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Abstract: Hyperspectral imaging in the visible and near infrared (VIS-NIR) region was 
used to develop a novel method for discriminating different varieties of commodity maize 
seeds. Firstly, hyperspectral images of 330 samples of six varieties of maize seeds were 
acquired using a hyperspectral imaging system in the 380–1,030 nm wavelength range. 
Secondly, principal component analysis (PCA) and kernel principal component analysis 
(KPCA) were used to explore the internal structure of the spectral data. Thirdly, three 
optimal wavelengths (523, 579 and 863 nm) were selected by implementing PCA directly 
on each image. Then four textural variables including contrast, homogeneity, energy and 
correlation were extracted from gray level co-occurrence matrix (GLCM) of each 
monochromatic image based on the optimal wavelengths. Finally, several models for maize 
seeds identification were established by least squares-support vector machine (LS-SVM) 
and back propagation neural network (BPNN) using four different combinations of 
principal components (PCs), kernel principal components (KPCs) and textural features as 
input variables, respectively. The recognition accuracy achieved in the PCA-GLCM-LS-SVM 
model (98.89%) was the most satisfactory one. We conclude that hyperspectral imaging 
combined with texture analysis can be implemented for fast classification of different 
varieties of maize seeds. 
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1. Introduction 

Effective variety discrimination of maize seeds is increasingly vital for the growing food industry 
owing to the appearance on the market of more and more new maize varieties like Sweet maize, Waxy 
maize, Popcorn, Dent maize and Amylomaize, during these years. Different varieties of maize seeds 
have different characteristics and qualities. Types of maize are commonly classified depending on their 
quality parameters, such as oil content, sweetness, and degree of waxiness. How to target and 
recommend an appropriate maize variety which meets the varietal purity standards for target markets is 
a serious problem faced by variety breeders, farmers, bulk handlers, marketers, and others. However, 
the traditional and prevailing methods for seed cultivar identification, like grain morphology, 
fluorescent scanning, protein electrophoresis and DNA molecular markers are time consuming, 
expensive, complex to use and subject to human error and inconsistency. To overcome these 
shortcomings, an approach for quickly and reliably identifying maize seed varieties would be highly 
desirable and beneficial from both technical and economical points of view. Thus, is this work 
automatic variety identification based on hyperspectral imaging technique was investigated. 

Hyperspectral imaging is an emerging platform technology that integrates spatial information, as 
regular imaging systems, and spectral information for each pixel in the image. Compared to 
conventional RGB imaging, NIR spectroscopy and multispectral imaging, hyperspectral imaging has 
many advantages, like containing spatial, spectral and multi-constituent information and sensitivity to 
minor components [1]. The combined nature of imaging and spectroscopy in hyperspectral imaging 
enables this system to provide images in a three-dimensional (3-D) form called “hypercube” which can 
be analysed to ascertain minor and/or subtle physical and chemical characteristics of a sample as well 
as their spatial distributions. This technique, originally developed for remote sensing applications [2], 
has since found application for non-destructive food analysis [3–6]. 

Regarding the classification of agricultural products, the technique has been successfully applied in 
detection on apples [7–9] and cucumbers [10–12]. Moreover, hyperspectral imaging found its way for 
potential applications in evaluation of cereal quality such as wheat classes identification [13],  
insect fragments assessment in flour milled from infested wheat [14], maize kernel hardness 
classification [15] and early detection of toxigenic fungi in maize [16]. 

Although many studies have been focused on wheat and rice variety identification and quality 
inspection, no research endeavours using hyperspectral imaging have been reported for maize seeds. 
Therefore, it is our interest to implement this technology to aid visual inspection and replace human 
judgement in the discrimination of different seeds. The aim of this study was to investigate the 
feasibility of using hyperspectral imaging in the 380–1,030 nm visible and near infrared spectral region  
for the variety discrimination of maize seeds. The specific objectives were to: (1) extract spectral 
features from the average reflectance spectrum of hyperspectral images using principal component 
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analysis (PCA) and kernel principal component analysis (KPCA); (2) extract texture features from 
hyperspectral images using PCA and Gray-level co-occurrence matrix (GLCM); (3) develop several 
classification models using least squares-support vector machine (LS-SVM) and back propagation neural 
network (BPNN) based on different combinations of spectral features and texture features, respectively, 
and (4) obtain an optimal calibration model after comparing the performance of different algorithms.  

