands.

The pro-inflammatory role of RAGE in cardiovascular dis-
eases is well documented (Yan et al., 2009). Furthermore, several
studies strongly suggest that RAGE signaling is a key regulator
of inflammation in major pulmonary diseases. A study demon-
strated that abrogation of RAGE signaling (using RAGE null
mice) attenuated pulmonary ischemia and reperfusion injury
associated with decreased NF-κB activation and IL-8 production
(Sternberg et al., 2008). Another important role for RAGE sig-
naling in lung disease shows that RAGE-deficient mice under
hyperoxic conditions survived longer than wild type controls and
the mice had less airway cellularity and diminished alveolar dam-
age compared to wild type controls (Reynolds et al., 2010). RAGE
has been implicated in the fibrotic process in a number of tissues,
including the peritoneum, kidney, and liver (Li et al., 2004; De
Vriese et al., 2006; Xia et al., 2008), where it has been shown to
promote fibrosis. In the lung, evidence continues to accumulate
suggesting an important role for RAGE in pulmonary fibrosis,
yet conflicting data portray RAGE as having both protective and
destabilizing functions. Acute lung injury (ALI) and a more severe
condition known as acute respiratory distress syndrome (ARDS)
are characterized by deterioration of the alveolar-capillary bar-
rier and impaired alveolar fluid clearance (Lucas et al., 2009). ALI
and ARDS are associated with damage to ATI cells, a population
of cells with significant RAGE expression, and several different
animal models of ALI express increased RAGE levels in BALF
(Uchida et al., 2006; Su et al., 2007, 2009; Zhang et al., 2008).
A published study from our laboratory considered the effects
of smoke exposure on RAGE expression both in lung cells and
mice (Reynolds et al., 2008). The research revealed that RAGE
and its ligands were up-regulated in lung epithelial cells cul-
tured with cigarette smoke extract (CSE) and that mice exposed
to cigarette smoke for 6 months had elevated RAGE expression
in pulmonary epithelium (Reynolds et al., 2008). While the full
extent of RAGE function in smoke-induced COPD has not been
sufficiently examined, these studies demonstrate that RAGE may
play a role in COPD pathogenesis.

CONTRIBUTIONS OF RAGE TO COPD PROGRESSION
RAGE and two of its ligands S100A12 and HMGB-1 were
up-regulated in a rat alveolar type I-like cell line (R3/1), a
human alveolar type 1I-like epithelial cell line (A549), and a
macrophage-like murine cell line (RAW 264.7) following expo-
sure to CSE (Reynolds et al., 2008). S100A12 is a calcium-binding
pro-inflammatory modulator and HMGB-1 is a non-histone
nuclear protein that acts as a potent pro-inflammatory media-
tor when secreted. In human lungs with smoke-related lesions,
widespread RAGE expression has been documented in bronchi-
olar epithelia, small respiratory airways, reactive ATI cells, and
alveolar macrophages (AMs; Morbini et al., 2006). The same
study identified elevated S100A12 in polymorphonuclear gran-
ulocytes and in extracellular fluid and the number and intensity
of carboxymethyl-lysine positive cells (cells that stain for AGEs)
were measurably enhanced in epithelial and inflammatory cells of
the lungs of smokers (Morbini et al., 2006).

Another factor highly expressed in the lungs of smokers with
COPD is early growth response gene 1 (Egr-1), a zinc finger-
containing, hypoxia-inducible transcription factor (Ning et al.,
2004). Egr-1 expression significantly increased in lung cell lines
following CSE exposure in vitro and it activated the RAGE pro-
moter (Reynolds et al., 2006, 2008). Because the RAGE gene
also contains NF-κB and SP-1 promoter response elements (Li
and Schmidt, 1997) and is transcriptionally regulated by cis-
acting Egr-1 (Reynolds et al., 2006), a possible auto-inflammatory
loop may be triggered suggesting cooperation between Egr-1
and RAGE in chronic smoke-related inflammatory disease states.
More recently, it was discovered that Ras, a small GTPase that
functions as a molecular switch in the control of diverse sig-
naling cascades, was induced in R3/1 cells following exposure
to CSE, resulting in up-regulation of NF-κB-mediated secre-
tion of TNF-α, IL-1β, and IL-8 (Figure 1; Reynolds et al.,
2011a).

