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Abstract

Background: Medical Image segmentation is an important image processing step. Comparing images to evaluate
the quality of segmentation is an essential part of measuring progress in this research area. Some of the challenges in
evaluating medical segmentation are: metric selection, the use in the literature of multiple definitions for certain
metrics, inefficiency of the metric calculation implementations leading to difficulties with large volumes, and lack of
support for fuzzy segmentation by existing metrics.

Result: First we present an overview of 20 evaluation metrics selected based on a comprehensive literature review.
For fuzzy segmentation, which shows the level of membership of each voxel to multiple classes, fuzzy definitions of all
metrics are provided. We present a discussion about metric properties to provide a guide for selecting evaluation
metrics. Finally, we propose an efficient evaluation tool implementing the 20 selected metrics. The tool is optimized
to perform efficiently in terms of speed and required memory, also if the image size is extremely large as in the case of
whole body MRI or CT volume segmentation. An implementation of this tool is available as an open source project.

Conclusion: We propose an efficient evaluation tool for 3D medical image segmentation using 20 evaluation metrics
and provide guidelines for selecting a subset of these metrics that is suitable for the data and the segmentation task.

Keywords: Evaluation metrics, Evaluation tool, Medical volume segmentation, Metric selection

Background
Medical 3D image segmentation is an important image
processing step in medical image analysis. Segmentation
methods with high precision (including high reproducibil-
ity) and low bias are a main goal in surgical planning
because they directly impact the results, e.g. the detection
andmonitoring of tumor progress [1–3].Warfield et al. [4]
denoted the clinical importance of better characterization
of white matter changes in the brain tissue and showed
that particular change patterns in the white matter are
associated with some brain diseases. Accurately recogniz-
ing the change patterns is of great value for early diagnosis
and efficient monitoring of diseases. Therefore, assessing
the accuracy and the quality of segmentation algorithms
is of great importance.
Medical 3D images are defined on a 3D grid that can

have different sizes depending on the body parts imaged
and the resolution. The grid size is given as (w × h × d)
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denoting the width, height, and depth of the 3D image.
Each 3D point on the grid is called a voxel. Given an
anatomic feature, a binary segmentation can be seen as a
partition that classifies the voxels of an image according
to whether they are part or not of this feature. Examples
of anatomic features are white matter, gray matter, lesions
of the brain, body organs and tumors. Segmentation eval-
uation is the task of comparing two segmentations by
measuring the distance or similarity between them, where
one is the segmentation to be evaluated and the other is
the corresponding ground truth segmentation.
Medical segmentations are often fuzzy meaning that

voxels have a grade of membership in [ 0, 1]. This is e.g.
the case when the underlying segmentation is the result
of averaging different segmentations of the same structure
annotated by different annotators. Here, segmentations
can be thought of as probabilities of voxels belonging to
particular classes. One way of evaluating fuzzy segmen-
tations is to threshold the probabilities at a particular
value to get binary representations that can be evaluated
as crisp segmentations. However, thresholding is just a
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workaround that provides a coarse estimation and is not
always satisfactory. Furthermore, there is still the chal-
lenge of selecting the threshold because the evaluation
results depend on the selection. This is the motivation
for providing metrics that are capable of comparing fuzzy
segmentations without loss of information. Note that
there is another common interpretation of fuzzy segmen-
tation as partial volume, where the voxel value represents
the voxel fraction that belongs to the class. The fuzzy met-
ric definitions provided in this paper can be applied for
this interpretation as well.
There are different quality aspects in 3D medical image

segmentation according to which types of segmentation
errors can be defined. Metrics are expected to indicate
some or all of these errors, depending on the data and
the segmentation task. Based on four basic types of errors
(added regions, added background, inside holes and bor-
der holes), Shi et al. [5] described four types of image
segmentation errors, namely the quantity (number of seg-
mented objects), the area of the segmented objects, the
contour (degree of boundary match), and the content
(existence of inside holes and boundary holes in the seg-
mented region). Fenster et al. [6] categorized the require-
ments of medical segmentation evaluation into accuracy
(the degree to which the segmentation results agree with
the ground truth segmentation), the precision as a mea-
sure of repeatability, and the efficiency which is mostly
related with time. Under the first category (accuracy),
they mentioned two quality aspects, namely the delin-
eation of the boundary (contour) and the size (volume of
the segmented object). The alignment, which denotes the
general position of the segmented object, is another qual-
ity aspect, which could be of more importance than the
size and the contour when the segmented objects are very
small.
Metric sensitivities are another challenge in defining

metrics. Sensitivity to particular properties could pre-
vent the discovery of particular errors or lead to over- or
underestimating them. Metrics can be sensitive to out-
liers (additional small segmented objects outside the main
object), class imbalance (size of the segmented object rel-
ative to the background), number of segmented objects,
etc. Another type of sensitivity is the inability to correctly
deal with agreement caused by chance. This is related to
the baseline value of the metric, which should ideally be
zero when the segmentation is done at random, indicating
no similarity [7].
There is a need for a standard evaluation tool for med-

ical image segmentation which standardizes not only the
metrics to be used, but also the definition of each metric.
To illustrate this importance, Section “Multiple definition
of metrics in the literature” shows examples of metrics
with more than one definition in the literature leading
to different values, but each of them is used under the

same name. In the text retrieval domain, the TREC_EVAL
tool1 provides a standardization of evaluation that avoids
such confusion andmisinterpretation and provides a stan-
dard reference to compare text retrieval algorithms. The
medical imaging domain lacks such a widely applied
instrument.
Gerig et al. [8] proposed a tool (Valmet) for evaluation of

medical volume segmentation. In this tool only five met-
rics are implemented. There are important metrics, like
information theoretical metrics as well as some statisti-
cal metrics like Mahalanobis distance, and metrics with
chance correction like Kappa and adjusted Rand index,
that are not implemented in the Valmet evaluation tool.
Furthermore, this tool doesn’t provide support for fuzzy
segmentation. The ITK Library2 provides a software layer
that supports medical imaging tasks including segmenta-
tion and registration. The ITK Library provides evaluation
metrics that are mostly based on distance transform fil-
ters [9]. However, this implementation has the following
shortcomings: First, the ITK Library doesn’t implement all
relevant metrics needed for evaluating medical segmen-
tation. Second, since most of the metrics are based on
distance transform filters, they are sensitive to increasing
volume grid size in terms of speed as well as memory used.
One way to reduce this effect is to use the bounding cube
(scene) [6, 10], i.e. the smallest cube including both seg-
ments, that is to exclude from calculation all background
voxels not in the bounding cube. However, there are some
shortcomings using the bounding cube, first the bounding
cube remains large when the segments are large, far from
each other or there are outliers far from the segments; sec-
ond, the bounding cube affects the results of metrics that
depend on the true negatives. In Section “Testing the effi
ciency”, we show that the ITK implementation of relevant
metrics fails to compare segmentations larger than a par-
ticular grid size. Since very large medical segmentations,
like those of whole body volumes, are already common,
this is a significant restriction.
This paper makes the following contributions:

• It provides an overview of 20 evaluation metrics for
volume segmentation, selected based on a literature
review. Cases where inconsistent definitions of the
metrics have been used in the literature are identified,
and unified definitions are suggested.

• It provides efficient metric calculation algorithms that
work optimally with large 3D image segmentations by
taking advantage of their nature as dense distributions
of voxels. Efficiency is becoming ever more important
due the increasing size of segmentations, such as
segmentation of whole body volumes.

• The paper provides fuzzy definitions for all selected
metrics. This allows uncertainty in medical image
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segmentation to be taken into account in the
evaluation.

• It provides metrics generalized for segmentation with
multiple labels

• It provides an efficient open source implementation
of all 20 metrics that outperforms state-of-the art
tools in common cases of medical image
segmentation

The remainder of this paper is organized as follows:
Section “Ethics approval” provides the ethics approval.
Section “Evaluation Metrics for 3D image segmenta-
tion” presents a short literature review of metrics. In
Section “Metric definitions and Algorithms”, we present
the definition for each identified metric in the literature
review as well as the algorithms used to efficiently cal-
culate the metric value. We provide in Section “Mul-
tiple definition of metrics in the literature” examples of
multiple definition of metrics in the literature that leads
to confusion and motivates a standard evaluation tool.
Section “Implementation” provides details on the tool
implementation, i.e. architecture, programming environ-
ment, usage as well as the optimization techniques have
been used. Experiments performed to test the tool effi-
ciency are presented in Section “Testing the efficiency”.
A discussion about metric properties, bias, and utilities
as well as guidelines for metric selection is presented
in Section “Metric selection”. We conclude the paper
in Section “Conclusion” and give information about the
availability and requirements in Section “Availability and
requirements”.

Ethics approval
The images used for this study are brain tumor MRI
images and segmentations provided by the BRATS2012
benchmark organized in conjunction with the MICCAI
2012 conference, and whole body MRI/CT scans, pro-
vided by the VISCERAL project (www.visceral.eu) that
were acquired in the years 2004–2008, where data sets
of children (< 18 years) were not included due to the
recommendation of the local ethical committee number
S-465/2012, approval date February 21st, 2013.

Evaluation metrics for 3D image segmentation
We present a set of metrics for validating 3D image seg-
mentation that were selected based on a literature review
of papers in which 3D medical image segmentations are
evaluated. Only metrics with at least two references of use
are considered. An overview of these metrics is available
in Table 1. Depending on the relations between the met-
rics, their nature and their definition, we group them into
six categories, namely overlap based, volume based, pair-
counting based, information theoretic based, probabilistic
based, and spatial distance based. The aim of this grouping

is to first ease discussing the metrics in this paper and
second to enable a reasonable selection when a subset of
metrics is to be used, i.e. selecting metrics from different
groups to avoid biased results.

Metric definitions and Algorithms
We present the definitions of all metrics that have been
implemented. Let a medical volume be represented by the
point set X = {x1, . . . , xn} with |X| = w × h × d = n
where w, h and d are the width, height and depth of the
grid on which the volume is defined. Let the ground truth
segmentation be represented by the partition Sg = {S1g , S2g }
of X with the assignment function f ig (x) that provides the
membership of the object x in the subset Sig , where f ig (x) =
1 if x ∈ Sig , f ig (x) = 0 if x /∈ Sig , and f ig (x) ∈ (0, 1) if x
has a fuzzy membership in Sig , i.e. f ig (x) can be seen as the
probability of x being in Sig . Furthermore, let the segmen-
tation, being evaluated, be represented by the partition
St = {

S1t , S2t
}
of X with the assignment function f jt (x)

that provides the membership of x in the class Sjt , defined
analogously to f ig . Note that in this paper, we only deal
with partitions with two classes, namely the class of inter-
est (anatomy or feature) and the background. We always
assume that the first class

(
S1g , S1t

)
is the class of inter-

est and the second class
(
S2g , S2t

)
is the background. The

assignment functions f ig and f jt can either be crisp when
their range is {0, 1} or fuzzy when their range is [ 0, 1].
Note that the crisp partition is just a special case of the
fuzzy partition. We also assume that the memberships of
a given point x always sum to one over all classes. This
implies that f 1g (x) + f 2g (x) = 1 and f 1t (x) + f 2t (x) = 1
for all x ∈ X. In the remainder of this section, we define
the foundation of methods and algorithms used to com-
pute all the metrics presented in Table 1. We structure the
discussion in this section to follow the metric grouping
given in the column “category”. This provides a structure
that is advantageous for the implementation of the evalu-
ation tool, that is to improve the efficiency by making use
of the synergy between the metrics in each group to avoid
repeated calculation of the same parameters.

