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PART 1: PROLOGUE

In 1982, I was working as Director of Neurology
at the Santa Clara Valley Medical Center in San Jose,
CA, which had recently become a Stanford teaching
facility. One morning in July I had just returned to
my office after morning rounds when I received a
call from our chief resident: “Dr. Langston, you have
to come down here, I’ve never seen anything like it,
and no one is sure what this patient has”. At first I was
annoyed with the interruption as I had just poured a
nice cup of coffee and was settling down to read the
morning’s batch of EEGs. Yet I agreed to come down
immediately given the resident’s sense of urgency –
the coffee and EEGs would have to wait. Little did I
know that this day would change the direction of my
career.

When I arrived, I learned that our neurology
residents were evaluating a patient who had just been
admitted to the locked psychiatry unit of our hospital
with a diagnosis of catatonic schizophrenia. A lively
argument had broken out between the psychiatrists
and our neurology house-staff over the diagnosis of
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this patient, who was almost totally unresponsive yet
eerily appeared to be alert. Ironically, the psychiatrists
were convinced the patient had a neurologic disorder
while the neurology residents argued the disorder was
psychiatric in nature.

The patient’s condition was indeed extraordinary.
He was clearly awake, but had virtually no sponta-
neous movement, and exhibited “waxy flexibility”
(when his arm was involuntarily raised, it would
stay in the position for a prolonged period of time).
Because we had the only locked care psychiatric unit
in the county, I had actually seen a number patients
with catatonic schizophrenia, something that is less
common these days. The answer came quickly. In
my experience, when passively flexing the wrist or
elbow of a catatonic patient, there is a distinct feel-
ing of irregular active resistance. This patient had
the “lead pipe rigidity” with the “cog-wheeling” of
Parkinson’s disease. Indeed he looked like a textbook
case of advance PD before the days of levodopa. But
this case didn’t fit either answer. He was in his early
forties, and his symptoms came on literally overnight.
We had a first class “medical mystery” on our hands.

This mystery would unfold in what has been called
“a trial of ironies” [1]. Through multiple leads, news
media alerts, police assistance, and a bit of luck,
we rapidly discovered six similarly affected cases;
some of whom lived in different cities and had no
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connections to each other. They did have one thing
in common - all had recently used a new “synthetic
heroin” that had hit the streets in multiple northern
Californian towns as part of what became known as
“the designer drug phenomena”. The parkinsonism
in our original seven patients exhibited virtually all
of the motor features of typical Parkinson’s disease,
including tremor (very severe in one), and asymme-
try of findings [2]. They even exhibited non-motor
aspects of the disease such as facial seborrhea and
mild deficits in higher cognitive function (e.g., exec-
utive function) [3]. Furthermore, these patients all had
a dramatic and near immediate response to L-dopa.
Several of them experienced levodopa dyskinesias
(LIDs) (one within six weeks) identical to that seen
in PD, which in some cases became dose-limiting.

We were able to obtain samples of the syn-
thetic heroin through police raids and friendly
dealers, and eventually obtained a batch that was
comprised of almost pure 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), a byproduct of the syn-
thesis of 1-methyl-4-phenyl-4-propionoxypiperidine
(MPPP). This meperidine analog had been synthe-
sized in 1947 by Ziering and Lee [4] but never
commercialized or even controlled (thus not illegal
to make and even sell). We also found a case simi-
lar to ours that had been published in the first issue
of Psychiatry Research in 1979 [5]. The offending
agent was never identified in this report, although the
paper gave us some clues as to where to look.

We published these cases in Science in 1983 [6],
identifying MPTP as the likely cause of permanent
parkinsonism in these patients, and suggested that it
was toxic to the zona compacta of the substantia nigra
based on the clinical picture (pure parkinsonism) and
the neuropathology of the single case reported earlier.
I had almost forgotten this “in press” paper, when,
on the day it was published, we were deluged with
calls from scientists from all around the world asking
where they could get MPTP for research purposes. I
was surprised, as we had stated in the introduction of
our Science paper, that it was commercially available
through Aldrich Chemical. We later learned that the
company had sold out of MPTP within hours of the
publication. When it did come out again, the price
had increased almost 100 fold.