Our lab has recently expanded research into the biology
of smoke-exposed primary mouse AMs also known to express
RAGE. Studies document that low levels of RAGE are expressed
by mouse primary macrophages during normal conditions and
that RAGE overexpression by these primary macrophages is asso-
ciated with inflammation and the coordination of lung damage
(Morbini et al., 2006). Our studies indicate that acute exposure of
mice to CSE via nasal instillation resulted in diminished BAL cel-
lularity and fewer AMs in RAGE null mice compared to controls.
Additionally, AMs isolated from wild type mice exposed to CSE
significantly increased RAGE expression (Robinson et al., 2012).
This recently published work also demonstrated for the first time
that RAGE null AMs exposed to CSE experienced reduced Ras
and p38 MAPK activation, less NF-κB translocation, and dimin-
ished expression of TNF-α and IL-1β when compared to CSE
exposed wild type AMs (Figure 1). Evidence suggests that pri-
mary AMs coordinate CSE-induced inflammation, at least in
part, via RAGE-mediated mechanisms and that cooperation with
alveolar epithelium in coordinated inflammatory responses is
likely.

USE OF RAGE TRANSGENIC MICE IN MODELING
CHARACTERISTICS OF COPD
Several animal models that seek to recapitulate various aspects of
COPD have been presented within the past decade. These models
include mouse IL-1β over-expressers (Lappalainen et al., 2005),
rat VEGF signaling nulls (VEGF or VEGFR2 blockers: Kasahara
et al., 2000), intratracheal administration of active caspase-3
(Aoshiba et al., 2003) and several others that aim to elucidate
inflammatory and other destructive mechanisms during smoke-
less and smoke-exposed disease progression (Petrache et al., 2005;
Giordano et al., 2008; Kang et al., 2012). The vast majority of these
models present emphysema-like anatomical characteristics and
inflammatory indexes in the presence of room-air and notable
exacerbation in the presence of cigarette smoke. Although RAGE
has been shown to be a marker for many inflammatory diseases
including COPD, a genetic mouse model for COPD had not been
previously examined.

We generated a bi-transgenic in vivo mouse model that utilizes
two transgenes to conditionally up-regulate RAGE (Figure 2).
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FIGURE 2 | Full length RAGE was over-expressed in alveolar type (AT) II

cells by obtaining progeny from two transgenic lines of mice. The
reverse tetracycline transactivator (rtTA) was produced under the control of

the human surfactant protein C (hSP-C) promoter in distal respiratory
epithelium. Following the administration of doxycycline (dox), a dox-rtTA
complex activates the TetO promoter, thereby expressing RAGE.

One transgenic mouse line employs surfactant protein C (SP-C)
to drive expression of rtTA (reverse tetracycline transactivator)
and another transgenic line contains binding sites for a com-
plex between rtTA and doxycycline (dox; Reynolds et al., 2011b).
Although COPD is an adult lung disease, we initially sought
to characterize RAGE bi-transgenic mice during development
with the realization that aspects of COPD may be detected
during organogenesis. Our model was thought to compliment
research that centers on bronchopulmonary dysplasia (BPD), an
embryonic disease highly correlated with emphysema in terms
of oxidative stress, pulmonary inflammation, increased apopto-
sis, protease/antiprotease imbalance and altered microvascula-
ture (Hargitai et al., 2001; Danan et al., 2002; Saugstad, 2003;
Ekekezie et al., 2004; Speer, 2006). While COPD is characterized
by sustained inflammation and alveolar destruction, remark-
ably similar mechanisms are implicated in the altered branching
and impaired alveolarization observed in BPD (Bourbon et al.,
2009).

EMBRYONIC RAGE BI-TRANSGENIC MICE HAVE PERTURBED
DISTAL EPITHELIUM
Complete perinatal lethality was observed when dox was sup-
plied to RAGE bi-transgenic mice throughout embryogenesis.
At embryonic day (E) 18.5, pulmonary tissues were severely
hypoplastic and only minimal respiratory surface area near the
visceral pleura remained. Several immunohistochemical and flow
cytometric experiments demonstrated diminished abundance of
differentiated distal lung cell types, most notably ATI and ATII
cells (Reynolds et al., 2011b).

