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Bone remodeling is a lifelong process in vertebrates that relies on the correct balance between bone resorption by osteoclasts and
bone formation by osteoblasts. Bone loss and fracture risk are implicated in inflammatory autoimmune diseases such as rheumatoid
arthritis, ankylosing spondylitis, inflammatory bowel disease, and systemic lupus erythematosus. The network of inflammatory
cytokines produced during chronic inflammation induces an uncoupling of bone formation and resorption, resulting in significant
bone loss in patients with inflammatory autoimmune diseases. Here, we review and discuss the involvement of the inflammatory
cytokine network in the pathophysiological aspects and the therapeutic advances in inflammatory autoimmune diseases.

1. Introduction

Bone is the main calcified tissue of vertebrates and serves
multiple functions includingmechanical support, protection,
and storage [1]. The composition of bone is approximately
10% cells, 60% mineral crystals (crystalline hydroxyapatite),
and 30% organicmatrix [2]. Bone is continuouslymaintained
by the process of bone remodeling through clusters of bone-
resorbing osteoclasts and bone-forming osteoblasts [1, 3].
During bone remodeling, old or damaged bone is removed by
osteoclasts and replaced by new bone formed by osteoblasts
over several weeks [1, 3].

Osteoblasts are of mesenchymal origin and function
primarily as bone-forming cells [1, 4]. Osteoblasts secrete
the organic matrix, which predominantly contains collagen,
and induce calcification during the process of new bone
formation [5]. During bone remodeling, osteoblasts rebuild
the bone matrix in regions where the bone has been resorbed
by osteoclasts [1, 4]. The differentiation and function of
osteoblasts are regulated by the activation of transcription
factors (i.e., Runx-2/Cbfa-1, osterix (Osx), TAZ, andAtf4) [6–
9], growth factors (i.e., tumor growth factor-𝛽 (TGF-𝛽), bone
morphogenetic proteins (BMPs),Wnt, and vascular endothe-
lial growth factor) [10–13], cytokines (i.e., interleukin-1 (IL-1),

IL-6, and tumor necrosis factor-𝛼 (TNF-𝛼)), and interactions
with various matrix proteins (i.e., collagen type I, biglycan,
laminin, and fibronectin) [14, 15]. At the end of the bone-
forming phase during bone remodeling, osteoblasts incorpo-
rate into the bone as osteocytes and the rest either remain on
the bone surface as lining cells or undergo apoptosis [5, 16].

Osteocytes are former osteoblasts that become trapped
during the process of bone deposition and remain regu-
larly distributed throughout the mineralized bone matrix.
These cells comprise more than 90% of bone cells within
the matrix or on bone surfaces [17]. Osteocytes are the
primary mechanosensory cells that act as regulators of
mineral metabolism during bone remodeling [17]. Studies
have revealed that osteocytes can send signals of bone
resorption to osteoclasts during bone remodeling [17, 18].
Osteoclasts, the sole bone-resorbing cells, are multinucleated
giant cells that are derived from mononuclear cells of the
monocyte/macrophage lineage following stimulation by two
essential factors: the macrophage colony-stimulating factor
(M-CSF) and the receptor activator of nuclear factor-kappa
B (RANK) ligand (RANKL) [1, 3, 4].

The process of bone remodeling depends on the tight
coupling of bone formation and bone resorption to ensure
that there is no net change in the bone mass and to
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Figure 1:The role of inflammatory cytokine network in inflammatory bone loss. Bone remodeling is tightly regulated by the balanced action
between bone-forming osteoblasts and bone-resorbing osteoclasts. In chronic inflammatory condition, inflammatory cytokine networks
induce an uncoupling of bone formation and resorption that result in significant inflammatory bone loss. RANK: receptor activator of
nuclear factor 𝜅B. RANKL: RANK ligand. OPG: osteoprotegerin. Runx2: runt-related transcription factor 2. TRAP: tartrate-resistant acid
phosphatase. NFATc1: nuclear factor of activated T cells cytoplasmic 1. v-ATPase: vacuolar-type H+-ATPase. MMP: matrix metalloproteinase.
Ctsk: cathepsin K.

