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Abstract: Heatwaves represent a significant natural hazard in Australia, arguably more 

hazardous to human life than bushfires, tropical cyclones and floods. In the 2008/2009 

summer, for example, many more lives were lost to heatwaves than to that summer’s 

bushfires which were among the worst in the history of the Australian nation. For many 

years, these other forms of natural disaster have received much greater public attention 

than heatwaves, although there are some signs of change. We propose a new index, called 

the excess heat factor (EHF) for use in Australian heatwave monitoring and forecasting. 

The index is based on a three-day-averaged daily mean temperature (DMT), and is 

intended to capture heatwave intensity as it applies to human health outcomes, although its 

usefulness is likely to be much broader and with potential for international applicability. 

The index is described and placed in a climatological context in order to derive heatwave 

severity. Heatwave severity, as characterised by the climatological distribution of heatwave 

intensity, has been used to normalise the climatological variation in heatwave intensity 

range across Australia. This methodology was used to introduce a pilot national heatwave 

forecasting service for Australia during the 2013/2014 summer. Some results on the 

performance of the service are presented.  
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1. Introduction  

Despite heatwaves being one of the most common natural hazards experienced across the Australian 

community, they remain imprecisely defined events with little understood varied impacts across 

different community sectors. The increasing availability of high-quality climate and weather-forecast 

temperature datasets offers an opportunity to build a shared understanding of the hazard posed by 

sequences of high temperature days. 

Historically, heatwaves have been responsible for more deaths in Australia, Europe and the United 

States of America than any other natural hazard, including bushfires, storms, tropical cyclones and 

floods [1,2]. While heatwaves are not unusual for Australians, the trend towards more frequent and 

intense heatwaves [3–5] is of significant concern at home and abroad. McMichael et al. [6] has 

estimated that extreme temperatures currently contribute to the deaths of over 1,000 people aged over 

65 each year across Australia. The number of heat-related deaths in temperate Australian cities is 

expected to rise considerably by 2050, as the frequency and intensity of heatwaves is projected to 

increase under climate change from global warming. Underpinning this view is the building evidence 

supporting the notion of a warming planet [7,8]. 

Heatwaves are frequently defined as a period of unusually or exceptionally hot weather. Extreme 

events typically occur in mid-summer, although severe and low-intense heatwaves are also 

experienced during spring and early autumn. We make a distinction between heatwaves, as periods 

which are hot in an absolute sense, and warm spells, as periods which are hot in a relative sense. Warm 

spells in this sense may occur at any time of the year, even in the middle of winter, whereas heatwaves 

as intended here are necessarily restricted to the summer half-year. In climate terms, heatwaves are 

associated with unusually high temperatures, warm spells with unusually high temperature anomalies. 

Both concepts (heatwaves and warm spells) are intrinsically meaningful, and deserve study, but they 

are clearly not the same thing. 

Several other definitions of heatwaves have been proposed previously for use in Australia. One by 

Pezza et al. [9] requires that the maximum temperature be above the 90th percentile for three 

consecutive days, with the minimum temperature being also above the 90th percentile for the second 

and third days. If the 90th percentile thresholds are calculated with respect to the entire year,  

then heatwaves will be diagnosed, whereas if the percentile thresholds are relative to the calendar 

month or season, then warm spells will be diagnosed. In the former case, the heatwaves diagnosed by 

the Pezza et al. [9] method will have much in common with the heatwaves diagnosed by the EHF 

method proposed here. In the latter case, the warm spells diagnosed will have much in common with 

our heatwaves in the summer months, but less so during the rest of the year.  Perkins and Alexander [10] 

have compared a wide range of warm spell and heatwave indices, noting the utility of differing indices 

dependent upon their intended use. In this regard warm spell indices provide information relevant to 
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seasonally dependant temperature requirements in agriculture, whilst heatwave indices are relevant to 

timing adaptive measures when dealing with unusual temperature extremes. 

Heatwaves in Australia are driven by slow-moving synoptic-scale events that allow the continuous 

development of hot air masses to persist over large areas for a period of days and in rare events, weeks. 

Fortunately, modern numerical weather prediction (NWP) models are quite good at forecasting such 

slow-moving systems and provide good guidance on the evolution of high temperature events on the 

one to seven-day time scale. As a consequence, heatwaves as a meteorological phenomenon are readily 

predicted by current operational standards. 