Spatial overlap basedmetrics
In the following subsections, the overlap based metrics
are defined. Because all metrics from this category can be
derived from the four basic cardinalities of the so-called
confusion matrix, namely the true positives (TP), the false
positives (FP), the true negatives (TN), and the false nega-
tives(FN), we define these cardinalities for crisp as well as
fuzzy segmentations, then we define the metrics based on
them.

www.visceral.eu
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Table 1 Overview of the metrics implemented in this tool

Metric Symb. Reference of use in medical images cat. Definition

Dice (=F1-Measure) DICE [1, 2, 15, 16, 57–63] 1 (6)

Jaccard index JAC [15, 16, 21–23, 59, 60, 62] 1 (7)

True positive rate (Sensitivity, Recall) TPR [10, 16, 60, 62–64] 1 (10)

True negative rate (Specificity) TNR [10, 16, 60, 62] 1 (11)

False positive rate (=1-Specificity, Fallout) FPR → Specificity 1 (12)

False negative rate (=1-Sensitivity) FNR → Sensitivity 1 (13)

F-Measure (F1-Measure=Dice) FMS → Dice 1 (15), (16)

Global Consistency Error GCE [21–23, 65, 66] 1 (17) to (19)

Volumetric Similarity VS [15, 21–23, 59, 61, 67] 2 (21)

Rand Index RI [21, 22, 65, 66] 3 (30)

Adjusted Rand Index ARI [68, 69] 3 (32)

Mutual Information MI [2, 32, 57] 4 (33) to (38)

Variation of Information VOI [21, 22, 65, 66] 4 (39), (35)

Interclass correlation ICC [8, 70] 5 (41)

Probabilistic Distance PBD [8, 59] 5 (43)

Cohens kappa KAP [1, 62] 5 (44) to (46)

Area under ROC curve AUC [2, 64, 69] 5 (47)

Hausdorff distance HD [8, 15, 59, 61–63, 71, 72] 6 (48), (49)

Average distance AVD [62, 63] 6 (50), (51)

Mahalanobis Distance MHD [15, 73] 6 (52) to (54)

The symbols in the second column are used to denote the metrics throughout the paper. The column “reference of use” shows papers where the corresponding metric has
been used in the evaluation of medical volume segmentation. The column “category” assigns each metric to one of the following categories: (1) Overlap based, (2) Volume
based, (3) Pair counting based, (4) Information theoretic based, (5) Probabilistic based, and (6) Spatial distance based. The column “definition” shows the equation numbers
where the metric is defined

Basic cardinalities For two crisp partitions (segmenta-
tions) Sg and St , the confusion matrix consists of the four
common cardinalities that reflect the overlap between the
two partitions, namely TP, FP, FN, and TN. These cardi-
nalities provide for each pair of subsets i ∈ Sg and j ∈ St
the sum of agreementmij between them. That is

mij =
|X|∑
r=1

f ig (xr)f
j
t (xr) (1)

where TP = m11, FP = m10, FN = m01, and TN = m00.
Table 2 shows the confusion matrix of the partitions Sg
and St . Note that Eq. 1 assumes crisp memberships. In the

Table 2 Confusion matrix: comparing ground truth
segmentation Sg with test segmentation St . Confusion matrix:
comparing ground truth segmentation Sg with test
segmentation St

Subset S1t S2t (= S1t )

S1g TP(m11) FP(m12)

S2g(= S1g) FN(m21) TN(m22)

next section the four cardinalities are generalized to fuzzy
partitions.

Generalization to fuzzy segmentations: Intuitively, one
favorable way to generalize the overlap based metrics pre-
sented in Table 1 for fuzzy partitions is to provide a
method for calculating the cardinalities of the confusion
matrix for fuzzy sets because the confusion matrix is the
base on which all metrics in this category are defined.
To this end, the main task is to calculate the agreement
between two segmentations, where the assignments of
voxels to segments are probabilities (fuzzy). It is com-
mon for this purpose to use a suitable triangular norm
(t-norm) to calculate the agreement between two fuzzy
assignments [11, 12]. Given two probabilities p1 and p2
representing the memberships of a particular element
(voxel) to a particular class (segment) according to two dif-
ferent classifiers (segmenters), we use themin(p1, p2) as a
t-norm as the agreement between the two classifiers. That
is, we define the agreement function g :[ 0, 1]×[ 0, 1]→
[ 0, 1] that models the agreement on a particular voxel
being assigned to a particular segment as g(p1, p2) =
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min(p1, p2). This also means that the agreement on the
same voxel being assigned to the background is given by
g(1 − p1, 1 − p2). Intuitively, the disagreement between
the segmenters is the difference between the probabilities
given by |p1−p2|. However, since the comparison is asym-
metrical (i.e. one of the segmentations is the ground truth
and the other is the test segmentation), we consider the
signed difference rather than the absolute difference as in
Eqs. 3 and 5. The four cardinalities defined in Eq. 1 can be
now generalized to the fuzzy case as follows:

TP =
|X|∑
r=1

min
(
f 1t (xr), f 1g (xr)

)
(2)

FP =
|X|∑
r=1

max
(
f 1t (xr) − f 1g (xr), 0

)
(3)

TN =
|X|∑
r=1

min
(
f 2t (xr), f 2g (xr)

)
(4)

FN =
|X|∑
r=1

max
(
f 2t (xr) − f 2g (xr), 0

)
(5)

Note that in Eqs. 2 to 5, f ig (xt) and f jt (xt) are used in
place of p1 and p2 since each of the functions provides
the probability of the membership of a given point in the
corresponding segment, and in the special case of crisp
segmentation, they provide 0 and 1.
Other norms have been used to measure the agreement

between fuzzy memberships like the product t-norm, the
L-norms, and the cosine similarity. We justify using the
min t-norm by the fact that, in contrast to the other
norms, the min t-norm ensures that the four cardinalities,
calculated in Eqs. 2 to 5, sum to the total number of vox-
els, i.e. TP + FP + TN + FN = |X| which is an important
requirement for the definition of metrics.

Calculation of overlap basedmetrics In this section, we
define each of the overlap based metrics in Table 1 based
on the basic cardinalities in Eq. 1 (crisp) or Eqs. 2 to 5
(fuzzy).
The Dice coefficient [13] (DICE), also called the over-

lap index, is the most used metric in validating medical
volume segmentations. In addition to the direct compari-
son between automatic and ground truth segmentations,
it is common to use the DICE to measure reproducibility
(repeatability). Zou et al. [1] used the DICE as a mea-
sure of the reproducibility as a statistical validation of
manual annotation where segmenters repeatedly anno-
tated the same MRI image, then the pair-wise overlap of

the repeated segmentations is calculated using the DICE,
which is defined by

DICE =
2

∣∣∣S1g ∩ S1t
∣∣∣∣∣∣S1g ∣∣∣ + ∣∣S1t ∣∣ = 2TP

2TP + FP + FN
(6)

The Jaccard index (JAC) [14] between two sets is defined
as the intersection between them divided by their union,
that is

JAC =
∣∣∣S1g ∩ S1t

∣∣∣∣∣∣S1g ∪ S1t
∣∣∣ = TP

TP + FP + FN
(7)

We note that JAC is always larger than DICE except at the
extrema {0, 1} where they are equal. Furthermore the two
metrics are related according to

JAC =
∣∣∣S1g ∩ S1t

∣∣∣∣∣∣S1g ∪ S1t
∣∣∣ =

2
∣∣∣S1g ∩ S1t

∣∣∣
2

(∣∣∣S1g ∣∣∣ + ∣∣S1t ∣∣ −
∣∣∣S1g ∩ S1t

∣∣∣)
= DICE

2 − DICE

(8)

Similarly, one can show that

DICE = 2JAC
1 + JAC

(9)

That means that both of the metrics measure the same
aspects and provide the same system ranking. Therefore,
it does not provide additional information to select both
of them together as validation metrics as done in [15–17].
True Positive Rate (TPR), also called Sensitivity and

Recall, measures the portion of positive voxels in the
ground truth that are also identified as positive by the seg-
mentation being evaluated. Analogously, True Negative
Rate (TNR), also called Specificity, measures the portion
of negative voxels (background) in the ground truth seg-
mentation that are also identified as negative by the seg-
mentation being evaluated. However these two measures
are not common as evaluation measures of medical image
segmentation because of their sensibility to segments size,
i.e. they penalize errors in small segments more than in
large segments [6, 8, 10]. Note that the terms positive
and negative are rather for crisp segmentation. However,
the generalization in Eqs. 2 to 5 extends the meaning of
the terms to grade agreement. These two measures are
defined as follows:

Recall = Sensitivity = TPR = TP
TP + FN

(10)

Specificity = TNR = TN
TN + FP

(11)

There are two other measures that are related to these
metrics, namely the false positive rate (FPR), also called



Taha and Hanbury BMCMedical Imaging  (2015) 15:29 Page 6 of 28

Fallout, and the false negative rate (FNR). They are defined
by

Fallout = FPR = FP
FP + TN

= 1 − TNR (12)

FNR = FN
FN + TP

= 1 − TPR (13)

The equivalence in Eqs. 12 and 13 implies that only one
of each two equivalent measures should be selected for
validation and not both of them together [10], i.e. either
FPR or TNR and analogously, either FNR or TPR. Another
related measure is the precision, also called the positive
predictive value (PPV ) which is not commonly used in val-
idation of medical images, but it is used to calculate the
F-Measure. It is defined by

Precision = PPV = TP
TP + FP

(14)

Fβ-Measure (FMSβ ) was firstly introduced in [18] as an
evaluation measure for information retrieval. However, it
is a special case of the Rijsbergen’s effectiveness measure3
introduced in [19]. Fβ-Measure is a trade-off between PPV
(precision, defined in Eq. 14) and TPR (recall, defined in
Eq. 10). Fβ-Measure is given by

FMSβ = (β2 + 1) · PPV · TPR
β2 · PPV + TPR

(15)

With β = 1.0 (precision and recall are equally impor-
tant), we get the special case F1-Measure (FMS1); we call
it FMS for simplicity. It is also called the harmonic mean
and given by

FMS = 2 · PPV · TPR
PPV + TPR

(16)

Here, we note that the FMS is mathematically equivalent
to DICE. This follows from a trivial substitution for TPR
and PPV in Eq. 16 by their values from Eqs. 10 and 14.
After simplification it results in the definition of DICE
(Eq. 6).
The global consistency error (GCE) [20] is an error mea-

sure between two segmentations. Let R(S, x) be defined
as the set of all voxels that reside in the same region of
segmentation S where the voxel x resides. For the two seg-
mentations S1 and S2, the error at voxel x, E(S1, S2, x) is
defined as