As I began to think about it, I realized that the
discovery of such a simple molecule that induced
virtually all of the motoric, and some non-motor, fea-
tures of Parkinson’s disease would likely have an
impact in many other areas of research. Certainly
it would provide a new tool to study nigrostriatal

degeneration and ways to prevent it, and it would
likely provide a new animal model for the disease.
This seemed particularly powerful since we knew
exactly what MPTP-induced parkinsonism looked
like in humans, both in terms of clinical appearance,
and in response to L-dopa, including its side effects.
Put another way, we had the human model of the ani-
mal model of the human disease. Finally, alongside
the discovery of the biologic effects of MPTP, a very
simple chemical moiety proved to have a metabolite
remarkably similar to paraquat (an herbicide used
world-wide), an observation that would lead to an
renaissance in the epidemiology of the disease. Then
there was the great and wonderful question to how
this neurotoxicant worked. I was hooked – I had to
give up my teaching position and see how far this fas-
cinating little molecule could take us toward solving
PD. It would be (and still is) an exciting and produc-
tive adventure. For a much more detailed account of
this story (with all its twists and turns) please see the
book The Case of the Frozen Addicts (Langston and
Palfreman, IOS Press, 2014).

PART 2: MECHANISM OF ACTION:
FROM SELECTIVITY TO TARGETING
MITOCHONDRIA

After the discovery of the parkinsonogenic effects
of MPTP, there was an explosion of research aimed
at determining if this relatively small pyridine moi-
ety could so selectively knock out much of the pars
compacta of the substania nigra. Indeed at first it
seemed total mystery – a second “scientific detective
story” if you will. The first piece of the puzzle came
from the discovery that MPTP itself was not toxic
at all, although, as a lipophilic compound, it could
pass into the brain. We found that once in the brain, it
was rapidly converted to what proved to be the toxic
metabolite, 1-methyl-4-phenylpyridinium or MPP+
[7], an observation that was quickly confirmed by
Markey and colleagues [8]. Shortly thereafter and
completely unexpectedly, it was found that this bio-
transformation was mediated by monoamine oxidase
[9, 10]. Heikkila and his colleagues [11] narrowed
this down further by showing that MAO B, but
not MAO A was responsible for this biotransforma-
tion, an observation that has since been confirmed
repeatedly.

As potentially interesting as these observations
were, there was still much to be explained. For exam-
ple, where was MPTP being biotransformed into
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MPP+ within the brain? It turned out that astrocytes
were the likely culprits [12] (although other sites
including serotonergic neurons may participate [13]),
but this simply raised other questions. Why weren’t
astrocytes themselves being killed making MPP+?
Why were the dopaminergic neurons being so selec-
tively targeted? Once again the answer came as a
surprise – MPP+ was an excellent substrate for the
DA uptake site [13], and thus selectively taken up
and concentrated into DA neurons, whereas astro-
cytes apparently released rather than concentrating
it to toxic levels. Interestingly, the ventral tegmental
area (VTA) dopaminergic neurons are largely spared
even though they also have dopamine uptake sites
(possible explanations include differences in uptake
affinity [14] or the presence of calbindin [15] in VTA
neurons, which in some way may be protective). Once
taken up by nigral neurons MPP+, it becomes highly
concentrated in mitochondria against a concentration
gradient via what appears to be a novel uptake system,
which is energized by the transmembrane potential
[16]. Once it reaches toxic levels in mitochondria, it
has been repeatedly shown to inhibit the Complex 1 of
the mitochondrial respiratory chain [17, 18]. This of
course could have a number of consequences includ-
ing a decline in ATP [19] and/or marked free radical
generation that would result. Interestingly, these cells
seem to have a friend in the vesicular monoamine
transporter, which has also been shown to take up
and store MPP+, which could represent a protec-
tive mechanism [20]. On the other hand, it has been
report in in-vitro that MPP+ causes redistribution of
vesicular DA to the cytoplasm, which in turn may be
responsible for MPTP-induced toxic reactive oxygen
species (ROS) [22]. It has subsequently been reported
that moderate MPTP exposure in non-human
primates damages vesicular monoamine transporter-
type 2, which reduces in dopamine storage within
the cell, thereby increasing cytosolic dopamine (lead-
ing to subsequent ROS generation, again suggesting
that this is key pathological event in retrograde
degenerations of DA neurons [21]). Importantly,
this mechanism has been highlighted in humans by
Lotharius and Brundin [22]; these investigors, using
positron emission tomography, have identified what
appears to be a very similar mechanism that could
lead to cell death in patients with PD. This study
implicates alpha-synuclein in the process (also see
Part 5 for more on alpha-synuclein and MPTP).

