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CD4+ T cells with cytotoxic activity (CD4 CTL) have been observed in various immune 
responses. These cells are characterized by their ability to secrete granzyme B and 
perforin and to kill the target cells in an MHC class II-restricted fashion. Although CD4 
CTLs were once thought to be an in vitro artifact associated with long-term culturing, 
they have since been identified in  vivo and shown to play important roles in antiviral 
and antitumor immunity, as well as in inflammation. Functional characterization of CD4 
CTL suggests their potential significance for therapeutic purposes. However, in order to 
develop effective CD4 CTL therapy it is necessary to understand the differentiation and 
generation of these cells. Although the mechanisms regulating development of various 
CD4+ Th subsets have been clarified in terms of the cytokine and transcription factor 
requirement, the CD4 CTL differentiation mechanism remains elusive. These cells are 
thought to be most closely related to Th1 cells secreting IFNγ and regulated by eome-
sodermin and/or T-bet transcription factors for their differentiation. However, our studies 
and those of others have identified CD4 CTLs within other CD4+ T cell subsets, including 
naïve T cells. We have identified class I-restricted T cell-associated molecule as a marker 
of CD4 CTL and, by using this marker, we detected a subset of naïve T cells that have 
the potential to differentiate into CD4 CTL. CD4 CTL develops at sites of infections as 
well as inflammation. In this review, we summarize recent findings about the generation 
of CD4 CTL and propose a model with several differentiation pathways.

Keywords: CD4+ T cell subset, CD4 CTL, differentiation, antiviral immunity, inflammation, eomes, class i-restricted 
T cell-associated molecule, T cell activation

inTRODUCTiOn

Naive CD4+ T cells differentiate into various effector T cell subsets characterized by their capacity 
to produce specific cytokines in order to promote various types of immune responses. Th1 and Th2 
cells, which can produce IFNγ and IL-4, respectively, were the first described (1). Subsequently, 
various Th subsets with different functions have been reported, such as pro-inflammatory Th17 
cells, follicular helper T cells (Tfh), and regulatory T cells (Treg), and their individual features 
have been clarified. Functional differentiation into the different Th subsets is induced upon T 
cell receptor (TCR) stimulation by peptide–MHC and is regulated by environmental factors. 
Particular combinations of cytokines induce expression of master transcription factors such as 
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T-bet, GATA-3, RORγt, Bcl6, or Foxp3, which induces CD4+ 
T cells to differentiate into Th1, Th2, Th17, Tfh, or Treg cells, 
respectively (2). These Th subsets “help” to create optimal condi-
tions for other lymphocytes to enable their function during dif-
ferent types of immune response. More specially, the cytokines 
produced not only can promote phagocytic activity, generation 
of CD8 cytotoxic T cells (CTL), antibody production, and pro-
inflammatory responses but also can function to suppress the 
response. CD4 CTLs were identified as an unexpected CD4 
subset with cytotoxic function. These cells can secrete cytotoxic 
granules containing granzyme B and perforin and directly kill 
target cells in an antigen (Ag)-specific fashion upon direct 
contact. Similar to the other CD4 T cell subsets, it should be 
possible to identify CD4 CTLs by some specific marker proteins 
or transcription factors (3). We will discuss here what is known 
about CD4 CTL, with particular focus on the differentiation and 
function of this subset of T cells.