maintain the quality after each remodeling cycle [1, 3, 4].
An imbalance in this process is closely linked to various
types of bone diseases, such as osteoporosis, osteopetrosis,
periodontitis, and rheumatoid arthritis (RA) [19]. Osteo-
porosis is a skeletal disorder characterized by compromised
bone strength, predisposing patients to an increased risk
of fracture [20]. Osteoporosis was first considered to be
an age-related disorder characterized by low bone mass
and increased bone fragility, thereby putting the patient
at risk of fractures. However, over time, it has come to
be viewed as a heterogeneous condition that can occur at
any age and its etiology is attributed to various endocrine,
metabolic, andmechanical factors [19]. Studies have reported
an increased risk of developing osteoporosis in patients
with various inflammatory conditions [1–4]. Inflammation
is characterized by the activation of several cell populations
of the innate and adaptive immune system that produce
inflammatory cytokines [21]. Inflammation perturbs normal
bone homeostasis and is known to induce bone loss because
it promotes both local cartilage degradation and local and
systemic bone destruction by osteoclasts and inhibits bone
formation by osteoblasts (Figure 1).

Inflammatory joint diseases share in common the pres-
ence of an inflammatory process that targets the joints, with
adverse effects on structure and function [22]. RA is one
of the most common autoimmune diseases that results in
chronic inflammation of the joints [23]. Autoimmune diseases

are characterized by impaired function and destruction of
tissues caused by the presence of autoantibodies due to
abnormally activated lymphocytes and nonlymphoid cells,
such as macrophages, dendritic cells, and fibroblasts [24,
25]. Dysregulation of inflammatory or anti-inflammatory
cytokine production or action is reported to play a central
role in the pathogenesis of autoimmune diseases such as
RA, ankylosing spondylitis (AS), inflammatory bowel disease
(IBD), and systemic lupus erythematosus (SLE) [26–32].
Studies have revealed that therapeutic approaches using
inflammatory/anti-inflammatory cytokines, including neu-
tralizing antibodies (i.e., anti-TNF-𝛼, anti-IL-6, and anti-
IL-17), soluble receptors/inhibitors (i.e., TNF receptor, IL-
1 receptor, IL-17 receptor, and IL-6 receptor inhibitor), and
anti-inflammatory cytokines (i.e., IL-10 and IL-27), have been
successful in controlling the progression of autoimmune
diseases [33–37]. These studies have demonstrated a possible
link between chronic inflammation and the pathogenesis
of autoimmune diseases. Moreover, chronic inflammatory
autoimmune diseases are frequently associated with bone
destruction [38]. Bone loss is commonly observed in inflam-
matory joint diseases such as RA and AS [22]. Studies have
also found an increase in bone loss and fractures with low
BMD in individuals with SLE and IBD [38].

Although a large number of studies have focused on
inflammatory autoimmune diseases over the past 10 years, the
role of the inflammatory cytokine network involved in bone
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loss in patients with inflammatory autoimmune diseases has
not been well addressed. Therefore, in this review, we will
provide an overview of the interaction between inflammatory
autoimmune diseases and bone destruction through the
regulation of the inflammatory cytokine network.

2. Methodology

We performed an extensive internet search for scientific arti-
cles indexed in the PubMed/Medline database over the past 15
years using the following keywords: bone loss, osteoporosis,
autoimmunity, rheumatoid arthritis, ankylosing spondylitis,
inflammatory bowel disease, and systemic lupus erythemato-
sus. We specifically focused on how bone loss and fracture
risk are implicated in inflammatory autoimmune diseases.