Given that mitochondria are ultimately targeted
by MPP+, it was not long before researchers began
to explore the possibility that similar deficits might

exist in PD patients. Indeed, deficits in mitochon-
drial NADH CoQ1 reductase (Complex 1) have been
reported in the substantia nigra of patients with PD
[23] (but not with other neurodegenerative diseases
[24]), as well as deficiencies Complex I,II, and IV
in muscle PD patients [25], and Complex I and II
in lymphocytes and platelets from patients with PD,
including those with early disease (platelets) [26].
These studies have also sparked an interest in the
role of mitochondrial DNA (mtDNA) [27, 28] in
PD, which continues to this day. The interest in
mitochondrial dysfunction in PD is not only lim-
ited to sporadic PD, but it is also implicated in
rare, inherited genetic forms of PD (e.g., mutations
in LRRK2 [29] parkin, DJ1 and PINK1 [30] have
been suggested to affect mitochondria). Indeed, mito-
chondrial dysfunction seems to be a recurring thread
through many aspects of both genetic and sporadic
parkinsonism.

Importantly, mitochondrial research has not been
restricted to the laboratory, and a number of clini-
cal trials aimed at improving mitochondrial function
have been carried out [31], including such agents as
coenzyme Q10 [32], MitoQ [33], rasagiline [34], EPI-
589 (ClinicalTrials.gov Identifier NCT0246260), and
even a ketogenic diet (ClinicalTrials.gov Identifier:
NCT01364545) and ursodeoxycholic Acid (Clinical-
Trials.gov Identifier: NCT02967250).

PART 3: MODELING PARKINSON’S
DISEASE

Given how similar the effects of MPTP were to
typical PD in humans, and the fact that a truly good
PD animal model was not available, from a research
standpoint this seemed like a golden opportunity.
The first attempts to generate MPTP-induced parkin-
sonism in monkeys were published in 1984 [35,
36]. These studies showed conclusively that mon-
keys develop virtually all of the motor symptoms
seen in humans and that these symptoms were lev-
odopa responsive. Most importantly, the monkeys
exhibited a dramatic loss of dopaminergic neurons
in the substantia nigra, pars compacta [35, 37]. Inter-
estingly, the VTA was largely spared [38], just as it
is in PD. Since that time, there have been between 5
and 7 thousand publications on virtually all aspects
of MPTP. The primate MPTP model has been widely
used to study the effects of drugs targeting the symp-
toms of PD, including levodopa, dopamine agonists,
amantadine and many others, as well as side-effects
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including levodopa induced dyskinesia [39]. In regard
to the latter, our group has even found that nicotine
suppresses dyskinesias [40], an area which continues
to be of interest. On the other hand, it still remains
unclear how useful this model is in the discovery of
disease-modifying agents [39].

At first it was generally thought that only pri-
mates were susceptible to the effects of MPTP, as rats
and mice seemed resistant to MPTP neurotoxicity. In
regard to rats, the mystery was solved when it was
found that rats had very high levels of MAO in the
blood brain barrier, and were effectively converting
MPTP to MPP+, which is not lipophilic and therefor
poorly permeates the brain [41, 42]. Mice were inter-
mediate in this ability, and human microvessels were
the poorest of all.

As mice allowed moderate amounts of MPTP into
the brain one might have predicted that they would
experience at least some toxicity, and this indeed
proved to the case [43]. As a result, many studies
using MPTP/MPP+ have been carried out in mice
over the years as they are much more accessible and
inexpensive. However, research utilizing MPTP has
not been limited to warm-blooded vertebrates; indeed
the list is quite long, including zebrafish [44], C. Ele-
gans [45, 46], and even the salamander [47].

Another novel approach for disease modeling
is what we have called “model fusion” [48]. This
approach involves combining transgenic mouse
models and MPTP exposure to better explore the
factors that could lead to the nigral degeneration in
PD (or prevent it). The list of transgenic mice that
are resistant to MPTP include those with increased
Cu/Zn superoxide dismutase activity [49], knockout
of p53 [50], VMAT2 knockout [51], expressing Bcl-2
[52], metallothionein over-expression (probably by
increase coenzyme Q10 production) [53], increased
GFAP-Nrf2 in astrocytes [54], overexpression of
parkin (possibly by protection of mitochondria and
reduction of alpha-synuclein) and DJ-1) [55].