Several recent studies [9,11–16] have looked at the climatic, synoptic and dynamic mechanisms 

responsible for causing intense heatwaves. Dry soils result in greater sensible heating of the lower 

atmosphere during the day through the reduction in evaporative cooling. Slow-moving deeply formed 

anticyclones recirculate deeply mixed hot boundary-layer air resulting in an environment that accrues 

excess heat. Additional dynamical links to tropical cyclone development at lower latitudes have also 

been shown to enhance the transport of heat from the upper tropical atmosphere to the boundary layer 

over Australia [11]. 

In Australia, heatwaves have traditionally been defined by the achievement of a minimum sequence 

of consecutive days where daily maximum temperatures reach a designated threshold. However, daily 

maximum temperatures are only part of the story when considering impacts on human health, 

agriculture, infrastructure, the demand on utilities (water, electricity, etc.) and other environmental 

hazards such as fire. Previous research has highlighted the importance of incorporating minimum 

temperature through the utilisation of daily mean temperature [17,18], a line of thought we follow 

here. The extent to which heat is dissipated overnight following a very hot day dictates the 

accumulating thermal load impacting vulnerable people and systems. The accumulation of this heat 

which is not being dissipated overnight results in “excess heat”. 

Heatwave intensity occupies a continuum on which low-intensity heatwaves have little impact 

whilst more intense events inflict severe consequences upon the community and business sectors. 

Rising intensity leads to extreme outcomes where widespread adverse impacts are experienced. 

Impacts will vary according to each location’s experience or climatology of excess heat and each 

community’s capacity to develop resilient strategies. By measuring heatwaves within a scale that 

captures intensity, it becomes possible to differentiate between heatwave events. This in turn permits a 

sensible analysis of resilient strategies that can be usefully shared between communities learning to 

mitigate the escalating impact of increasingly intense heatwaves. 

We propose a new index, called the excess heat factor (EHF), which is based on three-day-averaged 

daily mean temperature (DMT). This index is suitable for a nationally consistent heatwave service and 

could help inform emerging World Meteorological Organization (WMO) guidelines on the 

development of national heatwave/heat health services. A heatwave service utilising this measure of 

intensity would provide information to enable the Australian community to self-assess thresholds of 

vulnerability to periods of excess heat, and for the Bureau of Meteorology to forecast and warn when 

severe or extreme heatwaves threaten. Analysis and forecasts of low-intensity heatwaves would also be 

included in a heatwave service. Measurement and tracking of more frequent low-intensity heatwaves 

reinforces that the community possesses resilient adaptation strategies for sequences of normal hot 

summer days. Acknowledgement of the community’s inherent adaption to low-intensity heatwaves 
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provides an opportunity for cultural acceptance that increasingly intense heatwaves are more 

hazardous and require adaptive and subsequent protective responses. 

The choice of a three-day period (TDP) over which to calculate heatwave indices is motivated by 

studies of human responses to the onset of extremely hot weather. Epidemiological studies in Australia 

have identified health impact delays of between one day in Melbourne [18] and three days in  

Adelaide [19]. Adelaide’s mean summer (December, January and February) temperature is 3 °C higher 

than Melbourne resulting in a more resilient heat-adapted city capable of withstanding the impact of 

extreme heat for longer. This is consistent with lags of three and two days identified in Barcelona [20] 

and London [21] respectively. This is also illustrated in Nairn and Fawcett [22] (Figure 9 therein),  

in terms of heat-related mortality in South Australia during the 2009 heatwave, using data obtained 

from Langlois et al. [23]. In that event, it takes three days of very hot weather for the mortality rate to 

rise significantly above its antecedent rate. 

Relative humidity can be an important consideration in assessing the human health effects of 

heatwaves. It is not observed and forecast as well as air temperature, however. On this basis we have 

chosen not to include it explicitly in our new heatwave metric. It does, however, have an implicit 

presence through our inclusion of daily minimum temperature. High humidity tends to result in high 

minimum temperature, and low humidity in low minima, and this will be reflected in our DMT calculation. 