3. Rheumatoid Arthritis (RA)

RA is a chronic autoimmune inflammatory disease character-
ized by the production of two main autoantibodies, rheuma-
toid factor and anticitrullinated peptide antibody, against
common autoantigens that are widely expressed outside the
joints, thereby resulting in local bone erosion, joint space nar-
rowing, and extra-articular manifestations [23, 39]. In severe
cases, RA can lead to periarticular osteopenia, systemic
osteoporosis, and systemic bone erosion [40]. Disturbance
of bone homeostasis in RA patients is driven by the cellular
action of osteoclasts [41]. The enhanced osteoclast formation
and activation is due to the increased accumulation of
osteoclastogenic factors in the inflamed synovium [42–45]. In
RA, elevated inflammatory cytokines have been implicated in
bone destruction through recruitment of osteoclast precur-
sors to the bone environment, where they differentiate into
mature osteoclasts [46–48]. These inflammatory cytokines,
such as TNF-𝛼, IL-1, IL-6, IL-7, and IL-17, are responsible
for the overexpression of RANKL and decreased levels of
osteoprotegerin (OPG), a decoy receptor of RANK. This
perturbation leads to an imbalance in the RANKL/OPG ratio,
thereby increasing osteoclast differentiation (also known
as osteoclastogenesis) [42, 49–52]. However, levels of anti-
inflammatory cytokines such as IL-10, IL-13, and TGF-𝛽 have
been reported to be present in significant amounts in RA
joints [53, 54]. These anti-inflammatory cytokines have a
negative effect on the joint destruction and inflammation
associated with RA [55].

The role of TNF-𝛼 in arthritic bone destruction has been
demonstrated in several experimental models and confirmed
by clinical trials [56]. TNF-𝛼 enhances osteoclastogenesis
through elevated expression of RANKL in the osteoblast [57].
Moreover, TNF-𝛼 induces the expression of the osteoclast-
associated receptor (OSCAR), a key costimulatory molecule
in osteoclastogenesis, on monocytes in RA patients [58].
TNF-𝛼 is also involved in osteoclastogenesis through modu-
lation of theWnt signaling pathway, althoughWnt signaling is
considered to be a key regulatory pathway for bone formation
by osteoblasts [59]. In RA, TNF-𝛼 is a strong inducer of the
Wnt antagonist Dickkopf-1 (Dkk-1) expression [60]. Dkk-
1 impairs local bone formation through the inhibition of

Wnt signaling by binding to low density lipoprotein-coupled
receptor related protein-5/6 [61]. The blockade of Dkk-1
inhibits local bone resorption by reducing osteoclast numbers
through the downregulation of OPG expression in the joints;
this is further compounded because OPG regulates Dkk-
1 expression through a feedback loop [60]. Consequently,
the enhanced levels of Dkk-1 induced by TNF-𝛼 promote
bone resorption by increasing the RANKL/OPG ratio but
also block bone formation and repair in the diseased joint
[62]. Furthermore, TNF-𝛼 is reported to directly inhibit
osteoblast differentiation and bone nodule formation [63].
The transcription factors Runx-2/Cbfa-1 and Osx, which are
critical regulators of osteoblast differentiation, are reported
to be inhibited by TNF-𝛼, thereby decreasing osteoblast
differentiation and inhibiting bone formation [13]. Because
TNF-𝛼 is the most important cytokine involved in both
pathogenesis and joint inflammation associated with RA,
TNF-𝛼 blockers were the first class of biologics used in RA
[41]. A study by Smolen et al. showed that TNF-𝛼 blockers
had a beneficial effect on inflammatory disease activity and
joint degradation, achieving high rates of sustained clinical
remission by preventing radiographic damage in RA [64].
Moreover, studies have reported that TNF-𝛼 antibodies can
decrease systemic bone loss and increase bone mineral den-
sity indicating that anti-TNF-𝛼 can be used against systemic
osteoporosis and osteopenia [65, 66].