PART 4: TWO EXAMPLES OF THE
TRANSLATIONAL IMPACT OF MPTP ON
THERAPIES FOR PD

1. The beginning of the “age of neuroprotection”.
The MAO B Story

After it was found that MAO inhibitors could block
the toxic effects of MPTP, the next set of experiments
were obvious: If MPP+ was indeed the toxic metabo-
lite, then blocking MAO should prevent parkinsonism

in non-human primates. Our first experiment utilized
the non-selective MAO inhibitor pargyline, and the
results were dramatic, as both the parkinsonism and
loss of DA neurons in pars compact were completely
prevented in the primate model of MPTP induced
parkinsonism [56]. And thus began the age of “neuro-
protection” research, which continues to thrive to this
day (see below). This finding was quickly confirmed
in non-human primates by Cohen et al. [57] and in
rodents, where dopamine depletion caused by MPTP
was prevented by selective MAO B inhibitors but not
selective MAO A inhibitors [11]. This was important
because MAO A inhibitors generally are not use in
PD patients because of the so-called “cheese effect”
[58] as this enzyme normally blocks the catabolism
of tyramine in the gut, thus avoiding large amounts
of tyramine to pass through and causing profound
increases in blood pressure [59].

These observations inspired us to carry out the first
prospective clinical trial aimed at slowing PD [60] (or
any neurodegenerative disease of aging for that mat-
ter). We found that “de-novo” patients treated with
selegiline could go nearly twice as long as “de-novo”
patients given placebo before requiring levodopa
therapy. While this looked very promising and served
as a prototype for trial design, things became more
controversial after we and our colleagues carried out
a much larger study (800 patients as opposed to just
54 patients in our original study [60]) which became
known as DATATOP [61]. This trial used the same
design as our trial, but had a third arm that included
alpha-tocopherol, to test its antioxidant effects in PD.
While the alpha-tocopherol had no effects in delaying
disability, the selegiline arm show a highly significant
effect in delaying the need for L-DOPA treatment
over controls (P > 10–9). While these results were
impressive, there proved to be a confounding factor,
as the study also showed that selegiline had a very
mild symptomatic effect during the first 3 months of
starting the drug (we could not see this in our original
study because of the smaller size and lack of power for
such a small symptomatic benefit). Critics argued that
even a small symptomatic effect could have imitated
a disease modifying effect. Having anticipated this
issue (as MAO B inhibitors could block catabolism
of and thereby conserve dopamine) all patients were
washed out for a month after the trials ended. While
the selegiline group maintained an advantage over
the placebo group after a month off drugs, it was then
argued the wash-out was not long enough, and thus
the interpretation of the outcome of the DATATOP
study was controversial, and remains so to this day.
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That wasn’t the end of the story. Teva Pharmaceu-
ticals Industries Ltd later carried a very large trial
using a second generation MAO B inhibitor, rasagi-
line, and a new design which utilized a “delay start
design” in which the active drug was started first, and
the placebo group was started 6 months later [62],
thus avoiding the potential controversies of having
a wash out period (as this was actually a “wash-in
study”). If the drug was disease modifying, then the
severity of symptoms for the PD patients who were
in the delayed start group should never quite catch
up to the early start group. The results of this study
were compelling in that the delayed start group never
did catch up when using a 1 mg per day dose. But
once again, there was a “fly in the ointment” as this
was not the case with the 2 mg per day group, thus
confounding the results to the point that the FDA did
not accept this second generation MAO B inhibitor
as disease modifying, although it has been approved
for early treatment of PD, as in “de novo” patients the
drug clearly delays disability during the first year of
treatment [62].

In closing this section, two points should be made.
First, the delayed start design has to some degree
been validated by a trial with pramipexole know
as PROUD, a symptomatic drug for PD [63]. In
this study, when the placebo group was “washed
in” at 6 months, they immediately caught up with
the early start group, suggesting that there was no
“disease modifying” advantage to an early start with
pramipexole, which should have been the case if the
drug was disease modifying. As a final point, while
we introduce the term “neuroprotective” in our early
reports on the effects of MPTP, this term is proba-
bly inappropriate for any trials in humans. This is
because while we can measure cell loss in animal
models of PD, we really cannot do so in patients – the
technology is not there yet to do this in living human
beings. In view of this, the terms “disease modifying”
(or “delaying disability” – a clinical observation) are
probably more appropriate for human studies. Also,
see addendum at the end of this article.