2. Experimental Section  

2.1. Sample Preparation 

A total of 330 samples of six maize seed varieties were collected from the Seed Company of 
Zhejiang Province in China, including Heinuo (I), Huyunuo (II), Sukehuanuo (III), Jinyin (IV), Meiyu 
(V) and Suyu (VI). These six varieties of maize seed were all produced in Zhejiang Province in 2010. 
There were different cultivar registrated codes among these different brands according to Maize 
GB1353-2009, State Standard of the People’s Republic of China. This classification method is mainly 
based on the testa colour. Maize seeds were evenly distributed in glass dishes of the same size  
(∅120 mm × 10 mm), and the surface of samples was smoothed. Each dish was then imaged 
individually in the hyperspectral imaging system as explained below. 

2.2. Hyperspectral Imaging System 

A laboratory visible and near infrared (VIS-NIR) hyperspectral imaging system was assembled to 
acquire hyperspectral images for maize seeds. As shown in Figure 1, the hyperspectral imaging system 
consists of a imaging spectrograph (ImSpectorV10, Spectral Imaging Ltd., Oulu, Finland), a high 
performance CCD camera (C8484-05; Hamamatsu, Hamamatsu City, Japan), an illumination unit 
containing two 150 W quartz tungsten halogen lamps (2900ER; Illumination Technologies, Inc.,  
New York, NY, USA), a mobile platform used for samples removing and a computer running the Spectral 
Cube data acquisition software (V10E and N17EIsuzu Optics Corp., Taiwan, China) which controls the 
motor speed, exposure time, binning mode, wavelength range and image acquisition. The ground track of 
mobile platform was 300 mm. The camera spectral range was from 380 nm to 1030 nm divided in 512 
bands. The camera has 672 × 512 (spatial × spectral) pixels with a spectral resolution of 2.8 nm. 

Figure 1. Schematic diagram of hyperspectral imaging system. 
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2.3. Image Acquisition 

Each glass dish filled with seeds was placed on the mobile platform and then moved at a speed of 
4.5 mm/s to be scanned using 0.06 s exposure time to build a hyperspectral image with dimensions  
(x, y, λ), where x and y are the spatial dimensions (number of rows and columns in pixels) and λ is the 
number of wavebands. Therefore, the images were acquired with 672 pixels in x-direction, n-pixels in 
y-direction (based on the length of the sample) and 512 wavelengths in λ-direction with 1.23 nm 
between contiguous bands. 100 × 100 pixels were randomly selected from each image as a region of 
interest (ROI) and also treated as one sample. About 10 ROIs were produced in one image and totally 
330 ROIs, i.e., 330 samples were used to extract the spectral features and texture features 

2.4. Image Correction 

For calculating the reflectance spectrum, the spectral raw images (I0) of the samples were corrected 
using two reference standards: a “white” one (W) to set-up the maximum reflectance conditions, which 
was obtained for a Teflon white surface under the same condition of the raw image; and a “black” one 
(B) to define the no reflectance condition (zero), which was acquired by turning off the light source 
and completely covering the lens with its opaque cap. The calibrated image (I) was then calculated 
using the following equation: 

0I BI
W B

−=
−

 (1)

Figure 2 shows the corrected ROI images of six varieties of maize seeds after this correction 
process. It could be seen that the colour of I was almost black. Type II and V were similar and pale 
yellow. IV and VI were approximately orange. Sample III showed a little pink in yellow. Besides, 
variety IV showed obviously different shape. These corrected images will be the basis for the 
subsequent image analysis to extract the spectral properties and textural features variables. All the 
processing and analyzing of the acquired hyperspectral data were carried out using the Environment 
for Visualizing Images (ENVI 4.6) software (ITT visual information solutions, Boulder, CO, USA). 

Figure 2. Images acquired from six varieties of maize seeds. 

 
 

2.5. Data Analysis 

2.5.1. Principal Component Analysis 

PCA is a multivariate statistical tool developed primarily to obtain a parsimonious representation of 
multivariate data. Orthogonal transformation by PCA results in fewer independent variables but 
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maximum representation of original variables [11]. In this study, reflectance values of all pixels 
identified by each ROI were averaged to produce one mean value for each band, and the whole 512 
mean values of 512 bands represented the average reflectance spectrum of each sample. The same 
routine was repeated for all ROI images of all samples. Then the spectral data extracted from 330 
samples of different varieties were firstly analyzed using PCA. The full cross validation method was 
used for PCA. PCA applied on average spectra was implemented using “The Unscrambler V9.7 
software” (CAMO PROCESS, AS, Oslo, Norway). 