Altered cellular differentiation has not sufficiently been char-
acterized in the distal lung of COPD patients; however, new
research has emerged demonstrating that human ciliated cells
can respond to cigarette smoke by promoting GDF15, a factor

capable of driving Muc5A expression in goblet cells (Wu et al.,
2011). RAGE and RAGE ligands have been implicated in altered
cellular differentiation of several cell types including smooth
muscle cells, skeletal myocytes and developing neural tissue (Suga
et al., 2011; Kim et al., 2012; Riuzzi et al., 2012). Thyroid
transcription factor 1 (TTF-1; also known as Nkx2.1) is a
key regulator of pulmonary development and present in dis-
tal lung epithelium that can negatively regulate RAGE expres-
sion (Reynolds et al., 2008) and SP-1 positively regulates the
active promoter region of TTF-1 in surfactant producing cells
(Das et al., 2011). Because NF-κB (a crucial intermediate of
RAGE signaling) can interfere with SP-1 binding (Benjamin
et al., 2010), RAGE may play a role in inhibited surfac-
tant synthesis observed when ATII cells are abnormally regu-
lated.

EMBRYONIC RAGE BI-TRANSGENIC MICE HAVE ABNORMAL
DISTAL PULMONARY ENDOTHELIAL CELL GROWTH
In addition to the decreased cellularity of the lungs, RAGE over-
production disturbed capillary growth and maintenance through
the inhibition of FoxM1 (a critical transcription factor nec-
essary for endothelial expansion) and PECAM (a marker for
endothelial cells) expression (Geyer et al., 2011). Endothelial cell
apoptosis has been observed in COPD patients using TUNEL,
immunohistochemistry and DNA ligation techniques that coin-
cided with the reduction of endothelial markers including VEGF
and VEGFR2 (Kasahara et al., 2001). Additionally Dinh-Xuan
et al. and Peinado et al. both showed that resected lung sam-
ples from COPD patients had extensive endothelial dysfunction,
which they proposed to contribute to hypertension (Dinh-Xuan
et al., 1991; Peinado et al., 1998). It is hypothesized that vas-
cular tone in the lung can be regulated by direct stimulation
of the vascular compartment by cigarette smoke and indirect
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stimulation stemming from smoke-exposed epithelial cells. Our
discoveries relating to pulmonary endothelium in the RAGE bi-
transgenic mouse correlate with numerous studies that demon-
strate RAGE signaling in cases of depressed endothelial function
and increased barrier disruption (Sun et al., 2009; Pollreisz et al.,
2010; Wolfson et al., 2011; Chen et al., 2012; Huang et al.,
2012).

EMBRYONIC RAGE BI-TRANSGENIC MICE HAVE EXTRACELLULAR
MATRIX ABNORMALITIES
We also demonstrated that MMP-9 secretion is increased, coin-
cident with diminished collagen IV (a principle component of
the alveolar basement membrane) deposition and production
(Bukey et al., 2011). COPD is characterized by an increase in
several MMPs including MMP-1, 2, 9, and 12 (Ohnishi et al.,
1998; Geraghty et al., 2011). Other research groups have also
demonstrated AGE-RAGE dependent mechanisms in MMP-9
production (Ishibashi et al., 2010; Zhang et al., 2010; Zhu et al.,
2012). While not yet evaluated in our embryonic RAGE bi-
transgenic mouse model, MMPs 1 and 2 have been implicated
as RAGE targets (Kamioka et al., 2011; Du et al., 2012; Yu et al.,
2012). Interestingly, MMP-1 has been shown to be up-regulated
not only in the lungs of COPD patients but in osteoarthritis
as well, a chronic inflammatory disease affecting articular carti-
lage (Steenvoorden et al., 2006). Ongoing research seeks to test
hypotheses related to matrix-targeting protease imbalances such
as those that involve α1-antitrypsin.