2. Therapeutic implications of understanding
basal ganglia circuitry (DBS):

While the MPTP non-human primate model of
PD has been widely and successfully used to study
symptomatic drugs for PD and even drug side-effects
such as LIDs, it also provided a stable model for
elucidating basal ganglia circuitry and the effect of
nigrostriatal degeneration on those pathways. This
model was very effectively used by Mahlon Delong
[64] to map out the direct and indirect pathways

of the basal ganglia. One finding that proved to be
of great translational value was the observation of
over-activity of the subthalamic nucleus after MPTP-
induced degeneration of the substantia nigra [65].
This resulted in a seminal paper in which he and his
colleagues [66] showed that MPTP-induced lesions
of the subthalamic nucleus (STN) in MPTP-lesioned
primates abolished all the major motor components of
their parkinsonism. While extending this procedure
to patients with PD was a very exciting prospect, it
has long been know that lesions in this area can cause
hemiballismus, making it a potentially risky proce-
dure. It would be up to Benabid and his colleagues
[67] to show that deep brain stimulation of the STN
was safe and worked in patients with PD. This pro-
cedure has now considered a major step forward in
the treatment of PD (for a detailed review see Wich-
mann et al. [68] or the article by M. Hariz on DBS
in this issue of the Journal of Parkinson’s disease [to
typesetter: ADD CITATION JPD7,s1,2017]).

PART 5: THE ENVIRONMENTAL
HYPOTHESIS OF PD

Over the last two centuries the pendulum of opin-
ion has swung widely as to whether the cause
of PD was due to genetics or environment causes
[69]. While MPTP has not yet been found in the
native environment, beginning in the 1980s the pen-
dulum swung dramatically in the direction of the
environmental hypothesis, spurred not only by the
observation that a simple pyridine (MPTP) could
induce so many of the features of PD, but also
the striking similarity between its toxic metabolite,
MPP+ and paraquat (differing only by one methyl
group) [70], an herbicide that is used worldwide.
Since that time, a large number of studies have shown
pesticide exposure is a risk factor for PD [71]. Inter-
esting, this risk is enhanced by the presence of certain
genetic variants [72], consistent to the adage that
“genetics load the gun, but environment pulls the
trigger”. Exposure to a naturally occurring pesticide
known as rotenone (a so-called organic pesticide as
it is found in plant legumes) has also been found
to increase the risk for PD. It is important to note
that both of these compounds have been show to
selectively damage the nigrostriatal system in rodents
[73]. While paraquat acts through rexo-cycling,
remarkably rotenone affects mitochondrial Complex
1 (NADH dehydrogenase binding site) [74] simi-
lar to MPP+, once again pointing to mitochondrial
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dysfunction as a player in the complex sequence of
events that lead to nigrostriatal damage in PD.

While great interest continues in the epidemiol-
ogy of PD, in the mid-1990s, genetics would again
ascend as a major focus of interest in the PD field with
the discovery of the first monogenic form of Lewy
Body parkinsonism [75] (this was the discovery of the
A53T mutation in the alpha-synuclein gene, which
is covered in detail in the article by Nussbaum in
this issue). Since then alpha-synuclein has become a
major therapeutic target in PD. Therefore, it’s notable
MPTP exposure in primates leads to alterations in
alpha-synuclein expression in the substantia nigra
[76], as well as inducing pathological alterations in
the protein.

PART 6: EPILOGUE

In this article, I have highlighted some of the ways
the discovery of the biologic effects of MPTP has
contributed to research in the field of PD, though
there are of course many more that cannot be cov-
ered in the bounds of this article. It is worth pointing
out that the use of this compound as a research tool
thrives to this day. For example, since its discovery,
through to 2016, there have been over 500 reports
of compounds or approaches aimed at modifying or
preventing MPTP toxicity in warm blooded verte-
brates in the search for new drugs that might target the
underlying mechanism of nigrostriatal degeneration
and possibly lead to targets for disease modifica-
tion. Many have identified such familiar targets as
mitochondria dysfunction, inflammation and oxida-
tive stress, but many are quite novel. It seems likely
that there are some valuable clues in the work that is
already published and in those yet to come.

Finally, I would like to conclude with some clos-
ing thoughts: If there is an overarching lesson from
this story for clinicians, it is to never forget the
power of clinical observation. It is critical to never
assume anything and maintain a high level of curios-
ity when encountering something that doesn’t fit a
normal diagnostic mold. In this modern age of high
technology, it is hard to believe that paying atten-
tion to a single patient could ultimately lead to new
pathways for research for an entire disease, but it can.
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