PCA was also directly employed on the selected ROI images to create the PC images using ENVI 
software. Each PC image is a linear sum of the original images at individual wavelengths multiplied  
by corresponding (spectral) weighting coefficients [17]. Although multivariate data analysis can 
sometimes be applied directly to data of continuous spectra, its calibration process is often  
time-consuming [18]. Loadings resulting from PCA (weighting coefficients) can be used to identify 
important variables that are responsible for the specific features appearing in the corresponding scores. 
To remove redundant information for realizing hyperspectral imaging in potential on-line inspections, 
some optimal wavelengths were selected. According to previous research, optimal wavelengths may be 
equally or more efficient than full wavelengths [19,20]. The reduced number of wavelengths is enough 
to characterize most of the classification tasks [21]. Therefore, several wavelengths with high (local 
maxima) and low (local minimum) weighing coefficients from the PC loadings were selected as the 
dominant wavelengths [22]. Additionally the monochromatic images of these optimal wavelengths 
were then selected as the optimum images to represent the most significant variance and loading 
weights for classifying six cultivars of maize seeds. 

2.5.2. Kernel Principal Component Analysis 

In order to compare with PCA, another reduction dimension approach, kernel principal component 
analysis (KPCA), was implemented to extract the spectral features. KPCA successfully extends PCA 
to nonlinear cases by performing PCA in a higher or even infinite dimensional feature space which is 
nonlinearly transformed from input space and implicitly defined by a kernel function [23]. The idea of 
KPCA is to firstly map the original data X = [x1,…,xn], n = 1,…,N, into a high-dimensional feature 
space F using a nonlinear mapping φ : RP→F, and then the linear PCA is executed in F based on the 
mapped data φ(xn) [24]. In this study, the powerful kernel function of gaussian radial basis (RBF) is 
adopted for KPCA. The first few optimal kernel principal components (KPCs) and principal components 
(PCs) would be selected as the inputs variables to develop classification models, respectively. KPCA 
was realized by MATLAB 7.8.0.347 (R2009a) software (The Mathworks, Inc., Natick, MA, USA). 

2.5.3. Gray-Level Co-Occurrence Matrix 

GLCM analysis was executed to extract second-order statistical textural features variables from the 
PC images using each of the selected dominant wavelengths. GLCM is a statistical technique for 
texture analysis. Probably, the most frequently cited method for texture analysis is based on extracting 
various textural features from a GLCM. A general procedure for extracting textural features of image 
in the spatial domain was presented by Haralick et al. [25]. A co-occurrence matrix is a square matrix 
with elements corresponding to the relative frequency of occurrence of pairs of grey level of pixels 
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separated by a certain distance in a given direction (0°, 45°, 90°, or 135°) [26]. In this study, the 
textural features were calculated from the GLCM when the direction equals to 0° and the distance 
equals to 1, respectively. The following four GLCM parameters were calculated using a program 
developed by MATLAB 7.8 to express texture: contrast, homogeneity, energy and correlation. Then 
these textural variables from the optimal PC images and the PCs or KPCs selected from average 
spectrum data mentioned before were implemented together as the inputs of LS-SVM and BPNN to 
build classification models, respectively. 

2.5.4. Least Squares-Support Vector Machine  

LS-SVM is a state-of-the-art statistical algorithm capable of learning in high-dimensional 
characteristic space with fewer training variables or samples [27–29]. It uses a linear set of equations 
instead of a quadratic programming (QP) problem to obtain the support vectors (SVs). Successful 
examples of LS-SVM applications for quantification and classification have been reported [30–33]. In 
this study, total 330 samples were randomly split into two groups, 240 samples (40 of each variety) of 
which were selected for the calibration set, and the remaining 90 samples (15 of each variety) were 
applied as the prediction set. As giving a good performance under general smoothness assumptions on 
handling the nonlinear relationships between the spectra and target attributes, RBF kernel was used in 
this study [34]. The free LS-SVM toolbox (LS-SVM v 1.5, Suykens, Leuven, Belgium) was applied 
with MATLAB to develop the calibration models. 