IL-1 is a key regulatory cytokine in mouse models of
inflammatory arthritis. Overexpression of IL-1𝛼 or IL-1𝛽 or
deletion of the IL-1 receptor antagonist (IL-1Ra) leads to the
development of arthritis with cartilage and bone destruction
[48, 67]. IL-1 upregulates the production of RANKL, resulting
in an imbalance in the synovial RANKL/OPG ratio [51, 68,
69]. In TNF-transgenic mice lacking IL-1 signaling, cartilage
destruction is completely blocked and bone destruction
partly reduced despite the presence of synovial inflammation,
indicating that TNF-induced local bone destruction and
systemic inflammatory bone loss are largely dependent on IL-
1 [48]. Moreover, it is evident that TNF-induced synthesis of
RANKL is inhibited by IL-1Ra [51]. In addition to IL-1 and
TNF, IL-6 is another key proinflammatory cytokine involved
in the pathogenesis of RA [70]. IL-6 stimulates the synthesis
of RANKL by osteoblasts and promotes the development of
T helper 17 (Th17) cells together with TGF-𝛽 and IL-1 [71].
Studies have shown that the IL-6 antagonist tocilizumab has a
beneficial effect on joint destruction and disease progression
in RA patients [72, 73]. In mouse RA models, inflammatory
cytokines such as IL-1𝛽, TNF-𝛼, and IL-6 activate the signal
transducer and activator of transcription 3 (STAT3) either
directly or indirectly in murine osteoblasts and fibroblasts
[68]. Studies have shown that STAT3 is the key mediator of
both chronic inflammation and joint destruction in RA [68].
STAT3 activation induces the expression of RANKL [68, 74].
Therefore, STAT3 inhibition is also considered to be effective
in treating RA.

IL-17 is the most recently described subclass of inflam-
matory cytokines. IL-17 induces the secretion of proinflam-
matory cytokines (i.e., TNF-𝛼, IL-1𝛽, and IL-6) and che-
mokines (i.e., CXCL1/KC/GRO𝛼, CXCL2/MIP2𝛼/GRO𝛽,
CXCL8/IL-8, CCL2/MCP1, and CCL20/MIP-3𝛼) from
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cartilage, synoviocytes, macrophages, and bone cells [75–81].
These elevated inflammatory cytokines and chemokines
serve to activate and recruit neutrophils, macrophages, and
lymphocytes to the inflamed synovium, thereby enhancing
synovial inflammation [82]. Intra-articular injection of
recombinant IL-17 also results in joint inflammation and
damage [79, 83]. Interestingly, IL-17 activity is synergistically
increased when combined with proinflammatory cytokines
such as TNF-𝛼, IL-1𝛽, and IL-6 [84, 85]. Moreover, IL-17
contributes to extensive cartilage and bone erosion in
the advanced stages of RA by inducing the expression of
RANKL, matrix metalloproteinases (MMPs), prostaglandin
E2, and cyclooxygenase-2 [83, 86, 87]. The role of IL-17 as
a potent stimulator of osteoclastogenesis in RA patients
was first demonstrated by Kotake et al. [46]. IL-17 regulates
osteoclastogenesis both directly and indirectly through
osteoblasts/stromal cells, although the direct effect of IL-17
on osteoclast precursors is still controversial [87–89]. IL-17
induces RANKL expression from osteoblasts, synovial cells,
and mesenchymal cells, and the increased RANKL/OPG
ratio results in local or systemic bone destruction through
enhancement of osteoclastogenesis [42, 46, 90]. Moreover,
IL-17-producing Th17 cells, a subset of RANKL-expressing
CD4+ T cells, are involved in bone destruction through the
function of osteoclastogenic helper T cells [87, 91]. In animal
model studies, therapeutic approaches using IL-17 antibodies
or a soluble IL-17 receptor have resulted in significant
suppression of joint inflammation and bone erosion through
downregulation of synovial RANKL and inflammatory
cytokine expression [92–94]. Therefore, blocking IL-17,
the IL-17 receptor (IL-17R), or its inducers (i.e., IL-23
and IL-6) can be used as a putative treatment method for
RA.