E(St , Sg , x) = |R(St , x)\R(Sg , x)|
|R(St , x)| (17)

Note that E is not symmetric. The global consistency error
(GCE) is defined as the error averaged over all voxels and
is given by

GCE(St , Sg) = 1
n
min

{ n∑
i
E(St , Sg , xi),

n∑
i
E(Sg , St , xi)

}

(18)

Eq. 18 can be expressed in terms of the four cardinalities
defined in Eqs. 2 to 4 to get the GCE between the (fuzzy)
segmentations Sg and St as follows

GCE = 1
n
min

{
FN(FN + 2TP)

TP + FN
+ FP(FP + 2TN)

TN + FP
,

FP(FP + 2TP)

TP + FP
+ FN(FN + 2TN)

TN + FN

}
(19)

Overlap measures for multiple labels All the over-
lap measures presented previously assume segmentations
with only one label. However, it is common to compare
segmentations with multiple labels, e.g. two-label tumor
segmentation (core and edema). Obviously, one way is to
compare each label separately using the overlap measures
presented previously, but this would lead to the prob-
lem of how to average the individual similarities to get a
singly score. For this evaluation tool, we use the overlap
measures proposed by Crum et al. [17], namely DICEml
and JACml which are generalized to segmentations with
multiple labels. For the segmentations A and B

JACml =

∑
labels,l

αl
∑

voxels,i
MIN(Ali,Bli)∑

labels,l
αl

∑
voxels,i

MAX(Ali,Bli)
(20)

where Ali is the value of voxel i for label l in segmen-
tation A (analogously for Bli) and αl is a label-specific
weighting factor that affects how much each label con-
tributes to the overlap accumulated over all labels. Here,
the MIN(.) and MAX(.) are the norms used to repre-
sent the intersection and union in the fuzzy case. DICEml
can be then calculated from JAC according to Eq. 9, i.e.
DICEml = 2JACml/(1 + JACml). Note that the equations
above assume the general case of multiple label and fuzzy
segmentation. However, in multiple label segmentations,
voxels values mostly represent the labels (classes) rather
than probabilities which means in most available image
formats, there are either multiple label or fuzzy segmen-
tations.

Volume basedmetrics
As the name implies, volumetric similarity (VS) is a mea-
sure that considers the volumes of the segments to indi-
cate similarity. There is more than one definition for the
volumetric distance in the literature, however we consider
the definition in [21–23] and [15], namely the absolute
volume difference divided by the sum of the compared
volumes. We define the Volumetric Similarity (VS) as
1 − VD where VD is the volumetric distance. That is

VS = 1 − ||S1t | − |S1g ||
|S1t | + |S1g |

= 1 − |FN − FP|
2TP + FP + FN

(21)
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Note that although the volume similarity is define using
the four cardinalities, it is not considered an overlap-based
metric, since here the absolute volume of the segmented
region in one segmentation is compared with the corre-
sponding volume in the other segmentation. This means
that the overlap between the segments is absolutely not
considered. Actually, the volumetric similarity can have
its maximum value even when the overlap is zero. More
details in Section “Metric analysis”.

Pair counting basedmetrics
In this section, pair-counting based metrics, namely the
Rand index and its extensions, are defined. At first we
define the four basic pair-counting cardinalities, namely a,
b, c, and d for crisp and fuzzy segmentations and then we
define the metrics based on these cardinalities.

Basic cardinalities Given two partitions of the point set
X being compared, let P be the set of

(n
2
)
tuples that rep-

resent all possible object pairs in X × X. These tuples can
be grouped into four categories depending on where the
objects of each pair are placed according to each of the
partitions. That is, each tuple (xi, xj) ∈ P is assigned to
one of four groups whose cardinalities are a, b, c, and d.

• Group I: if xi and xj are placed in the same subset in
both partitions Sg and St . We define a as the
cardinality of Group I.

• Group II: if xi and xj are placed in the same subset in
Sg but in different subsets in St . We define b as the
cardinality of Group II.

• Group III: if xi and xj are placed in the same subset in
St but in different subsets in Sg . We define c as the
cardinality of Group III.

• Group IV: if xi and xj are placed in different subsets
in both partitions Sg and St . We define d as the
cardinality of Group IV.

Note that the count of tuples in Groups I and IV repre-
sents the agreement (a + d) whereas the count of tuples
in Groups II and III (b + c) represents the disagreement
between the two partitions.
Obviously, because there are

(n
2
) = n(n−1)/2 tuples, the

direct calculation of these parameters needs O(n2) run-
time. However, Brennan and Light [24] showed that these
cardinalities can be calculated using the values of the con-
fusion matrix without trying all pairs and thus avoiding
the O(n2) complexity, that is

a = 1
2

r∑
i=1

s∑
j=1

mij(mij − 1) (22)

b = 1
2

⎛
⎝ s∑

j=1
m2

.j −
r∑

i=1

s∑
j=1

m2
ij

⎞
⎠ (23)

c = 1
2

⎛
⎝ r∑

j=1
m2

i. −
r∑

i=1

s∑
j=1

m2
ij

⎞
⎠ (24)

d = n(n − 1)/2 − (a + b + c) (25)
where r and s are the class counts in the compared par-
titions, mij is the confusion matrix (Table 2), mi. denotes
the sum over the ith row, and m.j denotes the sum over
the jth column. Note that here, in contrast to the overlap
based metrics, there is no restriction on the number of
classes in the compared partitions. However, in the pro-
posed evaluation tool, we are interested in segmentations
with only two classes, namely the anatomy and the back-
ground; i.e. r = s = 2. We define the four cardinalities for
this special case, more specifically for the segmentations
Sg and St defined in Section “Metric definitions and Algo-
rithms” based on the four overlap parameters defined in
Section “Basic cardinalities”

a = 1
2
[TP(TP − 1) + FP(FP − 1)

+TN(TN − 1) + FN(FN − 1)]
(26)

b = 1
2

[
(TP + FN)2 + (TN + FP)2

−(TP2 + TN2 + FP2 + FN2)
] (27)

c = 1
2

[
(TP + FP)2 + (TN + FN)2

−(TP2 + TN2 + FP2 + FN2)
] (28)

d = n(n − 1)/2 − (a + b + c) (29)

Generalization to fuzzy segmentations As mentioned
above, since the cardinalities a, b, c, and d are by defi-
nition based on grouping all the pairwise tuples defined
on Sg and St , this requires processing n(n − 1)/2 tuples
which means a direct computation of these cardinalities
for fuzzy segmentations takesO(n2) runtime. For medical
segmentation, this complexity could be a problem since
the size of medical volumes could reach 8-digit numbers.
Methods (Huellermeier et al. [25], Brouwer [26], Campello
[12]) have been proposed that calculate the Rand index
and its extension for fuzzy segmentations using different
approaches. None of these approaches is efficiently appli-
cable in the 3D medical imaging domain because they all
have a run time complexity of O(n2). However, Anderson
et al. [27] proposed a method that calculates the four car-
dinalities for fuzzy sets in O(n) runtime. This is achieved
by combining two already known strategies: (i) calculating
the confusion matrix for fuzzy sets using some agreement
function e.g. Eqs. 2 to 5 and (ii) calculating the four cardi-
nalities by applying Eqs. 22 to 25 on the values of the fuzzy
confusionmatrix calculated in (i). This approach is used in
this paper which means that Eqs. 26 to 29 already provide
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the fuzzy cardinalities according to [27], given the param-
eters TP, FP, TN and FN are calculated for fuzzy sets. In
the next subsection, the Rand index and the adjusted rand
index are calculated based on these cardinalities.

Calculation of pair-counting based metrics The Rand
Index (RI), proposed by W. Rand [28] is a measure of
similarity between clusterings. One of its important prop-
erties is that it is not based on labels and thus can be used
to evaluate clusterings as well as classifications. The RI
between two segmentations Sg and St is defined as

RI(Sg , St) = a + b
a + b + c + d

(30)

where a, b, c, d are the cardinalities defined in Eqs. 26
to 29.
The Adjusted Rand Index (ARI), proposed by Hubert

and Arabie [29], is a modification of the Rand Index that
considers a correction for chance. It is given by

ARI =

∑
ij

(mij
2

) − ∑
i

(mi.
2

) ∑
j

(m.j
2

)
/
(n
2
)

1
2

[∑
i

(mi.
2

) + ∑
j

(m.j
2

)] − ∑
i

(mi.
2

) ∑
j

(m.j
2

)
/
(n
2
)
(31)

where n is the object count, mij is the confusion matrix
(Table 2), mi. denotes the sum over the ith row, and m.j
denotes the sum over the jth column. The ARI can be
expressed by the four cardinalities as

ARI = 2(ad − bc)
c2 + b2 + 2ad + (a + d)(c + b)

(32)

Information theoretic basedmetrics
The Mutual Information (MI) between two variables is a
measure of the amount of information one variable has
about the other. Or in other words, the reduction in uncer-
tainty of one variable, given that the other is known [30]. It
was firstly used as a measure of similarity between images
by Viola andWells [31]. Later, Russakoff et al. [32] used the
MI as a similarity measure between image segmentations;
in particular, they calculate theMI based on regions (seg-
ments) instead of individual pixels. The MI is related to
the marginal entropyH(S) and the joint entropyH(S1, S2)
between images defined as

H(S) = −
∑
i
p(Si) log p(Si) (33)

H(S1, S2) = −
∑
ij

p
(
Si1, S

j
2

)
log p

(
Si1, S

j
2

)
(34)

where p(x, y) is joint probability, Si are the regions (seg-
ments) in the image segmentations and p(Si) are the
probabilities of these regions that can be expressed in
terms of the four cardinalities TP, FP, TN and FN, which

are calculated for the fuzzy segmentations (Sg and St) in
Eqs. 2 to 5 as follows

p
(
S1g

)
= (TP + FN)/n

p
(
S2g

)
= (TN + FN)/n

p
(
S1t

) = (TP + FP)/n
p

(
S2t

) = (TN + FP)/n

(35)

where n = TP + FP + TN + FN is the total number of
voxels. BecauseTP,TN, FP and FN are by definition cardi-
nalities of disjoint sets that partition the volume, the joint
probabilities are given by

p
(
Si1, S

j
2

)
=

∣∣∣Si1 ∩ Sj2
∣∣∣

n
(36)

which implies

p
(
S11, S12

) = TP
n

p
(
S11, S22

) = FN
n

p
(
S21, S12

) = FP
n

p
(
S21, S22

) = TN
n

(37)

The MI is then defined as

MI(Sg , St) = H(Sg) + H(St) − H(Sg , St) (38)

The Variation of Information (VOI) measures the
amount of information lost (or gained) when changing
from one variable to the other. Marin [33] first introduced
the VOI measure for comparing clusterings partitions.
The VOI is defined using the entropy and mutual infor-
mation as

VOI(Sg , St) = H(Sg) + H(St) − 2MI(Sg , St) (39)

Probabilistic metrics
The Interclass Correlation (ICC) [34] is a measure of
correlations between pairs of observations that don’t nec-
essarily have an order, or are not obviously labeled. It
is common to use the ICC as a measure of conformity
among observers; in our case it is used as a measure of
consistency between two segmentations. ICC is given by

ICC = σ 2
S

σ 2
S + σ 2

ε

(40)

where σS denotes variance caused by differences between
the segmentations and σε denotes variance caused by
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differences between the points in the segmentations [34].
Applied to the segmentations Sg and St , ICC is defined as

ICC = MSb − MSw
MSb + (k − 1)MSw

with

MSb = 2
n − 1

∑
x

(m(x) − μ)2

MSw = 1
n

∑
x

(
fg(x) − m(x)

)2 + (
ft(x) − m(x)

)2
(41)

where MSb denotes the mean squares between the seg-
mentations (called between group MS), MSw denotes the
mean squares within the segmentations (called within
groupMS), k is the number of observers which is 2 in case
of comparing two segmentations, μ is the grand mean,
i.e. the mean of the means of the two segmentations, and
m(x) = (

fg(x) + ft(x)
)
/2 is the mean at voxel x.