iDenTiFiCATiOn OF CD4 CTL

CD4+ T cells recognize Ag peptide in the context of the MHC 
class II (MHC-II), and CD4 CTLs are no exception. CD4 CTL 
target cells are restricted to class II-expressing antigen-present-
ing cells (APC) such as dendritic cells, macrophages, or B cells. 
MHC-II-restricted cytotoxic T cells were first identified decades 
ago in alloreactive responses (4, 5). Since then, many reports 
have described T cell lines and clones corresponding to CD4 
CTL from both human (6, 7) and mouse (8, 9). Although these 
cells showed MHC-II-restricted Ag-specific cytotoxic activity, 
the possibility that this activity was an in vitro artifact resulting 
from long-term in vitro culture could not be excluded. Recently, 
CD4 CTLs have also been identified among PBLs of humans, 
especially under conditions of chronic viral infections, such as 
human cytomegalovirus (10, 11), human immunodeficiency 
virus 1 (11, 12), and hepatitis virus (13). CD4 CTLs have also 
been found in mice infected with gamma-herpes virus (14). 
These reports suggest that the T cell lines and clones derived 
from long-term culture might correspond to the in vivo situa-
tion in which CD4+ T cells are exposed to Ags for a long time 
upon chronic virus infection. In fact, during influenza virus 
infection, influenza-specific cytotoxic activity of CD8 CTLs 
is impaired in the chronic phase of infection, and CD4 CTLs 
can function instead (15). However, Swain et  al. showed that 
CD4 CTLs are also observed in an acute phase influenza virus 
infection model (16). Although it is still unclear whether the 
CD4 CTLs generated in chronic and acute influenza infection 
have the same characteristics, these results indicate that CD4 
CTL can be generated during both chronic and acute virus 
infections. CD4 CTLs have been detected mostly in virus infec-
tion models, suggesting that one of the main functions of CD4 
CTLs is antiviral immunity. CD4 CTLs have also been detected 
during antitumor responses (17, 18) and chronic inflammatory 
responses such as autoimmune diseases (19, 20). In these cases, 
CD4+ T cells are also continuously exposed to Ag. These reports 
clearly indicate that CD4 CTLs are generated under various 
inflammatory conditions, and that these cells can exhibit func-
tions complementary to CD8 CTLs in vivo.

CD4 CTL TARGeT CeLLS

CD4+ T cells recognize Ag peptides presented by MHC-II that 
are phagocytosed and processed in the endosomes of APC. These 
peptides are typically derived from outside the cell as exogenous 
Ags, but endogenous self-peptides can also be presented through 
the autophagy process (21, 22). B cells present Epstein-Barr virus 
(EBV) Ag peptide by this pathway (21), and CD4 CTLs directly 
target the viral peptide–MHC complex and kill the B cells (23, 
24). Thus, CD4 CTL can function in immune surveillance of APC. 
Furthermore, not only APC but also cells that do not normally 
express MHC-II can become targets for CD4 CTLs. For example, 
IFNγ treatment or irradiation induces the expression of MHC-II 
on the surface of epithelial or tumor cells (17, 18, 25, 26), and lung 
epithelial cells express MHC-II after infection with parainfluenza 
or Mycobacterium tuberculosis (27, 28). CD4 CTLs may recognize 
viral Ags presented by MHC-II on these epithelial cells and lyse 
them as target cells. It is well known that many viruses such as 
EBV, CMV, and HSV try to escape from CD8-mediated cellular 
immunity by downregulating the expression of MHC-I on the 
surface of infected cells through inhibition of the TAP transporter 
and/or proteasome degradation pathways (29, 30). In order to 
overcome this virus escape mechanism and prevent viral expan-
sion, infected target cells may present viral Ags on the induced 
MHC-II. As a result, CD4 CTLs can lyse the target cells in a class 
I-independent, class II-dependent manner. On the other hand, 
we have to consider that the evidence for such class II-restricted 
killing has come mainly from experiments using peptide-pulsed 
transformed B cells or splenocytes as target cells. It is still debated 
how frequently class II-induced non-APC are killed by CD4 
CTLs in vivo.

MARKeRS FOR CD4 CTL

Markers specific for CD4 CTL have not been identified yet, 
but some markers related to cytotoxic functions of CD8 CTL 
or NK cells can be used. CD8 CTLs release cytotoxic granules 
directed toward the target cells, which are secreted from secre-
tory lysosomes that are translocated to and fused to the plasma 
membrane (31). After secretion of granules, proteins localized in 
lysosomes such as lysosome-associated membrane glycoproteins 
(LAMPs), LAMP-1 (CD107a) and LAMP-2 (CD107b) are abun-
dantly expressed on the cell surface. These molecules are markers 
for degranulation, and CD4 CTL can be identified by natural 
killer group 2 (NKG2A), which is a member of C-type lectin 
receptor family and forms a heterodimer with CD94. Its ligand 
is the non-classical MHC class Ib molecule HLA-E (or Qa-1b in 
mouse) that presents a nonapeptide derived from MHC-Iα chain 
(32, 33). In addition to NK and CD8+ T cells, CD4 CTLs also 
express NKG2A in effector sites (34, 35). Interestingly, NKG2A 
may transduce an inhibitory signal, which may contribute to the 
dysfunction of Ag-specific CTLs during chronic viral infections 
and in tumors (36). NKG2D, another family member, is also a 
marker for CD4 CTL (35, 37). This receptor forms a homodimer 
on the surface of NK cells and CD8+ T cells and induces activa-
tion signals for cell polarization and degranulation (38). Thus, 
these molecules as CD4 CTL markers are commonly shared with 
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NK cells and CD8 CTLs, indicating that CD4 CTLs have similar 
characteristics/functions.