In conclusion, bone destruction in RA is caused by a
complex network of inflammatory cytokines, resulting in
the chronic inflammation of the synovium. These studies
have revealed several promising targets for the treatment of
inflammatory bone loss in RA. In this respect, the initiation of
biological therapies targeting inflammatory cytokines and/or
lymphocyte activation has modified RA therapy not only
by blocking local and systemic inflammatory cascades but
also by providing beneficial effects against bone and joint
destruction.

4. Ankylosing Spondylitis (AS)

AS is a systemic rheumatic disease characterized by chronic
inflammation that chiefly affects the sacroiliac joints and the
spine, whereas RA primarily affects the synovial membrane
[95, 96]. One of the main features of structural damage
in AS is bony ankyloses characterized by excessive bone
formation that leads to the formation of bone spurs, such
as syndesmophytes and enthesophytes, that contribute to
ankylosis of the joints and poor physical function [96].
Moreover, the excessive loss of trabecular bone in the
center of the vertebral body causing osteopenia or osteo-
porosis and leading to vertebral fractures with increased
spinal deformity has been documented in AS patients
[97].

TNF-𝛼 is a pivotal cytokine fueling inflammation in AS
[96, 98]. TNF-𝛼-targeted therapies have influenced short-
term control of the disease by limiting the symptoms caused
by inflammation, which translates into better physical func-
tion and quality of life [96]. However, little or no effect on
structural remodeling is achieved [99]. The elevated levels
of IL-1 and IL-6 in the serum and in the sacroiliac joints
of AS patients are also implicated in AS [32, 100]. However,
antibody therapies blocking IL-6R signalingwith tocilizumab
or sarilumab failed to show clinical efficacy in a phase II
clinical trial with AS patients, suggesting that IL-6 is not
a pivotal inflammatory cytokine in the pathogenesis of AS
[101, 102].

The involvement of Th17 cells in the promotion of
the inflammatory process in AS patients is shown by the
significantly elevated levels of Th17 cells in the peripheral
blood of patients with AS [103, 104]. IL-17 and IL-23 are also
high in the serum of AS patients [30]. Moreover, antibody
therapies such as blocking IL-17 with secukinumab were
shown to significantly downregulate the signs, symptoms,
and objective parameters of inflammation in a phase II
clinical trial in AS patients [105]. Currently, phase III clinical
trials consisting of antibody therapy with secukinumab in AS
patients are ongoing [106].

Previous studies have documented that the serum level
of RANKL is higher in AS patients and that the expression
of RANKL is increased on CD4 and CD8 T cells in AS
patients [107]. Inflammatory cytokines including IL-1, IL-
6, TNF-𝛼, and IL-17 can stimulate the expression of the
soluble form of RANKL, which imbalances the RANKL/OPG
ratio in AS patients [38]. The increased RANKL/OPG ratio
thus promotes osteoclast differentiation, resulting in the bone
destruction that is characteristic of AS [108, 109].