The Probabilistic Distance (PBD) was developed by
Gerig et al. [8] as a measure of distance between fuzzy seg-
mentations. Given two fuzzy segmentations,A andB, then
the PBD is defined by

PBD(A,B) =
∫ |PA − PB|
2

∫
PAB

(42)

where PA(x) and PB(x) are the probability distributions
representing the segmentations and PAB is their pooled
joint probability distribution. Applied on Sg and St ,
defined in Section “Metric definitions and Algorithms”,
the PBD is defined as

PBD(Sg , St) =
∑
x

| fg(x) − ft(x)|
2

∑
x
fg(x)ft(x)

(43)

The Cohen Kappa Coefficient (KAP), proposed in [35],
is a measure of agreement between two samples. As an
advantage over other measures, KAP takes into account
the agreement caused by chance, which makes it more
robust. KAP is given by

KAP = Pa − Pc
1 − Pc

(44)

where Pa is the agreement between the samples and Pc
is the hypothetical probability of chance agreement. The
same can be expressed in form of frequencies to facilitate
the computation as follows

KAP = fa − fc
N − fc

(45)

where N is the total number of observations, in our case
the voxels. The terms in Eq. 45 can be expressed in

terms of the four overlap cardinalities, calculated for fuzzy
segmentations (Eqs. 2 to 5), to get

fa = TP + TN

fc = (TN + FN)(TN + FP) + (FP + TP)(FN + TP)

N
(46)

The ROC curve (Receiver Operating Characteristic) is
the plot of the true positive rate (TPR) against the false
positive rate (FPR). The area under the ROC curve (AUC)
was first presented by Hanley and McNeil [36] as a mea-
sure of accuracy in the diagnostic radiology. Later, Bradley
[37] investigated its use in validating machine learning
algorithms. The ROC curve, as a plot of TPR against FPR,
normally assumes more than one measurement. For the
case where a test segmentation is compared to a ground
truth segmentation (one measurement), we consider a
definition of theAUC according to [38], namely the area of
the trapezoid defined by the measurement point and the
lines TPR = 0 and FPR = 1, which is given by

AUC = 1 − FPR + FNR
2

= 1 − 1
2

(
FP

FP + TN
+ FN

FN + TP

) (47)

Spatial distance basedmetrics
Spatial distance based metrics are widely used in the eval-
uation of image segmentation as dissimilarity measures.
They are recommended when the segmentation overall
accuracy, e.g the boundary delineation (contour), of the
segmentation is of importance [6]. As the only category
in this paper, distance-based measures take into consid-
eration the spatial position of voxels. More about the
properties of distance metrics is in Section “Results and
discussion”. In this section, we present three distancemet-
rics, namely the Hausdorff distance, the Average distance
and the Mahalanobis distance. All distances calculated in
this section are in voxel, which means the voxel size is not
taken into account.

Distance between crisp volumes The Hausdorff Dis-
tance (HD) between two finite point sets A and B is
defined by

HD(A,B) = max(h(A,B), h(B,A)) (48)

where h(A,B) is called the directed Hausdorff distance
and given by

h(A,B) = max
a∈A

min
b∈B

‖a − b‖ (49)

where ‖a − b‖ is some norm, e.g. Euclidean distance.
An algorithm that directly calculates the HD according
to Eq. 49 takes an execution time of O(|A||B|). There
are many algorithms that calculate the HD with lower
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complexity. In this paper, we use the algorithm proposed
in [39] which calculates the HD in a nearly-linear time
complexity.
The HD is generally sensitive to outliers. Because noise

and outliers are common in medical segmentations, it is
not recommended to use theHD directly [8, 40]. However,
the quantile method proposed by Huttenlocher et al. [41]
is one way to handle outliers. According to the Hausdorff
quantile method, the HD is defined to be the qth quantile
of distances instead of the maximum, so that possible out-
liers are excluded, where q is selected depending on the
application and the nature of the measured point sets.
The Average Distance, or the Average Hausdorff Dis-

tance (AVD), is the HD averaged over all points. The AVD
is known to be stable and less sensitive to outliers than the
HD. It is defined by

AVD(A,B) = max(d(A,B), d(B,A)) (50)

where d(A,B) is the directed Average Hausdorff distance
that is given by

d(A,B) = 1
N

∑
a∈A

min
b∈B

‖a − b‖ (51)

To efficiently calculate the AVD and avoid a complexity
of O(|A||B|) (scanning all possible point pairs), we use
a modified version of the nearest neighbor (NN) algo-
rithm proposed by Zhao et al. [42] in which a 3D cell grid
is built on the point cloud and for each query point, a
search subspace (a subset of the cell grids that contains the
nearest neighbor) is found to limit the search and reduce
the number of distance calculations needed. We added
three modifications to this algorithm that make use of
the nature of segmentations, namely that they are mostly
dense point clouds. These modifications enable efficiently
finding the exact NN. In the first modification, when cal-
culating the pairwise distances from segment A to B, we
remove the intersection A∩B from consideration because
here all the distances are zero, that is we calculate only
A\B to B. For the second modification, instead of consid-
ering all points of B, we consider only the points on the
surface of segment B. This is justified by the fact that when
moving in a line from a point in segment A (but not in the
intersection) to the segment B, the first point crossed in
B is on the surface and this is the shortest distance, which
means all points inside the segments are not relevant. The
thirdmodification is to find the radius r that defines a con-
venient search subspace for a given query point q ∈ A.
We find r by moving from q to the mean of B and if a
point p ∈ B is crossed, we define r as the distance between
q and p, i.e. the search subspace consists of all cell grids
contained in or crossed by the sphere centered on q with
radius r. If no point p is found (which is unlikely to happen
with segmentations), an exhaustive search is performed.

The Mahalanobis Distance (MHD) [43] between two
points in a point cloud, in contrast to the Euclidean dis-
tance, takes into account the correlation of all points in the
point cloud containing the two points. TheMHD between
the points x and y in the point cloud A is given by

MHD(x, y) =
√

(x − y)TS−1(x − y) (52)

where S−1 is the inverse of the covariance matrix S of
the point cloud and the superscript T denotes the matrix
transpose. Note that x and y are two points in the same
point cloud, but in the validation of image segmentation,
two point clouds are compared. For this task, we use the
variant ofMHD according to G. J. McLachlan [44], where
the MHD is calculated between the means of the com-
pared point clouds and the common covariance matrix of
them is considered as S. Hence the Mahalanobis distance
MHD(X,Y ) between the point sets X and Y is

MHD(X,Y ) =
√

(μx − μy)TS−1(μx − μy) (53)

where μx and μy are the means of the point sets and the
common covariance matrix of the two sets is given by

S = n1S1 + n2S2
n1 + n2

(54)

where S1, S2 are the covariance matrices of the voxel sets
and n1, n2 are the numbers of voxels in each set.

Extending the distances to fuzzy volumes Different
approaches have been proposed to measure the spatial
distance between fuzzy images. The approaches described
in [45] are based on defuzzification (finding a crisp rep-
resentation) either by minimizing the feature distance,
which leads to the problem of selecting the features, or
by finding crisp representations with a higher resolution
which leads to multiplication of the grid dimensions and
therefore negatively impacts the efficiency of time con-
suming algorithms, like HD and AVD. For this evaluation
tool, we use a discrete form of the approach proposed in
[46] i.e. the average of distances at different α-cuttings
depending on a given number of cutting levels k. The HD
distance between the fuzzy segmentations A and B is thus
given by

HDk(A,B) = 1
k

k∑
i=1

HD i
k
(A,B) (55)

HDα(A,B) = HD(Aα ,Bα) (56)

where Aα and Bα are the crisp representations resulting
from thresholding the fuzzy volumes A and B at cutting
level α, HDα is the HD at cutting level α, and k > 0 is an
integer that gives the number of cutting levels considered.
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Analogously, the AVD and MHD between the fuzzy
volumes A and B are given by

AVDk(A,B) = 1
k

k∑
i=1

AVD
(
A i

k
,B i

k

)
(57)

MHDk(A,B) = 1
k

k∑
i=1

MHD
(
A i

k
,B i

k

)
(58)

If the parameters k and α are omitted, i.e. HD, AVD and
MHD, we assume distances at the cutting level α = 0.5.

Multiple definition of metrics in the literature
We present three examples representing three categories
of inconsistency in the literature regarding the definition
of the metrics to underline the need of a standardization
of evaluation metrics and motivate a standard evalua-
tion tool for medical segmentations. The first category is
caused by misinterpretation resulting in misleading def-
initions, for example the confusion of the pair counting
cardinalities (a, b, c and d) with the overlap cardinalities
(TP, FP, TN and FN). In some papers [12, 25, 27, 47],
the pair-counting cardinalities are used in place of the
overlap cardinalities although they are mathematically
and semantically different. According to the defini-
tion, the pair-counting cardinalities result from grouping
n(n − 1)/2 tuples defined on X × X (Section “Basic
cardinalities”) whereas the overlap-based cardinalities
(Section “Basic cardinalities ’’) result from the class over-
lap i.e. pairwise comparison of n voxel assignments. In the
papers mentioned above, several overlap-based metrics
including the Jaccard index are defined using the pair-
counting cardinalities in place of the overlap cardinalities.
To illustrate how strongly the results differ in the two
cases, we show examples in Table 3. In each example, the
partitions P1 and P2 are compared using the Jaccard index
which is calculated in two ways: the first (JAC1) using the
overlap cardinalities according to [14] and [48], the sec-
ond (JAC2) using the pair counting cardinalities according
to [25, 27, 47] and [12]. The values are different except in
the first example.