The heatwave literature has predominantly focussed on human health outcomes. Consequently 

sensible and latent heat are invariably combined together in order to account for effectiveness of 

thermo-regulation of biological systems. Frequently, regression equations [6,24–27] or synoptic air 

masses [28] are used to relate and measure impacts on human health outcomes at city or regional 

scales. At this level of interplay between multiple variables, units and outcomes it is difficult to 

visualise or compare heatwaves across time or compare the severity of local, national or international 

events. The use of heatwave indices that consider radiation balances at the human level such as PET 

(Physiologically Equivalent Temperature) [5] rely upon humidity data of variable quality. 

Taking a step back from human impact, it is interesting to consider heatwaves as events where 

excessive sensible heat accumulates, resulting in a rising thermal load. Robinson [29] adopted a de 

facto heatwave definition based on heat watch and warning criteria developed by the US National 

Weather Service. Robinson’s approach incorporated frequency of exceedance of a fixed percentile of 

all observed heat index values [30–32]. Whilst an advance in developing an objective heatwave 

definition, heat index is difficult to employ in climate assessments and projections as past and 

projected records of humidity are difficult to create and quality control. Robinson’s work established a 

baseline climate description of heatwaves for the United States of America, but was not considered 

able to provide a complete time series of events nor be suitable for epidemiological purposes. 

Characterising and carrying out comparative investigations across heatwaves is desired. 

The constituents of the EHF calculation (i.e., daily maximum and minimum temperature data) have 

been reliably recorded and corrected in high-quality climate monitoring systems. Looking forward, 

surface temperature is projected with sufficient skill [33,34] in general circulation models (GCM), and 

indeed our new index has been used in climate studies [8,10] as a means of analysing heatwave trends 

in historical data. In consequence, the new index provides a new set of tools informing policy makers 

on global and Australian trends in heatwave frequency, intensity and distribution. 
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The new index supports an intensity and classification scheme which is relative to the local climate. 

Such an approach is clearly necessary given the abundant evidence that people are largely adapted to 

the local climate, in their physiology, culture and engineered supporting infrastructure [35]. The 

climate record is used to produce a significant heat intensity population sample suitable for classifying 

heatwaves by their level of severity. This is a subtle but significant shift from epidemiological studies 

that commence their investigation from the perspective of human population impacts. This allows our 

investigation to exploit the tools available to climate, weather prediction and climate projection science 

to develop a physical interpretation of heatwaves. This new perspective offers spatial and temporal 

coherence of heatwave intensity and severity by characterising heatwave intensity through a universal 

independent energy index. This allows for analysis and comparison of heatwave impact whilst 

considering the effectiveness of alternate mitigation strategies. The spatial evolution of heatwave 

intensity provides a new metric for assessment of impact. We can now investigate sensible heat impact 

before other contributors to human health impacts are considered. 

Understanding the climatological recurrence of heatwaves across Australia’s diverse climatic 

regimes, from the tropical north to the near mid-latitudes of Tasmania in the south creates an 

understanding of Australia’s incidence of heatwave and differing levels of intensity. The ability to 

compare heatwave severity across jurisdictions, regions and cities provides an opportunity to compare 

resilience strategies and their relevance to other locations. This guidance has not been available to 

Australian policy makers previously, and provides a platform for development of mitigation strategies. 

The capacity to forecast the severity of heatwaves and monitor the regions affected provides 

intelligence that has not been available to the Australian community previously.  

The structure of this paper is as follows: the new index is defined in Section 2. The datasets we have 

used in the construction of the index are presented in Section 3. Section 4 presents some basic 

climatological results for the index, with further discussion in Section 5, and an application of the 

index to a significant Australian heatwave is given in Section 6. Concluding remarks are given in 

Section 7. A separate paper currently in preparation will expand on this by illustrating the performance 

of the new index in relation to some notable Australian and international heatwaves. We note that the 

methodology described here is readily adapted to provide an analogous formulation for coldwave 

monitoring and prediction [22], but in this paper we restrict our attention to heatwaves. 

A pilot heatwave forecasting service for Australia based on the EHF was introduced in January 

2014 for the latter part of the 2013/2014 Australian summer. We present in the Appendix some 

calculations on the performance of the forecasts across the summer. Subsequent consultation with 

State and Territory health and emergency sector stakeholders from across Australia found the service 

appropriately matched their requirements. Recommended service adjustments are under consideration 

for improved alignment across the sector’s mitigation and response plans. The Australian jurisdictions 

(State and Territory) and locations mentioned in the text are shown in Figure 1. 
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Figure 1. Map showing the Australian States/Territory and other locations mentioned in the text. 