We recently reported that the class I-restricted T cell- 
associated molecule (CRTAM) is another marker of CD4 CTL (39). 
We identified CRTAM originally as an early activation marker of 
NK and CD8+ T cells. CRTAM binds to its ligand, cell adhesion 
molecule-1 (40, 41). The heterotypic interaction is important 
for the maturation of CD8+ T cells during immune responses in 
lymph nodes (42). We also found that a small fraction of activated 
CD4+ T cells express CRTAM and that only CRTAM+ CD4+  
T cells develop into effector CD4+ T cells with cytotoxic function 
(39). Cytotoxic activity is acquired after incubation of CRTAM+ 
CD4+ T cells with IL-2. These results indicate that lineage devel-
opment of CD4 CTL is dictated to some extent during an early 
stage after T cell activation and that CRTAM is an early marker 
of CD4 CTL. Because CRTAM is only transiently expressed upon 
TCR stimulation, its usage as a CD4 CTL maker to detect and 
trace the cells in vivo is limited.

Downregulation of costimulatory receptors such as CD27 
and CD28 may also be markers on CD4 CTLs (12). In general, 
cells losing the expression of CD27/28 have been characterized 
as Ag-experienced, further differentiated cells. Conversely, the 
expression of CD57 (HNK-1/Leu-7) is upregulated in cells with 
cytotoxic activity (43, 44), particularly in both human (10, 45) 
and mouse (14) chronic infection models. In a mouse acute 
infection model of influenza virus, CD4 CTLs are detected in 
both the CD27+ and CD27− populations (46), and the majority 
of Eomes+ CD4 CTL expresses CD27 in an experimental autoim-
mune encephalomyelitis (EAE) model (47), indicating that these 
molecules do not necessarily represent authentic markers for 
CD4 CTLs. These data suggest that CD4 CTLs are enriched in 
further differentiated T cells.

DiFFeRenTiATiOn OF CD4 CTL

A number of studies on the differentiation of CD4 T cells into 
CD4 CTLs have revealed various cellular origins. CD4 CTL can 
apparently develop from Th0 (48, 49), Th1, Th2 (50), Th17 (46), 
and Treg (51) effector subsets. However, CD4 CTL derived from 
Th1 (or Th1-like) cells represent the majority of CD4 CTLs, 
which produce IFNγ alone or together with other cytokines 
such as TNFα and IL-2 (10, 12, 23, 52). It is well known that 
the transcription factor T-bet functions as the master regulator 
of Th1 differentiation and induces IFNγ production. T-bet also 
induces the expression of granzyme B and perforin, which are 
required for CD8 CTL activity (53). In an acute influenza virus 
infection model, the expression of T-bet was predominantly 
observed at the effector sites, suggesting that T-bet  also pro-
motes CD4 CTL differentiation (16). Interestingly, it has also 
been shown that the expression of eomesodermin (Eomes) but 
not T-bet is increased in the secondary effector phase and may 
play a critical role in the late stage of viral infection (54). CD4 
CTLs may be regulated by both of T-bet and Eomes, depending 
on their maturation stage.

It is noteworthy that CD4 CTLs have been mostly observed 
in virus infection models. Since virus infection typically leads to 

a Th1-skewed condition, CD4+ T cells may differentiate into Th1 
cells upon exposure of IL-12 or IFNγ produced by APC. CD4 
CTLs are clearly induced during the antiviral responses to help 
clear the virus. However, it was also reported that IFNγ is not 
required for the induction of cytotoxic activity because IFNγ-
deficient CD4+ T cells exhibit Ag-specific cytotoxic activity (16). 
Thus, whether Th1-skewed conditions are essential for induction 
of CD4 CTL still remains to be clarified.