Table 3 Pair counting cardinalities versus overlap cardinalities in
examples. Five examples show that the pair counting
cardinalities ( a, b, c, and d) cannot be used in place of the overlap
cardinalities (TP, FP, FN, and TN) to calculate the Jaccard index, as
it is commonly used in the literature

P1 P2 TP FP FN TN JAC1 a b c d JAC2

1,0,1,1 1,1,0,0 1 2 1 0 0.25 1 2 1 2 0.25

1,1,1,1 0,0,0,1 1 3 0 0 0.25 3 3 0 0 0.5

0,1,0,1 1,1,0,0 1 1 1 1 0.33 0 2 2 2 0.0

0,0,0,0 0,0,0,1 0 0 1 3 0.0 3 0 3 0 0.5

1,0,0,1 1,1,0,1 2 0 1 1 0.67 1 2 1 2 0.25

The second category is naming inconsistency, where the
same name is used to denote two different metrics. One
example is the volumetric similarity (VS). While VS is
defined in [21–23] and [15] as the absolute volume differ-
ence divided by the sum of the compared volumes (Eq. 21),
there is another metric definition under the same name
in [49] defined as twice the volume of the intersection
divided by the volume sum in percent, i.e.

VS = 2
|St ∩ Sg |
|St + Sg | .100% (59)

The last category is the multiple definition that stems
from different theoretical approaches for estimating the
same value. For example, the Interclass Correlation (ICC)
has an early definition proposed by Fisher [50]. Later, sev-
eral estimators of the ICC have been proposed, one of
them is the definition in Eq. 40 proposed by Shrout and
Fleiss [34]. Note that although these definitions are totally
different, in contrast to the second category, they all aim
to estimate the same statistic.

Implementation
The 20metrics, identified in the literature review (Table 1)
and defined in Section “Metric definitions and Algo-
rithms”, have been implemented in a tool named Evalu-
ateSegmentation and provided as an open source project.
This section is organized as follows: In Section “Architec-
ture”, we provide an overview of the general architecture
of the project. Section “Compatibility” provides informa-
tion about the compatibility of the tool with the image
formats. Detail about the programming language, frame-
work, and environment are provided in Section “Pro-
gramming environment”. Some implementation details
concerning the optimizations in the tool are presented in
Section “Efficiency optimization”. Finally, Section “Usage”
presents some cases of usage.

Architecture
EvaluateSegmentation is an efficient command line tool
that compares two 2D or 3D medical segmentations using
the 20 evaluation metrics presented in Table 1. Being a
pure command line tool without a GUI interface makes it
suitable to be called using automation scripts when many
segmentations are to be evaluated. The implementation
has been generally designed to take advantage of the rela-
tions between the 20 implemented metrics represented
in their definition in order to make use of the synergy
between them to avoid repeating operations and hence to
save execution time and memory. By default the evalua-
tion result is displayed in a readable format on the System
out, but it can be optionally saved as an XML file in a given
path, e.g. to be parsed and processed by other tools.
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Compatibility
The proposed tool uses the ITK Library, in particular the
input/output layer, to read medical images, which gives it
two important properties:

• The tool is fully compatible with a wide spectrum of
medical image formats, namely all formats supported
by the ITK framework.

• The tool is invariant to changes in file formats, e.g. it
is also compatible with formats that are changed, or
even introduced after its implementation. That is
because the job reading the images is done by the ITK
library, which is permanently maintained to support
new standards.

Programming environment
EvaluateSegmentation is implemented in C++ using the
CMake framework, which makes it operating system and
compiler independent. CMake (www.cmake.org) is an
open source platform that enables programs implemented
in native languages like C++ to be operating system
and compiler independent; it was originally created and
funded by the National Library of Medicine (NLM) to
provide a sufficient way for distributing the ITK applica-
tion. The source of the project as well as builds for some
operating systems are available under http://github.com/
codalab/EvaluateSegmentation. To build the EvaluateSeg-
mentation for any operating system, using any compiler,
two resource components are required (i) the source code
of the project and (ii) the ITK Library available as open
source under http://www.itk.org.

Efficiency optimization
Efficiency in speed as well as in memory usage is a crit-
ical point in metric calculation. Reasons for this are: (i)
Very large 3D images, like whole body images, are quite
common; such images could have more than 100Mio vox-
els. (ii) Common image formats allow large data types for
representing fuzzy voxel values, e.g. double, which makes
the handling of such images memory critical. (iii) Metrics
based on calculating the pairwise distances between all
voxels become computationally inefficient with increasing
volume size. (iv) State-of-the-art techniques based on the
distance transform are sensitive to increasing image grid
size in terms of speed as well as memory used.
EvaluateSegmentation doesn’t use distance transform

techniques for calculations because of their memory sen-
sitivity to grid size. Instead, it uses optimization tech-
niques that make it very efficient in terms of speed and
memory: To overcome the memory problem of large
images with large data types, in a first step, EvaluateSeg-
mentation uses a streaming technique, supported by ITK,
to load images and save them in another representation
that supports values in 255 fuzzy levels using the char

data type; thereby overcoming the memory problem with
large data types. In a next step, EvaluateSegmentation uses
indexing techniques to model the images in a way that
(i) makes use of excluding the background voxels, which
makes the tool less sensitive to increasing the grid size,
(ii) provides an image representation that is optimal for
an efficient access to the image, and uses optimization
techniques for calculating nearest neighbor operations.
The Hausdorff distance (HD) and the average Hausdorff

distance (AVD) are based on calculating the distances
between all pairs of voxels. This makes them computa-
tionally very intensive, especially with large images.
For the HD, EvaluateSegmentation uses the randomiza-

tion and the early breaking optimizations proposed in [39]
to achieve efficient, almost linear, calculation. These opti-
mizations avoid scanning all voxel pairs by identifying and
skipping unnecessary rounds.
Unfortunately, these two optimizations cannot be

applied for the AVD because AVD attempts to calculate
all the HD distances and finally considers their aver-
age. Therefore, to efficiently calculate the AVD, we use a
modified version of the nearest neighbor (NN) algorithm
proposed by Zhao et al. [42] in which a 3D cell grid is
built on the point cloud and for each query point, a search
subspace (a subset of the cell grids that contains the near-
est neighbor) is found to limit the search and reduce the
number of distance calculations needed. We add three
modifications to this algorithm that achieve an optimal
efficiency in finding the exact NN. These modifications
make use of the nature of segmentations, namely that they
are mostly dense point clouds. In the first modification,
when calculating the pairwise distances from segment A
to B, as illustrated in Fig. 1 (1) to (4), we remove the inter-
section A ∩ B from consideration because here all the
distances are zero, that is we calculate only A\B to B. For
the second modification, instead of considering all points
of B, we consider only the points on the surface of segment
B as illustrated in Fig. 1 (5) and (6). This is justified by the
fact that when moving in a line from a point in segment
A (but not in the intersection) to the segment B, the first
point crossed in B is on the surface and this is the shortest
distance, which means all points inside the segments are
not relevant. Figure 1 (7) and (8) illustrate a real segmen-
tation of the edema of a brain tumor and the boundary
voxels of the segmented edema. The third modification is
to find the radius r that defines a convenient search sub-
space for a given query point q ∈ A, as illustrated in Fig. 1
(9). We find r by moving from q to the mean of B (m) and
if a point p ∈ B is crossed, we define r as the distance
between q and p, i.e. the search subspace consists of all
cell grids contained in or crossed by the sphere centered
on q with radius r. If no point p is found (which is unlikely
to happen with segmentations), an exhaustive search is
performed.

www.cmake.org
http://github.com/codalab/EvaluateSegmentation
http://github.com/codalab/EvaluateSegmentation
http://www.itk.org


Taha and Hanbury BMCMedical Imaging  (2015) 15:29 Page 13 of 28

Fig. 1 Illustration of the optimizations used in calculating the average distance(AVD). In 1 and 2, the images A and B, defined on the same grid, are
to be compared using the AVD. In 3, the intersection of the images is identified. In 4, the pairwise distance between point in the intersection is zero,
therefore these distances are excluded from the calculation. In 5, to find the minimum distance from a point in A to the the image B, only the
boundary voxels of B are considered. In 6, likewise to find the minimum distance from a point in B to the A, only the boundary voxels of A
considered. In 7 and 8, the boundary voxels of a real segmentation of the edema of a brain tumor. In 9, to reduce the search space when searching
the nearest neighbor, a search sphere with radius r is found by moving from the query q toward the meanm and considering the first point crossed
on the boundary

Usage
EvaluateSegmentation is a command line tool. The com-
mand line has a mandatory part specifying the two images
being compared and an optional path with arguments
used to control the metric calculation. The command line
has the following syntax:
EvaluateSegmentation groundtruthpath segmentation-

path [-thd threshold] [-use DICE,JAC,HD,....] [-xml xml-
path]
By default, unless other options are given, a fuzzy com-

parison is performed, otherwise if a threshold, option
-thd, is given, binary representations of the images are
compared by cutting them at the given threshold. All
metrics are considered unless the option -use is given,

which specifies the metrics to be calculated. In this case,
the symbols of metrics of interest, according to Table 1,
should be listed after the option, separated with commas.
Some metrics use parameters like the quantile value of
the Hausdorff distance; these parameters can be option-
ally written following the metric symbol after an @, e.g.
-use HD@0.9 instructs the tool to calculate the Hausdorff
distance at 0.9 quantile. More options are described by
typing EvaluateSegmentation at the command line.

Results and discussion
This section is organized as follows: In Section “Testing
the efficiency”, we present experiments that test the effi-
ciency of the proposed evaluation tool. In Section “Results
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and discussion”, we present a discussion of the metrics
implemented in this tool, by analyzing their properties
and relating them to properties of the segmentations as
well as to the requirements on the segmentation algo-
rithms. Based on this analysis, we conclude guidelines for
selecting themost suitablemetric for given image data and
segmentation task.

Testing the efficiency
We present the experiments that validate the efficiency
of the proposed evaluation tool (EvaluateSegmentation)
with two different sets of realMR andCT volume segmen-
tations. In the first two experiments (Sections Efficiency
test with brain tumor segmentation to Efficiency test
with whole body volumes), the proposed tool was tested
against the implementation of the evaluation algorithms
of the ITK library version 4.4.1, assumed to represent the
state-of-the-art. These ITK algorithms are based on the
distance transform technique, described in [51] and [52].
Only two metrics were considered, namely the Hausdorff
distance (HD) and average distance (AVD) because they
are the most time and memory-consuming metrics. This
was controlled by using the command line options to limit
the calculation to these metrics. In the third experiment
(Section “Efficiency of calculating 20 metrics together”),
we test the efficiency of the proposed tool when per-
forming all of the implemented metrics (20 metrics) to
show the benefit of using the synergy, i.e. building on the
group of basic values. All experiments were executed on a
machine with Intel Core (i5) CPU, 8 GB RAM and Win-
dows 7 OS. Note that all execution times include the time
for reading the images and calculating the metrics.