2.5.5. Back Propagation Neural Network 

In order to compare the performance of LS-SVM models, BPNN was applied in this study. BPNN 
is a type of nonlinear neural network used to solve several types of classification and regression 
problems. The eigenvectors obtained from compressing the raw spectra were processed by the neural 
network and the network output expresses the resemblance that an object corresponds with a training 
pattern [35].The theory of BPNN has been described extensively [36,37]. All calculations of BPNN 
were carried out based on the Neural Networks toolbox of MATLAB. 

3. Results and Discussion 

3.1. Spectral Analysis 

3.1.1. Reflectance Spectra of Maize Seeds 

The actual optical sensitivity of this system ranges from 380 to 1,030 nm but only the range of  
500–900 nm was used to avoid low signal-to-noise ratio. The average reflectance spectra of each 
variety of seeds in the spectral range of 500–900 nm are shown in Figure 3 respectively. It can be seen 
that the trends of the spectral curves were quite similar except the one of cultivar I (Heinuo) since this 
variety looked almost black while others appeared approximately yellow. However, it could not 
distinguish all cultivars of maize seeds by colour variance. Therefore, further treatments would be 
needed and then the latent features of the spectra could be applied for the variety discrimination of 
maize seeds. 
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Figure 3. Vis/NIR reflectance of six different maize seeds extracted from the ROI pixels of 
hyperspectral images. 

 

3.1.2. PCA Using Spectral Data 

PCA was applied on all spectral data (500–900 nm) acquired from all samples to reduce the high 
dimensionality and to check qualitative discrimination in the spectra among the maize seeds. The 
explained variance rate for the first three principal components was 95%, 3% and 1% of the total 
variance, respectively. It indicated that the cumulative reliabilities of the first three PCs could explain 
99% of the total information, so they could be used to represent the 315 variables for classification of 
maize seeds. The interpretation of the results of PCA is usually carried out by visualization of its PC 
scores. Figure 4 shows the scores plot of PC1 × PC2 × PC3 of total samples. It can be found that 
different varieties distributed separately in the three-dimension area, and variety I seems far away from 
the other five cultivars owing to its distinct colour. However, although the sample points of varieties 
from II to VI were clustered, respectively, their borders are not clear and some sample points near the 
borders are mixed. For this, it is hard to distinguish all kinds of samples in the three-dimension area of 
PC scores plot. Therefore, more classifiers were needed based on the PCA process. 

Figure 4. Score cluster plot with PC1× PC2 × PC3 of each maize variety. 
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3.1.3. KPCA Using Spectral Data 

Similarly, KPCA was used in the spectral region between 500 nm and 900 nm. The top three KPCs 
were extracted and they could explain 99.63% variance of all features, which corresponding to the 
accumulative variance of 99% from the first three PCs by PCA. It sketched that the first three KPCs 
could also express the total spectral information and the KPCA feature extraction method is a little 
more superior to the traditional PCA method. 

3.2. Textural Analysis 

3.2.1. Selection of Effective Wavelengths 

As stated above, PCA directly implementing on each ROI image using ENVI was used for 
identification of optimal wavelengths. The PC loadings can be used to identify sensitive wavelengths 
that are highly correlated with each PC’s. 

The top three PCs were used for x-loading weights to select wavelength in the entire spectral range. 
The wavelengths corresponding to peaks (maxima) and valleys (minima) at these particular principal 
components were selected as optimum wavelengths (Figure 5). Therefore, three wavelengths (523, 579 
and 863 nm) were then selected as the effective wavelengths which can later be used to discriminate 
the different varieties of maize seeds. Such reduced number of wavelengths would help in decreasing 
the time required to acquire and process each spectral images. 

Figure 5. Loading weights of the first three PCs from PCA on ROI images for selecting 
optimal wavelengths. 

 

3.2.2. Textural Feature Extraction from GLCM 

The wavelengths selected before may represent the differences of colour and different content of 
ingredients in maize seeds. Thus, the monochromatic images of the effective wavelengths were then 
selected as the optimal images to represent the most significant variance and loading weights within the 
whole region. Four textural features including contrast, homogeneity, energy and correlation were 
calculated from GLCM of each monochromatic image. Additionally, there were three monochromatic 
images for each sample corresponding to optimal wavelengths 540 nm, 670 nm, and 800 nm, so 12 
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textural features were then generated for one sample through GLCM feature extraction. Figure 6 is the 
monochromatic images of six varieties at three sensitive wavelengths. The development of LS-SVM 
models and BPNN models were based on the four combinations of these 330 × 12 textural variables, PCs 
and KPCAs resulting from the average spectra. Specifically, the different input combinations were PCs, 
PCs combined with textural features, KPCs and KPCs combined with textural features, respectively. 