2. Methodology 

The EHF is a new measure of heatwave intensity, incorporating two ingredients. The first ingredient 

is a measure of how hot a three-day period (TDP) is with respect to an annual temperature threshold at 

each particular location. If the daily mean temperature (DMT) averaged over the TDP is higher than 

the climatological 95th percentile for DMT (hereafter T95), then the TDP and each day within in it are 

deemed to be in heatwave conditions.  On average, around 18 days per year will have a DMT 

exceeding T95, but it is necessary to have three high DMTs in succession in order to form a heatwave 

according to this characterisation. The second ingredient is a measure of how hot the TDP is with 

respect to the recent past (specifically the previous 30 days). This takes into account the idea that 

people acclimatise (at least to some extent) to their local climate, with respect to its temperature 

variation across latitude and throughout the year, but may not be prepared for a sudden rise in 

temperature above that of the recent past. 

In Australia, daily maximum and minimum temperatures are measured in degrees Celsius (°C) and 

in relation to 24-h periods ending at 9 am local clock time (LCT), which means local standard time 

(LST) in those States/Territories which do not observe daylight saving time practices, and a 

combination of LST and local daylight time (LDT) in those States/Territories which do. In terms of the 

archiving of those daily temperatures, daily maximum (minimum) temperatures are archived for the 24 h 

from (to) 9 am LCT on the nominated day. This means that the daily maximum and minimum 

temperatures attributed to a particular calendar date typically (but not always) occur within the 

midnight-to-midnight calendar day, because the daily minimum is typically attained around sunrise 

and the daily maximum typically attained in the mid to late afternoon. 

In terms of Australian historical data, daily maximum and minimum temperatures are available over 

long periods, but synoptic temperatures equally spaced throughout the day are not. Thus in Australia 

DMTs are typically calculated as the simple average of the daily maximum and daily minimum 

temperatures. There are consequently two possible choices for doing this calculation. The first choice 

has the daily minimum typically preceding the daily maximum, and because of the Australian data 
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archiving conventions described above, this is the methodology normally used by the Bureau of 

Meteorology in its various climate monitoring activities, even though as far as the DMT is concerned 

the maximum and minimum temperatures used in the calculation actually occur in separate (adjacent) 

9am-to-9am 24-h periods. The second choice, and the one adopted here, has the daily maximum 

typically preceding the daily minimum, and the two observations relate to the same 9am-to-9am 24-h 

period. We make this choice because of the human physiological response to a hot night following a 

hot day is more significant than the other way around [18]. 

Hence, let Ti denote the DMT calculated in this way as the average of the maximum and the 

minimum which occur in the 24-h period from 9am LCT on day i. (In those parts of the world where 

there are equally spaced (around the clock) synoptic temperature observations extending back over 

many decades, it would be quite feasible to instead calculate the DMT using those synoptic 

observations, rather than the daily maximum and minimum temperatures, and that this approach might 

well be the preferred option where both options are available). Further, let T95 denote the 95th 

percentile of this DMT calculated across 1971–2000, using all days of the year in the calculation. 

Hence, on average Ti will exceed T95 on around 18 days each year. 

The two ingredients in the EHF calculation, as described above, are called excess heat indices 

(EHIs) and calculated as follows: 

EHIsig = (Ti + Ti+1 + Ti+2)/3 – T95 (1)

and: 

EHIaccl = (Ti + Ti+1 + Ti+2)/3 – (Ti–1 + … + Ti–30)/30 (2)

In the first index, called the significance index, a three-day-averaged DMT is compared directly 

against the 95th percentile for DMT. If EHIsig is positive, then the TDP is unusually warm with respect 

to the local annual climate. Conversely, if EHIsig is negative or zero, then the TDP cannot be 

considered unusually hot, and so in order for a heatwave to be present we require EHIsig to be positive. 

In terms of typical annual climates, this means that heatwaves according to this definition typically 

will not occur in the winter half-year. 