Efficiency test with brain tumor segmentation
In this experiment, the proposed evaluation tool (Evalu-
ateSegmentation) was tested with brain tumor segmenta-
tions (MR 3D images). We used a test set of 300 automatic
brain tumor segmentations from the BRATS2012 chal-
lenge4. The test set consists of 240 images and 60 ground
truth segmentations made by human experts. These
images were produced by segmentation algorithms pro-
posed by four participants of the BRATS challenge. The
images vary widely in size and span the range from 125 ×
125 × 125 to 250 × 250 × 250 voxels as grid size. Each
of these images was compared with the corresponding
ground truth segmentation using the Hausdorff distance
HD in one run and the average distance AVD in another
run. Figure 2(a) shows that the proposed tool outperforms
the ITK implementation in computing the HD by a factor
of 2.4 and takes an average runtime of 1.3 s. Figure 2(b)
shows that the proposed tool outperforms the ITK imple-
mentation in computing the AVD by a factor of 3.0 and
takes an average of 2.5 s. Furthermore, the experiment
shows that while the efficiency of the proposed evaluation

tool depends mainly on the set size (size of the segments),
the efficiency of the ITK implementation is also strongly
dependent on the grid size of the volumes, which makes
it sensitive to increasing the grid size, which is more clear
in the experiment in Section “Efficiency test with whole
body volumes”.

Efficiency test with whole body volumes
In this experiment we test the runtime behavior of the
proposed evaluation tool when the grid size of the 3D
image is increased. For this, we tested it with very large
3DMR and CT image segmentations from the VISCERAL
project [53]. The set consists of 840 MRI and CT 3D
image segmentations. These were produced by segmen-
tation algorithms proposed by five participants of the
VISCERAL Anatomy 1 Benchmark. The images span the
range from 387 × 21 × 1503 to 511 × 511 × 899 voxels
as grid size. Each of these images was validated against
the corresponding ground truth segmentation using the
AVD. In a first run, the tool EvaluateSegmentation was
executed and in a second run, the algorithm of the ITK
Library. The proposed tool ran through successfully with
all images, with execution times varying from 2.1 s for
the smallest image to 79.2 s for the largest, giving an
average runtime of 39.8 s over all images. The ITK algo-
rithm broke down with a memory allocation error with
all images over 387 × 25 × 1509, which means that only
17% of the images have been successfully compared by
the ITK algorithm. The failing of the ITK implementation
with images with large grid size can be explained by the
fact that the distance transform based algorithms are sen-
sitive to increasing grid size because all the background
voxels should be labeled. On the contrary, the algorithms
used in the proposed evaluation tool are not sensitive to
grid size increase because the background is not involved
in the computation at all.

Efficiency of calculating 20metrics together
In this experiment, we test the efficiency of the evaluation
tool when calculating all implemented metrics together
in one run. To this end, we used the same image set as
in SubSection “Efficiency test with whole body volumes”.
The proposed evaluation tool was executed to compare
each of the segmentations with the corresponding ground
truth segmentation, this time using all 20 implemented
metrics. In each comparison, the total execution time was
measured, which includes the time needed to read and
preprocess the image as well as calculate all the metrics.
The proposed tool takes a minimum runtime of 2.1 s,
a maximum of 94.5 s, and an average runtime of 43.2 s
to compare medical volumes using all implemented met-
rics. Note that this execution time is only slightly more
than the time needed to calculate the AVD alone. This is
possible due to using the synergy between metrics, e.g.
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Fig. 2 Testing the proposed tool against the ITK implementation using brain tumor segmentation. Comparison between the performance of the
proposed evaluation tool and the ITK Library implementation in validating 240 brain tumor segmentations against the corresponding ground truth
using the HD in (a) and the AVD in (b). The grid size (width × height × depth) is on the horizontal axis and the run time in seconds is on the vertical
axis. The data points are sorted according to the total number of voxels, i.e. whd

building on basic values to avoid unnecessary calculations
and repeated read operations.

Metric selection
After we have defined a metric pool of 20 metrics, and
provided an efficient implementation for calculating these

metrics, we provide in this section guidelines for selecting
a subset of these metrics depending on the segmentation
being evaluated and the segmentation goal. Metrics differ
in their properties and thus in their suitability for different
tasks and different data. Selecting a suitable metric is not
a trivial task.
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We will define guidelines for selecting evaluation met-
rics in the following steps: (i) We provide metric anal-
ysis in Setion 1, based on examining the correlation
among the metrics under different situations, providing
empirical examples, and considering notes and results in
the literature. As results of this analysis, we provide in
Section “Metric properties” definitions of metric proper-
ties and we match them to the metrics in Table 1. (ii)
In a second step, we define in Section “Segmentation
properties” properties that the segmentations, being eval-
uated, can have. In Section “Requirements on the seg-
mentation algorithms” we define the requirements that
can be put on the segmentation algorithm. (ii) Finally,
based on these properties and requirements, we provide
in Section “Guidelines for selecting evaluation metrics”
guidelines for metric selection in the form of a proto-
col that provides recommendation or discouragement for
particular combinations of metric properties, data prop-
erties, and requirements.

Metric analysis
In this section, we analyze the metrics in Table 1 to infer
their properties, i.e. their strength, weakness, bias, and
sensitivities in evaluating medical segmentation. For this,
we use two strategies, the first is examining the correlation
between rankings of segmentations produced by different
metrics in different situations. The second method is ana-
lyzing the metric values for particular empirical examples,
where the segmentations have particular properties.

Correlation among metrics In this section, we examine
the correlation between rankings of segmentations pro-
duced by different metrics without putting any constraints
on the segmentations being ranked. Figure 3 shows the
result of a correlation analysis between the rankings pro-
duced by 16 of the metrics presented in Table 1 when
applied to a data set of 4833 automatic MRI and CT
segmentations. In this data set, all medical volumes pro-
vided by all the participants in the VISCERAL project [53]
Anatomy 1 and Anatomy 2 Benchmarks were included.
Each medical image is a segmentation of only one of 20
anatomical structures varying from organs like lung, liver,
and kidney to bone structures like vertebra, glands like
thyroid, and arteries like aorta. More details on these
structures are available in [54]. Note that the Jaccard (JAC)
and F-Measure (FMS) were excluded because they pro-
vide the same ranking as the Dice coefficient (DICE), a
fact that follows from the equivalence relations described
in Section “Calculation of overlap based metrics”. Also
FPR and FNR were excluded because of their relations
to TNR and TPR respectively, as given in Eqs. 12 and
13. In a first step, volume segmentations were ranked

using each of the metrics to get 16 rankings in total.
Then, the pairwise Pearson’s correlation coefficients were
calculated. Note that analyzing the correlation between
rankings instead of metric values solves the problem that
some of the metrics are similarities and some others are
distances and avoids the necessity to convert distances to
similarities as well as to normalize metrics to a common
range. Each cell in Fig. 3 represents the Pearson’s corre-
lation coefficients between the rankings produced by the
corresponding metrics. The color intensity of the cells
represent the strength of the correlation.
Metrics in Fig. 3 can be divided into three groups based

on the correlation between the rankings produced by
them, one group is at the top left (Group 1) including ARI,
KAP, ICC, DICE, AVD, MHD, PBD, and VS and another
group is at the right bottom (Group 2) including TNR,
RI, GCE, and VOI. The metrics in each of these groups
strongly correlate with each other, but have no correlation
with metrics in the other group. The remaining metrics
(Group 3) includingMI, AUC, TPR, andHD have medium
correlation between each other and the other groups. A
deeper consideration in the metric definitions shows that
Group 1 and Group 2 classify the metrics according to
whether they consider or do not consider the true neg-
atives (background voxels) in their definitions. While all
metrics in Group 2 include the true negatives in their def-
initions, none of the metrics in Group 1 does this. Note
that the adjusted Rand index and the kappa measures
principally include the true negatives in their definitions,
but both of them perform chance adjustment, which elim-
inates the impact of the true negatives, i.e. avoids that
the influence of the background dominates the result
[55]. Also note that the average distance (AVD) and the
Mahalanobis distance (MHD) in Group 1 do not consider
the true negatives, since they are based on the distances
between the foreground voxels (non-zero voxels). Con-
sidering the true negatives in the evaluation has a large
impact on the result, since the background (normally the
largest part of the segmentation) contributes to the agree-
ment. Figure 4 illustrates, by means of a real example, how
metrics based on the true negatives change the resulting
rankings when the true negatives are reduced by select-
ing a smaller bounding cube [10]. Such metrics are biased
against the ratio between the total number of foreground
voxels and the number of the background voxels, which
is denoted as the class imbalance. This leads to segmen-
tations with large segments being penalized and those
with small ones being rewarded, a case that is common in
medical image segmentation e.g. when the quality of two
segmentations is to be compared, where one of them is
larger, and the other one is smaller than the ground truth
segmentation. Vinh et al. [7] stated that such metrics need
chance adjustment, since they do not meet the constant
baseline property.
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Fig. 3 The correlation between the rankings produced by 16 different metrics. The pair-wise Pearson’s correlation coefficients between the rankings
of 4833 medical volume segmentations produced by 16 metrics. The color intensity of each cell represents the strength of the correlation, where
blue denotes direct correlation and red denotes inverse correlation

Effects of overlap on the correlation Obviously, the
correlation between rankings produced by overlap based
metrics and rankings produced by distance based met-
rics cannot hold in all cases. For example, consider the
case where the overlap between segments is zero, here all
overlap based metrics provide zero values regardless of
the positions of the segments. On the contrary, distance
based metrics still provide values dependent on the spa-
tial distance between the segments. This motivated us to
examine how the correlation described in Section “Corre-
lation among metrics” behaves when only segmentations
with overlap values in particular ranges are considered.

Figure 5 shows the Pearsons’s correlation between the
DICE and each of the other metrics when the measured
DICE is in a particular range. One important observa-
tion is that the correlation between DICE and the dis-
tance based metrics (AVD,HD, andMHD) decreases with
decreasing overlap, i.e. with increasing false positives and
false negatives. This is intuitive because overlap based
metrics, in contrast to distance based metrics, don’t con-
sider the positions of voxels that are not in the overlap
region (false positives and false negatives), which means
that they provide the same value independent of the dis-
tance between the voxels. It follows that increasing the
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Fig. 4 The effect of decreasing the true negatives (background) on the ranking. Each of the segmentations in A and B is compared with the same
ground truth. All metrics assess that the segmentation in A is more similar to the ground truth than in B. In Á, the segmentation and ground truth
are the same as in A, but after reducing the true negatives by selecting a smaller bounding cube. The metrics RI, GCE, and TNR change their rankings
as a result of reducing the true negatives. Note that some of the metrics are similarities and others are distances

Fig. 5 The effect of overlap on the correlation between rankings
produced by different metrics. The positions and heights of the bars
show how metrics correlate with DICE and how this correlation
depends on the overlap between the compared segmentations. Four
different overlap ranges are considered

false positives and/or false negatives (decreasing overlap)
means increasing the probability of divergent correlation.
Another observation is the strongly divergent correla-

tion between volumetric similarity (VS) and DICE. This
divergence is intuitive since the VS only compares the vol-
ume of the segment(s) in the automatic segmentation with
the volume in the ground truth, which implicitly assumes
that the segments are optimally aligned. Obviously, this
assumption only makes sense when the overlap is high.
Actually, the VS can have its maximum value (one) even
when the overlap is zero. However, the smaller the over-
lap, the higher is the probability that two segments that
are similar in volume are not aligned, which explains the
strong divergence in correlation when the overlap is low.
Finally, the highest divergence in the correlation is

observed with the probabilistic distance (PBD). This is
caused by the fact that PBD, in contrast to DICE, over-
penalizes false positives and false negatives. This can be
explained by means of the definition of the PBD in Eq. 42:
differences in the voxel values in the compared segmen-
tations have a double impact on the result because they
increase the numerator and decrease the denominator at
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the same time, causing the distance to increase rapidly.
Actually, the PBD even reaches infinity when the overlap
reaches zero. PBD behaves the opposite of the VS regard-
ing the sensitivity to the alignment, i.e. it strongly penal-
izes alignment errors (we mean with alignment errors that
the segmented volume is correct, but the overlap is low).
This makes PBD suitable for tasks where the alignment is
of more interest than the volume and the contour.