Figure 6. Monochrome images obtained using three selected optimal wavelengths. 

 

3.3. Maize Seeds Classification by LS-SVM and BPNN Models 

Regarding LS-SVM models, the optimization-value ranges for the regularization parameter γ and 
the RBF (radial basis function) kernel function parameter σ2 were set at 2−1–210 and 2–215, 
respectively, which were determined by applying a grid-search technique. For each combination of γ 
and σ2 parameters, the root mean square error of cross-validation (RMSECV) was calculated. The 
optimum parameters were selected when they produced the smallest RMSECV. Ninety samples in the 
prediction set were classified by the LS-SVM model with the optimal combinations of (γ, σ2). 

For BPNN models, the optimal parameters of this matrix in modeling process were set as follows 
after the adjustments of parameters. The number of hidden layers, the dynamic parameter, the goal 
error and the times of training were set as 9, 0.6, 0.00001 and 1,000, respectively. The threshold error 
of recognition was also set as ±0.5. 

For comparison, several LS-SVM and BPNN models were established using the selected PCs, 
KPCs and the textural variables as different inputs, respectively. Table 1 shows the discrimination 
results of six varieties of maize seeds in the calibration set and prediction set using these eight models, 
respectively. It could be seen that LS-SVM models generally performed better than BPNN models. 
Moreover, lower error rates were obtained in LS-SVM models when adding the textural features in 
discrimination models, while the prediction accuracy for BPNN models combined with textural 
features from GLCM was similar to that of the ones only using the spectral features (PCs and KPCs). 
Specifically, the wrong results of prediction set in PCA-LS-SVM and KPCA-LS-SVM models both 
happened in variety IV and V. A total of six samples were mistaken in each of these two models. 
However, only one and three samples were falsely judged by PCA-GLCM-LS-SVM and  
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KPCA-GLCM-LS-SVM, respectively. Finally, the LS-SVM model combined with PCs by PCA and 
textural variables by GLCM obtained the best discrimination accuracy of 98.89% in this condition. 
Thus, the overall results indicated that the new combination of PCA-GLCM-LS-SVM exceeded the 
ones based on KPCA and BPNN in variety discrimination of maize seeds using VIS-NIR hyperspectral 
imaging. Probably because some maize seeds samples showing similar colour in different varieties 
would be wrongly discriminated if only using the spectral features to develop model. However, they 
can be identified more accurately using classification model based on the combination of spectral and 
textural features owing to the existence of some textural differences among them. 

Table 1. Statistic result of discrimination models for prediction. 

Method 
Accuracy of LS-SVM Model (%) Accuracy of BPNN Model (%) 
Calibration Prediction Calibration Prediction 

PCA 95.00 93.33 94.58 91.11 
PCA-GLCM 100 98.89 97.50 91.11 

KPCA 93.75 93.33 93.33 91.11 
KPCA-GLCM 99.58 96.67 98.33 90.00 

4. Conclusions 

The above excellent discrimination results suggested that VIS-NIR hyperspectral imaging technique 
combined with PCA-GLCM feature extraction and LS-SVM could be successfully applied for 
conducting fast variety identification of commercial maize seeds. Three wavelengths (523, 579 and 
863 nm) were selected as the optimum wavelengths according to first three PCs loading weights. 
Based on four textural features calculated from GLCM of each monochromatic image at optimal 
wavelengths, prediction accuracy of 98.89% was achieved using the LS-SVM calibration model, 
which was higher than that of using KPCA and BPNN calibration models. This increased accuracy is 
very important for discrimination of multiple varieties of maize seeds in mass and practical 
applications. Combining spectral features and texture features to establish LS-SVM discrimination 
models was proved as a prominent way for image classification with high accuracy. This finding will 
provide assistance for the future research of hyperspectral imaging analysis. Expanding the variety 
number and optimizing the image process algorithm should be put more effort in future study to 
validate the repeatability of the algorithms for real-time online applicability. Besides, more effective 
wavelengths would be acquired, which might be also important for the on-line inspection and portable 
instruments for commercial applications of adulteration detection.  
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