EMBRYONIC RAGE BI-TRANSGENIC MICE HAVE ELEVATED
PARENCHYMAL CELL APOPTOSIS
Thorough evaluations of apoptosis were performed in order to
ascertain causes for the hypoplastic lung phenotype in the embry-
onic RAGE bi-transgenic mouse. RAGE over-expressing lungs
detrimentally declined during the canalicular phase, a period
identified by terminal bronchiole branching, initial alveolariza-
tion, and microvascular organization. The abrupt loss of tissue
was observed in tandem with a significant increase in pro-
apoptotic Fas ligand (FasL), a decrease in the anti-apoptotic factor
Bcl-2, elevated cleaved active caspase-3 (a critical mediator of
cell death), and quantifiable apoptosis by TUNEL assessment
(Stogsdill et al., 2012). Electron microscopy also confirmed apop-
tosis via the detection of numerous bleb-like structures within
cells that were physically separated from the underlying basement
membrane. Importantly, cellular proliferation was not changed,
suggesting there was no feedback mechanism to compensate for
elevated cell death. Evidence is mounting that demonstrates active
apoptosis of epithelial and endothelial cells in human COPD
patients (Segura-Valdez et al., 2000; Kasahara et al., 2001; Majo
et al., 2001; Yokohori et al., 2004; Hodge et al., 2005; Imai et al.,
2005). Lending support for FasL-mediated apoptosis observed
in RAGE bi-transgenic mice was research by Mahali et al. that
demonstrated FasL elaboration is a direct product of AGE-RAGE
ligation (Mahali et al., 2011). Furthermore, RAGE and its lig-
ands have been shown to promote apoptosis in other tissue
types, including myocytes (Tsoporis et al., 2010), endothelial cells

(Chen et al., 2010), neuronal cells (Kim et al., 2011), epithelial
cells (Jin et al., 2011), and pancreatic β-cells (Lee et al., 2010). Our
studies have shown for the first time that increased expression of
RAGE using transgenic mouse technology directly activates apop-
tosis in lung parenchyma. In fact, sustained RAGE expression
during development is capable of modeling disorders character-
ized by cell loss including BPD. Furthermore, these data reveal
important RAGE-mediated mechanisms that control cell quan-
tity possibly introduced at the initiation of smoke-induced COPD
pathogenesis.

ADULT RAGE OVER-EXPRESSION YIELDS AN EMPHYSEMATOUS LUNG
Conditional up-regulation of RAGE for 2 to 3 months in the adult
bi-transgenic mouse lung lead to incremental dilation of alveolar
spaces, assessed by standard H&E staining (Stogsdill et al., 2011).
Quantification of the mean chord length of the airspace revealed
progressive dilation of alveolar spaces as RAGE over-expression
persisted (unpublished data). The adult RAGE bi-transgenic
mice had increased MMP-9 and decreased elastin expression
consistent with other COPD models. Furthermore, RAGE bi-
transgenic mice manifested significant inflammation measured
by elevated BALF protein, leukocyte infiltration, and secreted
cytokines (MIP-2, IFN-γ; Stogsdill et al., 2011). These data
support the concept that innovative transgenic mice that over-
express RAGE may model pulmonary inflammation and alveo-
lar destabilization independent of tobacco smoke. Furthermore,
it validates RAGE signaling as a target pathway in the pre-
vention or attenuation of smoke-related inflammatory lung
diseases.

CONCLUSIONS
Despite the progression in the field of RAGE biology in the
context of lung disease, the full extent of RAGE localization,
the molecular mechanisms that control its expression and its
downstream effects should remain topics of focused investi-
gation. While a great deal is known about COPD, relatively
little is known about factors that perpetuate inflammation or
modalities that sustain them. Our research has shown that
mechanisms of COPD progression including chronic inflam-
mation, imbalances involving proteases, oxidative stress, and
elevated apoptosis may be mediated by RAGE. Several endoge-
nous (S100/calgranulins, HMGB-1, AGEs) and exogenous ligands
(cigarette smoke) may be responsible for the sustained activa-
tion of RAGE leading to disease progression (Figure 1). As such,
it remains possible that targeting RAGE may, at least in part,
provide successful opportunities in the therapeutic alleviation of
debilitating inflammatory lung disease exacerbated by tobacco
smoke.
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