Segment size: There is an inverse relation between seg-
ment size (relative to the grid size) and the expectation
value of the alignment error, which directly follows from
the degree of freedom for the segment location being
higher when the segment is small. Furthermore, there is a
direct relation between the expectation of alignment error
and overlap between the segment in the ground truth
and that in the segmentation under test. For small seg-
ments, the expectation value of the alignment error can
be comparable in magnitude with the segment size, which
results in the probability of small (or zero) overlap being
high. In such a case, all metrics based on the four over-
lap cardinalities (TP, TN, FP, FN), e.g. the overlap based
metrics, are not suitable, since they would provide the
same value regardless of how far the segments are from
each other, once the overlap is zero. Obviously, metrics
based on the volume, e.g. the volumetric similarity have
also the same drawback. Distance based metrics are the
better choice when segments are small. We define small
segments to be when the smallest dimension of the seg-
ment, i.e. min(length,width, height), is significantly less
than the corresponding dimension of the grid on which
the image is defined (e.g. less than 5 % of the correspond-
ing grid dimension). Note that at least one dimension
should be small. This means that also segments that are
small in only one dimension (planar shape) or small in two
dimensions (linear shape) can cause the same effect (i.e.
the expectation value of the alignment error is comparable
with smallest dimension). To illustrate this effect, consider
comparing two lines using DICE. Assume that the lines
have almost exact match, but the overlap is zero. Here, the
DICE provides the same value (zero) for these two lines
and for another two lines that are far from each other. The
same holds for two planes or two points.

Boundary errors Anatomy structures that are seg-
mented can be of different grades of complexity in terms
of boundary delimitation. They can vary from simple and
smooth shapes, like a kidney, to irregular shapes, like
tumors, but also branched and complex like the vessels
of the eye retina. It depends on the goal of the segmen-
tation, whether the exact delimitation of the boundary is
important or not. For example, the boundary can be of
importance when the goal is monitoring the progress of a
tumor. In other cases, the goal is to estimate the location

and the size or general shape of an anatomical structure,
e.g. a lesion. Here the alignment and the extent are rather
more important then the boundary. Another requirement
could be maximizing the recall at the cost of the bound-
ary delimitation, i.e. to ensure that the segmented regions
contain (include) all of the true segment, e.g. when the
goal is to remove a tumor. In this section, we analyze
the metrics in terms of their capabilities of (i) penalizing
boundary errors, (ii) rewarding recall, and (iii) discovering
the general shape, thereby ignoring small details.
Figure 6 illustrates the fact that metrics differently con-

sider boundary delimitation. In (a) a star is compared with
a circle and in (b), the same star is compared with another
star that has the same shape and dimensions, but slightly
rotated so that the resulting overlap errors FP and FN
(obviously also the TP and TN) are the same as in (a).
It follows that all metrics, defined based on the overlap
error cardinalities, provide the same similarity between
the two shapes in each case, which has been also con-
firmed empirically. This means that they do not discover
that the shapes in (b) are more similar than those in
(a), which also implies that such metrics are not recom-
mended when segmentation algorithms are expected to
provide accurate boundaries. However, the spatial based
distance metrics, in particular the HD and the AVD, dis-
cover these boundary errors and provide higher similarity
values for case (b). This makes these two metrics more
suitable for cases where the boundary delimitation is of
interest. Actually, as alreadymentioned in Section “Effects
of overlap on the correlation”, this suitability follows from
the fact that spatial based metrics consider the positions
of the FP and FN in contrast to the overlap based met-
rics where FP voxels as well as FN voxels count the same
regardless of their distances from the true positions. The
volumetric similarity (VS) is also not recommended to
discover boundary errors. Note that in (a) and (b), the VS
provides a perfect match, given |FP| = |FN | regardless
of the boundary. VS is recommended for cases where the
segmented volume is in the focus of interest regardless of
the boundary and the alignment.

Rewarding recall Segmentation errors can be due to
missing regions (parts in the ground truth that are missing
in the automatic segmentation) or added regions (parts in
the automatic segmentation without corresponding parts
in the ground truth). Depending on the application, some-
times missing regions harm more than added regions,
which means that algorithms are preferred that aim to
maximize recall on cost of precision, i.e. avoid missing
regions, even on cost of having added regions. In this case,
metrics that reward recall could be a good choice. Figure 7
illustrates in 2D how metrics differ in evaluating segmen-
tations in terms of missing and added regions. In one case,
the ground truth segment GT is compared with a smaller
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Fig. 6Metrics that fail to discover boundary errors. In a, the star is compared with a circle and in b the same star is compared with another star of
the same dimensions, rotated so that the resulting overlap errors (FP and FN) are equal in magnitude in both cases. All metrics that are based on FP
and FN (overlap-based metrics) are not able to discover that the two shapes in (b) are more similar to each other than those in (a). On the contrary,
all spatial distance based metrics discover the similarity and give (b) a higher score than (a). However, the metric most invariant to boundary error is
the volumetric similarity, since it gives a perfect match in both cases

segment A and in another case GT is compared with a
larger segment B. The distance between the boundary of
the ground truth and the boundary of the segment δ is
equal in both cases. However, the volume differences (FN
and FP) are not equal, which causes metrics based on the

Fig. 7 Boundary errors: rewarding/penalizing recall. Illustration in 2D
of boundary errors that decrease/increase recall. The ground truth
image GT is compared with the image A that is smaller than GT and
with another image B that is larger than GT. Although the boundary
error in both cases is equal (δ), the magnitude of the resulting false
negative (FN) with A is smaller than the resulting false positive (FP)
with B. This causes that metrics, considering the absolute magnitudes
of FN and FP, penalize high racall

four cardinalities (TP, TN, FP, FN) differently to evaluate
the two cases. The metrics MI (mutual information) and
TPR (recall) reward recall and hence evaluate B as better
than A. This is becauseMI measures how much informa-
tion the segmentation have in common, which obviously
increases with recall.

Segmentation density The density of segments in auto-
matic segmentations can vary depending on the strategies
used by the segmentation algorithms. While some algo-
rithms produce solid segments, others produce segments
with low density, e.g. due to a huge number of uni-
formly distributed tiny holes. It depends on the goal of
the segmentation, whether the density of a segment is of
importance or not. In some cases, the density has a mean-
ing e.g. when it should measure the progress of a disease,
and in other cases it is meaningless, e.g. when anatomical
structures are to be localized, e.g. organs.
However, sometimes the density of the segments is not

intended by the segmentation algorithm, but rather a side
effect of the strategy used for the segmentation. There
are cases where algorithms work very will in identifying
the boundary of the structure being segmented, but pro-
duce segments with low density. Figure 8 shows a real
example of brain tumor segmentation from the BRATS
2012 challenge, where a segmentation algorithm provides
a solid segment (b) with low accuracy in identifying the
boundary, and another algorithm (c) produces a segment
with a boundary of higher accuracy, but the density is
low due to numerous tiny holes. When comparing each
of these cases with the corresponding ground truth (a), all
the metrics, except the Mahalanobis distance (MHD) and
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Fig. 8 The effect of segment density. Two segmentations b and c are compared with the corresponding ground truth (a). b has a solid structure
while c has a lower density due to large number of tiny holes uniformly distributed inside it. Although c has a a higher accuracy of the boundary
than b, all metrics, exceptsMHD and HD, give b a higher score than (c)

the Hausdorff distance (HD), measure a higher similarity
(or smaller distance) in (b) than in (c). The explanation is
obvious, since all tiny holes are calculated as false nega-
tives, which has impact on all metrics defined based on
the four cardinalities (TP, TN, FP, FN). On the other hand,
since the MHD estimates the general shape of the seg-
ment, thereby ignoring small details, it is not sensitive to
segment density. Also the HD is not sensitive, since it is
a maxi min operation, which means that errors caused by
the tiny holes are ignored, when there exist larger errors.
Given that the task is to identify the tumor core using
a crisp segmentation, i.e. assigning each voxel either as
tumor core or background, the question is whether it is
justified to penalize the low density of the segment. How-
ever, in cases where the segment density is to be ignored,
metrics with such sensitivity should be avoided.

General shape and alignment The Mahalanobis dis-
tanceMHD (Eqs 52 to 54) measures the distance between
two segmentations by comparing estimates of them, in
particular it considers the two ellipsoids that best rep-
resent the segmentations [43]. This way of comparison
ignores the boundary details and considers only the gen-
eral shape and the alignment of the segments. The could
be a good choice when the goal of the exact shape of the
segment is not a requirement.

Metric properties
Based on the results of the discussion so far, we sum-
marize the properties of the metrics that are relevant for
segmentation. In particular, we define these properties
and assign them to the metrics listed in Table 1.

• Outlier sensitivity: Sometimes automatic
segmentations have outliers in form of few pixels
outside the segment. The underlying property
describes metrics that strongly penalize such outliers.

• True negatives consideration: In a two class
segmentation, the voxels are assigned either to the
single segment or to the background. The voxels that
are assigned as background by both the automatic
segmentation and the ground truth are called the true
negatives. The underlying property describes metrics
that calculate the true negatives as a part of the
agreement between the automatic segmentation and
the ground truth.

• Chance adjustment: The agreement between two
segmentations could be caused by chance. The score
of a segmentation performed randomly, which is
called the baseline, should ideally be zero. The
underlying property describes metrics that have in
their definition an adjustment to minimize the
baseline value.
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• Sensitivity to point positions: Some metrics, e.g.
overlap-based metrics, do not consider the position
of false positive voxels, i.e. they provide the same
result wherever these voxels are. The underlying
property describes metrics that do consider the
position of the false positive, i.e. their values differ
depending on where these voxels are.

• Ignoring alignment errors: alignment errors are when
the segment in the automatic segmentation has
similar shape and similar volume as the
corresponding segment in ground truth, but it is not
correctly aligned, e.g. translated or rotated. Some
metrics are invariant to alignment error, i.e. they
cannot discover them, like the volumetric similarity.

• Recall rewarding: Describes metrics that are not
sensitive to errors increasing recall, in particular they
penalize boundary errors that decrease the
segmented volume more than errors that enlarge the
segmented volume.

• General shape and alignment: Describes metrics that
ignore small details and judge only the general shape
and alignment of the segmented region.