5. Inflammatory Bowel Disease (IBD)

IBD primarily refers to Crohn’s disease and ulcerative colitis
[110]. Crohn’s disease can affect any part of the gastroin-
testinal tract, and classically presents with fatigue, prolonged
diarrhea with or without gross bleeding, abdominal pain,
weight loss, and fever [111]. Ulcerative colitis is limited to
the colon area; common symptoms include rectal bleeding,
frequent stools, mucus discharge from the rectum, tenesmus,
and lower abdominal pain [111]. Crohn’s disease is reported
to be associated with Th1 cytokines IL-2, IL-17, interferon-𝛾
(IFN-𝛾), andTNF-𝛼, while ulcerative colitis is associatedwith
Th2 cytokines, such as IL-4, IL-5, and IL-13 [112]. Therefore,
Th1, Th2, and Th17 cells seem to be broadly involved in the
pathogenesis of IBD through the regulation of inflammatory
cytokine network. Interestingly, low bone matrix density
(BMD) (defined as osteopenia or osteoporosis) is a known
chronic complication of IBD [113]. Although IBD is not the
sole risk factor for developing osteoporotic bone loss, it
appears to be related to other known osteoporosis risk factors
such as age, sex, bodymass index, andmedication [113].Thus,
the acceleration of the development of new biological drugs
for IBD requires expanded insights into understanding the
physiology, mechanism, and pathogenesis of IBD.
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The principal mechanisms behind reduced BMD in
IBD patients are still not completely understood, but a
complex network of inflammatory cytokines that influence
bone destruction has been reported [110, 113]. Mucosal and
systemic concentrations of many pro- and anti-inflammatory
cytokines are elevated in IBD patients [114]. In particular,
the enhanced production of proinflammatory cytokines such
as TNF-𝛼, IL-1𝛽, and IL-6 is well documented in IBD
patients [115, 116]. These proinflammatory cytokines stimu-
late bone resorption by osteoclasts through the induction of
RANKL expression [1, 4]. Interestingly, anti-TNF-𝛼 therapy
has been shown to improve markers of bone metabolism and
BMD (i.e., osteocalcin, alkaline phosphatase, and P1NP) by
decreasing serum OPG levels in IBD patients [117–120]. The
increased RANKL/OPG ratio is known to promote osteoclast
differentiation and bone destruction in IBD patients [121].

IL-17-producing Th17 cells are considered to be a new
subset of cells that is critical for the reduced BMD in chronic
IBD patients [122]. Th17 cells produce IL-17, IL-17F, IL-21,
and IL-22; IL-17, IL-21, and IL-22 levels were reported to
be markedly elevated in IBD patients [122]. IL-21 secreted
by Th17 cells is one of the crucial cytokines involved in
the pathogenesis of IBD via the induction of Th1 and Th17
immune responses in the gut [110]. Studies have shown
that IL-21-deficient mice were resistant to Th1/Th17 cell-
driven colitis [123, 124]. Correspondingly, IL-17 and IFN-𝛾
production by activated lamina propria mononuclear cells
from IBD patients were inhibited by an IL-21 blocking
antibody [123, 124].

IL-33, a new member of the IL-1 family, is a ligand for
the IL-1 receptor-related protein (ST2) that is anticipated
to be essential for the induction of Th2 immune responses
[125]. Enhanced IL-33 levels are closely associated with IBD,
particularly in ulcerative colitis patients [126]. Correspond-
ingly, the inhibition of IL-33 signaling through anti-ST2
antibody treatment attenuates the severity of arthritis in
an animal RA model [127]. Furthermore, IL-33 stimulates
human osteoclast differentiation through the activation of
ST2 receptor signaling [128].Thus, it may be possible that IL-
33 directly or indirectly regulates RANKL- or Th2 response-
mediated bone loss in IBD.

Therapeutic anti-TNF-𝛼 antibodies such as infliximab
and adalimumab are used for the treatment of severe cases
of IBD [129, 130]. However, approximately one-third of the
patients benefit minimally or not at all from this treatment
[129, 130]. This could indicate that, among patients with IBD,
nonresponders to anti-TNF therapy aremore likely to have an
inflammatory response mediated by other proinflammatory
cytokines, such as IL-1𝛽, IL-6, IL-17, and IFN-𝛾. Therefore,
new drugs targeting other inflammatory cytokines could
potentially be useful for treating IBD patients who do not
respond to anti-TNF therapy [131].