Other reports showed that the cytotoxic activity of CD4 CTLs 
is enhanced when T cells are incubated under non-skewed (Th0) 
conditions rather than under Th1-skewed conditions (49). IL-2 
signaling is essential for induction of CD4 CTL, and low doses 
of Ag could induce cytotoxicity more efficiently. IL-2 induces 
Eomes expression, which in turn promotes the expression of 
IFNγ and cytotoxic granules (55, 56). Interestingly, Eomes rather 
than T-bet contributes to CD4 CTL function in these cases (47, 
57, 58). Furthermore, it is noteworthy that TCR signal strength 
affects the differentiation of effector cells and T cell polarization 
(59), and it is possible that CD4 CTL differentiation is similarly 
regulated.

CD4 CTLs can also be identified among intraepithelial 
lymphocytes (IEL) in the gut (60–63). Retinoic acid and TGFβ 
signaling terminates the expression of ThPOK and conversely 
upregulates the expression of both RUNX3 and T-bet. It was 
shown that these dramatic changes in transcription factor 
expression are required for reprograming of CD4+ T cells and 
their maturation to functional CD4 CTL. Furthermore, these 
cells seem to be derived from intestinal Treg cells in lamina 
propria (51). It is still unclear how much this reprogramming 
mechanism is involved in CD4 CTL differentiation during virus 
infection.

Recently, the relationship between CD4 CTL and Tfh cells has 
been shown. CD4 CTLs express high levels of Blimp1 and low 
levels of Bcl6 (64). The balance of these transcription factors is 
critical for inducing Tfh cells. However, in contrast to Tfh cells, 
CD4 CTL induction is suppressed by Bcl6 and TCF1, suggest-
ing that the development of CD4 CTL and Tfh is reciprocally 
regulated.

As described above, we identified CRTAM as an early CD4 
CTL marker. Initially, it has been reported that CRTAM+ CD4+ 
T cells are high producers of IFNγ and IL-22, and that CRTAM 
regulates T cell polarity and effector function (65). We found that 
CRTAM+ activated CD4+ T cells express high level of Eomes and 
generate CD4 CTL efficiently after cultivation with IL-2 under 
non-skewed conditions (39). We speculate that populations 
of naïve CD4+ T cells contain some CRTAM+ T cells at early 
stage of activation that have the potential to differentiate into 
CD4 CTL. Interestingly, CRTAM+ T cells can differentiate into 
Th1- or Th2-like cells under the respective skewing conditions, 
but importantly they still retain cytotoxic activity. These results 
indicate that CRTAM expression can induce cytotoxic activity 
regardless of cytokine environments. Accordingly, a study using 
CRTAM-transgenic (Tg) mice showed that CRTAM-mediated 
intracellular signaling induces Eomes expression and efficient 
differentiation to CD4 CTL.

By analysis of the CRTAM promoter it has been shown that 
AP-1 and ZEB1 can positively and negatively regulate CRTAM 
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FiGURe 1 | A model of CD4 CTL differentiation. After T cell receptor stimulation, a small fraction of naïve CD4+ T cells express class I-restricted T cell-
associated molecule (CRTAM). CRTAM+ CD4+ T cells have the potential to differentiate into CD4 CTLs, which gain cytotoxic activity after incubation with IL-2 (Th0 
CTL). Under the cultivation in the skewed conditions for each Th subset, they differentiate into Th1- or Th2-like cells with cytotoxic function (Th1 CTL, Th2 CTL). On 
the other hand, the majority of CRTAM− CD4+ T cells can differentiate into various Th subsets based on environmental cytokines. Th1 polarized CD4+ T cells are 
known to show cytotoxic activity, and it has recently shown that intestinal regulatory T cells (Treg) can convert to cytotoxic CD4 intraepithelial lymphocytes.
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expression, respectively (66, 67), but the precise mechanism of 
CRTAM induction during in  vivo immune responses remains 
unclear. Since different modes of T cell stimulation such as by 
Ag-APC or anti-TCR mAbs induce different levels of CRTAM, 
signal strength and environmental conditions at the time of stim-
ulation, such as the cytokine environments, may affect CRTAM 
expression. CRTAM protein is degraded by the proteasome in 
the absence of stimulation. Even in CRTAM-Tg mice, the T cells 
express CRTAM on the cell surface only transiently and only 
upon stimulation (39). Thus, transient expression of CRTAM is 
tightly regulated both transcriptionally and posttranslationally. 
This suggests that even transient signal transduction from the 
cell surface CRTAM may be sufficient to induce differentiation 
to CD4 CTL.