• Overlap-based: This property describes metrics that
are based on four types of overlap (TP, TN, FP, FN)
between the automatic segmentation and the ground
truth.

• Distance-based: This property describes metric that
are defined as functions of the Euclidean distances
between the voxels of the segment in the automatic
segmentation and the voxels of the segment in the
ground truth.

• Information theoretical-based: Describes metrics
based on information theoretical factors like the
entropy.

• Probabilistic-based: Describes metrics defined as
functions of statistics calculated from the voxels in
the overlap regions of the segmentations.

• Pair-counting-based: Considering that the
segmentation is a partitioning of an image,
pair-counting-based metrics consider grouping
tuples representing all possible object pairs in four
groups depending on where the objects of each pair
are placed according to each of the partitions.

• Volume-based: Describes metrics that are defined
based on the volume of the segmented region.

Now, depending on whether each of these proper-
ties holds or does not hold for a particular metric, we
present the property assignments in Table 4, in which a
check marked cell denotes that the corresponding met-
ric has the corresponding property. This assignment will
be used later in Section “Guidelines for selecting evalua-
tion metrics” to define a protocol for selecting evaluation
metrics.

Segmentation properties
Metric selection should consider, among others, the
properties of the segmentations being evaluated. In this
section, we define some of the properties that segmenta-
tions can have, to which metrics can be sensitive. These
properties will be used in combination with the metric
properties to define a protocol for metric selection in
Section “Guidelines for selecting evaluation metrics”.

• Outliers: In segmentation, outliers are relatively small
wrongly segmented regions outside (normally far
from) the segment. Metrics sensitive to outliers
over-penalize them. When outliers do not harm,
metrics with sensitivity to outliers, such as the HD,
should be avoided.

• Small segment: When a segment size is significantly
smaller than the background, so that it is comparable
in magnitude with the expectation of the alignment
error, then all metrics based on the four overlap
cardinalities (TP, TN, FP, FN), e.g. the overlap based
metrics, as well as volume based metrics (VS) are not
suitable. Small segments are those with at least one
dimension being significantly smaller than the
corresponding dimension of the grid on which the
image is defined (e.g. less than 5 % of the
corresponding grid dimension). In this case, distance
based metrics are recommended.

• Complex boundary: While some segments have
nearly round shape or smooth boundaries, there are
others that have a non-regular shaped complex
boundary, which are denoted by this property.
Metrics that are sensitive to point positions (e.g. HD
and AVD) are more suitable to evaluate such
segmentation than others. Volume based metrics are
to be avoided in this case.

• Low densities: Some algorithms produce
segmentations that have a good quality in terms of
contour and alignment, but the segments are not
solid, but rather have a lower density, e.g. because of
numerous tiny holes. All metrics based on the four
cardinalities are sensitive to segment density. They
penalize low density and hence should be avoided in
cases where the low density does not harm. In these
cases, distance based metrics (HD, AVD, and MHD)
are good choices.

• Low segmentation quality: This property describes
segmentations that have in general a low quality, i.e.
it can be assumed that the segments have in general
low overlap with the corresponding segments in the
ground truth segmentation. When the overlap is low,
distance based metrics are more capable of
differentiating between segmentation qualities than
volume based metrics. The volumetric similarity VS
should be avoided.
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Table 4 Assignment of properties to metrics. Assignment between the properties defined in Section “Metric properties” and the metrics defined in Table 1

Outlier True Chance Sensitive Ignoring Recall General Overlap- Distance- Information Probabilistic- Pair- Volume-
sensitive negatives adjustment to point alignment rewarding shape & based based theoretical based counting- based

consideration positions errors alignment based

DICE �
JAC �
TPR � �
TNR � �
FPR �
FNR �
FMS �
VS � �
GCE �
RI � �
ARI � � �
MI � � �
VOI � �
ICC � � �
PBD �
KAP � � �
AUC � �
HD � � �
AVD � �
MHD � � �
A particular metric has a particular property iff the corresponding cell is check marked
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Requirements on the segmentation algorithms
Depending on the goal of the segmentation, there could
be special requirements on the segmentation algorithms.
Many different requirements could be defined, which can
strongly differ from case to case. In the following are some
of the requirements that could be put on the segmentation
algorithms.

• Contour is important: Depending on the individual
task, the contour can be of interest, that is the
segmentation algorithms should provide segments
with boundary delimitation as exact as possible.
Metrics that are sensitive to point positions (e.g. HD
and AVD) are more suitable to evaluate such
segmentation than others. Volume based metrics are
to be avoided in this case.

• Alignment is important: When the requirement is
the location (general alignment) of the segment
rather than the boundary delimitation. In this case,
the volume based metrics are not a good choice.

• Recall is important: In some cases, it is an important
requirement that the segmented region includes at
least all the true segment, regardless of including
parts of the false region. Obviously, the boundary
delimitation in this case is of less interest, and the
algorithms should rather maximize the recall.
Metrics that reward recall are the mutual information
MI and the true positive rate TPR.

• Volume is important: Sometimes the magnitude of
the segmented region is of more importance than the
boundary and the alignment. Here, algorithms should
segment region to have a volume as near to that of
the true segment as possible. The volumetric
similarity VS is recommended.

• Only general shape and alignment: The exact
boundary and high overlap are not always
requirements. Depending on the goal, sometimes the
general shape and the alignment (location) are
sufficient, e.g. when the requirement is to identify
lesions and give an estimation of the size. For this
case, the Mahalanobis distance MHD is a good
choice.

Guidelines for selecting evaluationmetrics
As has been stated in Section “Background”, different
metrics have sensitivities to different properties of the seg-
mentations, and thus they can discover different types of
error. Taha et al. [56] provide a formal method for choos-
ing the most suitable metric, given a set of segmentations
to be evaluated and a segmentation task.
Now, we provide guidelines for choosing a suitable

metric based on the results so far. These guidelines are
additionally summarized in Table 5 in form of match-
ing between data properties, requirements, and metric

properties: (i) When the objective is to evaluate the gen-
eral alignment of the segments, especially when the seg-
ments are small (the overlap is likely small or zero), it is
recommended to use distance based metrics rather than
overlap based metrics. The volumetric similarity (VS) is
not suitable in this case. (ii) Distance based metrics are
recommended when the contour of the segmentation, i.e.
the accuracy at the boundary, is of importance [6]. This
follows from being the only category of metrics that takes
into consideration the spatial position of false negatives
and false positives. (iii) The Hausdorff distance is sensi-
tive to outliers and thus not recommended to be used
when outliers are likely. However, methods for handling
the outliers, such as the quantile method [41], could solve
the problem, otherwise the average distance (AVG) and
the overlap based metrics as well as probabilistic based
metrics are known to be stable against outliers. (iv) Prob-
abilistic distance (PBD) and overlap based metrics are
recommended when the alignment of the segments is of
interest rather than the overall segmentation accuracy [2].
(v) Metrics considering the true negatives in their def-
initions have sensitivity to segment size. They reward
segmentations with small segments and penalize those
with large segments [10]. Therefore, they tend to gener-
ally penalize algorithms that aim to maximize recall and
reward algorithms that aim to maximize precision. Such
metrics should be avoided in general, especially when the
objective is to reward recall (vi) When the segmenta-
tions have a high class imbalance, e.g. segmentations with
small segments, it is recommended to use metrics with
chance adjustment, e.g. the Kappa measure (KAP) and the
adjusted rand index (ARI) [29, 55]. (vii) When the seg-
ments are not solid, but rather have low densities, then
all metrics that are based on volume or on the four cardi-
nalities (TP, TN, FP, FN), are not recommended. In such
cases distance-based metrics, especially MHD and HD,
are recommended. (viii) Volumetric similarity is not rec-
ommended when the quality of the segmentations being
evaluated is low in general, because the segments are
likely to have low overlap with their corresponding seg-
ments in the ground truth. In this case, overlap-based and
distance-based metrics are recommended. (ix) When the
segmented volume is of importance, volumetric similar-
ity and overlap based metrics are recommended rather
than distance based-metrics. (x) When more than one
objective is to be considered, which are in conflict, then
it is recommended to to combine more than one met-
ric, so that each of the objective is considered by one of
the metrics. Thereby, it is recommended to possibly avoid
selecting metrics that are strongly correlated (Fig. 3).

Conclusion
We propose an efficient evaluation tool for 3D medical
image segmentations using 20 evaluation metrics. These
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Table 5 Summary of metric selection guidelines

DICE JAC TPR TNR FPR FNR FMS VS GCE RI ARI MI VOI ICC PBD KAP AUC HD AVD MHD

Outliers exist � � � � � � � � X � �
Small segment X X X X X X X X X X X X X � � �
Complex boundary X � � X

Low densities X X X X X X X X X X X X X X X X X � � �
Low segmentation quality X � � �
Contour is important X � � X

Alignment is important X

Recall is important � �
Volume is important �
General shape & alignment X X X X X X X X X X X X X X X X X X X �
Each row corresponds to either a segmentation property or a requirement and each column corresponds to one of the metrics in Table 1. A checked cell (�) denotes that the metric is recommended for the corresponding
property/requirement, a crossed cell (X) denotes that the metric is not recommended, and empty cells denote neutrality
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metrics are selected based on a comprehensive literature
review about validation of medical images segmentations.
The aim of this tool is to provide a standard for evaluat-
ing medical image segmentation by providing a consistent
set of metrics. The proposed evaluation tool is imple-
mented in the open source project “EvaluateSegmen-
tation” available for download from http://github.com/
codalab/EvaluateSegmentation. The implementation of
this tool uses efficient techniques which make it address
the challenges in the evaluation of medical segmentations.
The algorithms used to calculate themetrics were selected
and optimized to achieve high efficiency in speed and
memory required tomeet the challenging requirements of
evaluating images with large grid size, like the whole body
scans.
Since metrics have different properties (biases, sensitiv-

ities), selecting suitable metrics is not a trivial task. This
paper provides analysis of the 20 implemented metrics,
in particular of their properties, and suitabilities to eval-
uate segmentations, given particular requirements and
segmentations with particular properties. This analysis is
concluded by providing guidelines for selecting a subset of
the implemented metrics, given segmentation properties
and requirements.

Availability and requirements
• Project name: EvaluateSegmentation
• Project home page: http://github.com/codalab/

EvaluateSegmentation
• Operating system(s): Platform independent
• Programming language: C++ / CMake
• Other requirements: ITK Library available under

http://www.itk.org
• License: Apache License Version 2.0, January 2004
• Any restrictions to use by non-academics: none

Endnotes
1More about TREC_EVAL under http://trec.nist.gov/

trec_eval/
2National Library of Medicine Insight Segmentation

and Registration Toolkit (ITK) www.itk.org
3FMSβ can be derived by setting α = 1

β2+1 in
Rijsbergen’s effectiveness measure
E = 1 − 1

α 1
PPV +(1−α) 1

TPR
.

4MICCAI 2012 Challenge on Multimodal Brain Tumor
Segmentation, http://www2.imm.dtu.dk/projects/
BRATS2012
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