6. Systemic Lupus Erythematosus (SLE)

SLE is an autoimmune disease that predominantly affects
young women and is characterized by immunological hyper-
activity and multiorgan damage. The exact causative factors

of SLE are still unknown [132]. Unrestricted hyperactivation
of the immune system may lead to the overproduction of
autoantibodies, immune complex deposition, and inflam-
matory cytokine release, eventually resulting in the SLE
phenotype [132]. In particular, the dysregulation of T/B cell
activation leads to the production of autoantibodies such
as anti-double-stranded DNA, anti-Ro (SS-A), anti-La (SS-
B), anti-Smith (Sm), and anti-ribonucleoprotein (RNP) in
SLE patients [133]. Autoantibodies bound with antigens are
deposited in organs, thereby causing chronic inflammation
and tissue damage [132].

The abnormal expression of various inflammatory cy-
tokines due to chronic inflammation induces an imbalance
among different immune cell subsets, such as Th1/Th2 and
Th17/regulatory T (Treg) cells; this imbalance plays a crucial
pathogenic role in SLE [132]. TNF-𝛼 has been implicated in
SLE murine models [26], and elevated serum TNF-𝛼 levels
are observed in SLE patients, similar to the other inflamma-
tory autoimmune diseases discussed here [134]. However, the
therapeutic effects of TNF-𝛼 blockers in SLE patients are still
controversial [135]. Abnormal IL-6 levels were also observed
in both serum and local tissues in patients with SLE [136].
The dominant role of IL-6 in SLE pathogenesis is to accelerate
autoantibody production by promoting the proliferation
of autoreactive B cells [132]. The autoantibody production
induced by IL-6 is indirectly mediated by IL-21 produced by
CD4+ T cells [137]. Interestingly, it has been reported that
IL-6 produced by dendritic cells inhibits Treg cell function
in mouse SLE models [138]. Thus, IL-6 is implicated as the
most important inflammatory cytokine in the pathogenesis of
SLE, and antibody therapies blocking IL-6 receptor signaling
with tocilizumab are reported to be effective in treating SLE
[139].

IL-17 is a proinflammatory cytokine with multiple func-
tions in the regulation of tissue inflammation [132]. An
increased number of Th17 cells and elevated serum IL-
17 levels are reported in SLE patients [140, 141]. In SLE
patients, IL-17 seems to facilitate both T cell activation and
infiltration into tissues via the expression of intercellular
adhesionmolecule-1 (ICAM-1) and B cell activation and anti-
body production in combinationwith B-cell-activating factor
(BAFF) [140, 142]. A strong correlation between IL-17 and IL-
23 levels in SLEpatients suggests that IL-23 contributes to SLE
severity by activatingTh17 cells [143].Moreover, the IL-23/IL-
17 activation pathway is closely associated with increased
immunoglobulin deposition and complement activation in
the kidney in mouse SLE models [144]. IL-17 has not been
therapeutically targeted in SLE patients to date, but data
from recent clinical trials in other inflammatory autoimmune
diseases such as and Crohn’s disease can partially inform
us about the efficacy and safety of blocking IL-17 either
directly or indirectly by targeting IL-23 in SLE patients
[145].

Since the first reported association between type I IFN
and SLE in 1979 [146], many reports have implicated elevated
levels of serum IFN-𝛼 in SLE [147]. Plasmacytoid dendritic
cells (pDCs), which are abundant in the skin and lymph
nodes, are reported to be the primary sources of IFN-𝛼
in SLE patients. The IFN signature produced by pDCs can
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promote the pathogenesis of SLE by enhancing autoantibody
production and activating Th17 cells to secrete cytokines
[148–150]. Considering the essential role of type I IFN in SLE,
more than five monoclonal antibodies specific for different
IFN-𝛼 isoforms or their receptors are in different clinical
phases of testing [151].