CD4 CTLs seem to be derived from various types of CD4+ 
T cells, and several differences have been observed during their 
differentiation (Figure 1). Whereas a part of the cell population 
already has CD4 CTL potential from the early stage of activation, 
others may gain activity only after further differentiation. Although 
precise analysis is necessary to determinate whether these CD4 
CTLs are the same subset, it seems likely that CD4 CTLs have 
several pathways of differentiation, each with different precursor 
cells. “CD4 CTL” should be general term used to describe “CD4+  

T cells with cytotoxic activity” rather than one defining a uni-
form subset. Furthermore, several questions still remain about 
the relationship between CD4 CTL functions and CRTAM 
expression. First, it is still unclear whether all CRTAM+ CD4+ 
T cells can gain cytotoxic activity. Second, although CRTAM 
expression is downregulated within 48 h after stimulation, the 
potential to express is preserved, because all (or the majority) 
of cells express CRTAM again upon reactivation (39, 65). These 
results are slightly controversial and require further analysis to 
precisely determine the extent of plasticity of these cells. Third, 
in acute influenza virus infection, CD4 CTLs show Ag-specific 
cytotoxic activity that correlates with CRTAM expression. 
However, it is still an open question whether memory CD4 
CTLs derived from naïve CRTAM+ CD4+ T cells are observed 
in sites of inflammation and have Ag-specificity. Clarification of 
these issues will promote the understanding of the function and 
differentiation of CD4 CTLs.

IN VIVO FUnCTiOn OF CD4 CTL

CD4 CTLs with cytotoxic activity are mainly localized in periph-
eral tissues. In mouse models, influenza virus infections are 
restricted to the lung, and CD4 CTLs are also observed in this 
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area. Under these conditions, not only APC but also infected epi-
thelial cells can present Ag peptide on MHC-II, and CD4 CTL can 
recognize these cells and contribute to virus clearance. CRTAM 
expression can efficiently enhance CD4 CTL differentiation and 
probably also contributes to retention of CD4 CTL in the lung 
because lung epithelial cells highly express CRTAM ligand (68). 
Cytotoxicity by CD4 CTL becomes more effective when CD8 
CTL activity is impaired during infections in association with 
virus escape strategies.

CD4 CTLs also have the potential to exacerbate autoimmune 
diseases. They contribute to the induction of intestinal colitis, 
and CRTAM is involved in the differentiation and residency of 
these T cells in the gut (39, 69). Indeed, CD4 CTLs are criti-
cally involved in the induction of colitis since colitis induction 
is reduced in granzyme B-deficient mice. Although it is still 
unclear whether the CD4 CTLs we observed in colitis are the 
same population/subset as recently described among CD4 IEL 
(51), both cells highly express CRTAM and possess killing 
function utilizing cytotoxic granules. Furthermore, CD4 CTL 
as Eomes-expressing CD4+ T cells are involved in late-onset 
EAE and may also have a major role in the progressive state of 
multiple sclerosis in humans (47). Eomes-deficient CD4+ T cells 
failed to induce late-onset EAE, suggesting that CD4 CTLs are 
responsible for this pathogenesis and could be target cells for 
therapeutic intervention.

COnCLUSiOn

CD4 CTLs positively and negatively function in various types 
of peripheral inflammation sites, and affect both protective and 
pathogenic immunity. These disparate outcomes could be due to 
the Ag specificity of the CD4 CTLs. In the case of protection from 
viral infection, CD4 CTLs may be specific for viral Ag(s), whereas 
in the case of inducing autoimmunity, such as in colitis or EAE, 
these cells could be specific for microbiota in the intestine or 
self Ag(s), such as myelin basic protein. It will be important to 
investigate and understand the mechanisms of differentiation and 
function of CD4 CTL, particularly for promoting antiviral and 
antitumor immunity for host protection, as well as for effective 
intervention and therapy for autoimmune diseases.
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