There seems to be a high prevalence of osteoporosis in
SLE patients, but the prevalence frequencies differ widely
as a consequence of differences in body mass, age, sex,
ethnicity, disease severity, and medication use [152]. Glu-
cocorticoid use, longer disease duration due to chronic
inflammation, neuropsychiatric disease complications, and
previous fractures were identified as associated factors for
SLE-related osteoporotic fractures [152]. Although the direct
correlation between inflammatory cytokine levels and bone
defects in SLE patients remains unclear, bone destruction
in SLE patients is thought to be the result of accelerated
osteoclastogenesis induced by proinflammatory cytokines
[153]. The increased level of proinflammatory cytokines such
as TNF-𝛼, IL-1, IL-6, and IL-17 in SLE patients might result
in an RANKL/OPG imbalance by enhancing RANKL induc-
tion, leading to accelerated osteoclastogenesis. Interestingly,
increased levels of oxidized low density lipoproteins (LDL)
have been reported in SLE patients [154]. The enhanced
oxidized LDL can induce T cell activation, thereby sequen-
tially inducing RANKL expression and TNF-𝛼 production
[154–156]. Furthermore, a recent study by Tang et al. has
shown that impaired osteoblast differentiation through the
inhibition of the BMP/Smad pathway by activated NF-𝜅B
signaling plays a role in the pathology of osteoporosis in
SLE patients [153]. The number of Th17 cells and IL-17 levels
are elevated in the serum of many SLE patients [140, 141].
Although the exact role of IL-17 in bone destruction in SLE
patients remains unclear, IL-17 may affect bone remodeling
through its effects on both osteoblasts and osteoclasts as
discussed above; IL-17 can induce bone loss by mediating
an imbalance in RANKL/OPG via the expression of RANKL
in osteoblasts or activated T cells and can act in synergy
with TNF-𝛼 or chemokines to influence osteoclast resorption
[46, 75, 84, 85, 157].

7. Discussion

Bone remodeling is a highly coordinated process that involves
bone resorption and formation, which are essential for repair-
ing damaged bones and maintaining mineral homeostasis.
However, in chronic inflammatory conditions, the inflamma-
tory cytokine network induces an uncoupling of bone forma-
tion and resorption that results in significant inflammatory
bone loss. In particular, inflammatory cytokines such as IL-
1, IL-6, IL-17, and TNF-𝛼 are involved in the pathogenesis of
inflammatory autoimmune diseases of interest. However, the
effects of inflammatory cytokines on inflammatory bone loss
and in the pathogenesis of inflammatory autoimmune dis-
eases are more complicated. As discussed in this review, bone
loss in inflammatory autoimmune diseases may be caused
by direct or indirect effects with complicated mechanisms
by inflammatory cytokines or the inflammatory cytokine

network in chronically inflamed tissues. Therefore, drugs
targeting multiple cytokines could be an effective strategy
for disease prevention and reducing disease progression.
Because most inflammatory cytokines are involved in bone
damage though inducing an imbalance in RANKL/OPG,
focusing on OPG or RANKL management may be a bet-
ter strategy than focusing on inhibiting a single cytok-
ine.

Inflammatory autoimmune diseases continue to be a
mounting public health concern worldwide. The cost and
the social burden associated with these diseases, while being
difficult to pin down accurately, are increasing. To stick with
the saying “easing the burden: solutions for the future,” it is
imperative to accelerate the development of new treatment
options for these diseases. A better understanding of the
mechanisms by which the inflammatory cytokine network
elicits chronic inflammation in autoimmunity will provide
new therapeutic approaches to reduce bone destruction in
inflammatory autoimmune diseases.
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transcription 3
MMPs: Matrix metalloproteinases
IL-17R: IL-17 receptor
IFN-𝛾: Interferon-𝛾
Treg cells: Regulatory T cells
ICAM-1: Intercellular adhesion molecule-1
BAFF: B-cell-activating factor
pDCs: Plasmacytoid DCs
OSCAR: Osteoclast-associated receptors
Osx: Osterix
BMPs: Bone morphogenetic proteins.
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Reyes, M. D. J. Durán-Avelar, and N. Vibanco-Pérez, “Anky-
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