In the second index, called the acclimatisation index, the same three-day-averaged DMT is 

compared against the average DMT over the recent past. Human physical adaptation to higher 

temperatures may take between two to six weeks [36], whilst engineered systems have a heat capacity 

design limit which frequently rely upon decision-support environmental precursors to apply adaptive 

measures to ensure reliable operation under higher temperatures.  We have adopted the previous 30 

days for this purpose. If EHFaccl is positive, then the three days are warmer (on average) than the recent 

past, and consequently there is now a lack of acclimatisation to the warmer temperatures and potential 

for adverse outcomes. Both of these EHIs can be thought of as temperature anomalies, the first with 

respect to the long-term climate, the second with respect to the recent past, and so both have 

temperature units (i.e., °C). 

We then propose to calculate our EHF as a product of these two indices, subject to the constraint 

that the EHF must have the same sign as the significance EHI. We do this via: 

EHF = EHIsig × max(1, EHIaccl) (3)
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with the units of EHF therefore being (°C)2, or alternatively and perhaps more conveniently K2. This 

formulation ensures that: 

sign(EHF) = sign(EHIsig) (4)

implying that a heatwave is present if EHF is positive (but not otherwise), but if additionally the 

acclimatisation EHI is positive, then that property amplifies its impact upon the EHF calculation. The 

duration of the heatwave comprises those days for which the significance index is positive, whether or 

not those days individually exceed T95 in their DMT. We note that it will be the case at the start and 

end of a heatwave for the EHF to be positive for one TDP and negative for an adjacent TDP (which 

overlaps the first by two days), with the potential for the overlapping days to be both in and not in 

heatwave. Accordingly we propose the classification rule mentioned above, that if a TDP has a 

positive EHF, then all the days within the TDP are considered to be heatwave days. Only if all three 

TDPs for which an individual day may fall have non-positive EHF do we consider the day to not be a 

heatwave day. By implication, an isolated hot day with DMT >T95 is not a sufficient condition for  

a heatwave. 

In southern Australia, a heatwave will often end by the passage of a cold front and its associated 

rapid temperature drop. Thus some part of a TDP characterised as in heatwave conditions may not be 

hot, or even “cool” in terms of actual temperature, through being at the end of a heatwave, thus 

requiring some nuanced communication from the operational weather forecaster. Part of that 

communication will necessarily involve the fact that the DMT is falling or has fallen below T95. On the 

other hand, from the human impacts perspective, the fact that houses and other elements of the built 

environment may take several days following the cool change to cool down to pre-heatwave internal 

temperatures should not go unregarded. 

The choice of the “1 °C” in equation 3 is somewhat arbitrary, at least for short heatwaves: 

essentially it is required to be small but positive.  Negative EHF values signify the absence of a 

heatwave for that TDP, and we are not placing any interpretation at present on the magnitude of the 

negative values. Hence a re-specification in the form: 

EHF = max(0, EHIsig) × max(1, EHIaccl) (5)

that is, a resetting of all negative values to zero, would not change the interpretation of the index as 

made in this paper. 

During the spring months, TDPs with positive acclimatisation EHI should be relatively common 

(and analogously uncommon in the autumn months), but it is unlikely that the significance EHI will be 

simultaneously positive (except between November and March, as will be shown), hence the threshold 

for a heatwave would not be reached. 

A short summer heatwave would typically occur within the context of a period of generally rising 

temperatures, so that the short period of positive significance EHI would occur within the context of a 

larger period of positive acclimatisation EHI. This is illustrated schematically in Figure 2, with an 

actual example shown in Figure 3. The DMT exceeds T95 for a short period (three days in the 

schematic example, four days in the actual example), which leads to the three-day-average DMT being 

above T95 for a likewise short period (comprising three overlapping TDPs in the schematic example, 

five overlapping TDPs in the actual example). The pattern of rising temperatures results in the 
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acclimatisation EHI being positive for a much longer period, and provides a motivation for not 

allowing it to dictate the length of the heatwave (the three overlapping TDPs). 

 

Figure 2. Schematic representation of a short heatwave early in the summer season. The 

DMT and 95th percentile thereof (both in °C) are plotted against the left hand axis, while 

the three heatwave indices (in °C and K2) are plotted against the right hand axis. The 

heatwave indices are plotted against the middle day of the TDP, to facilitate comparisons 

with the DMT profile. The zero line for the indices is shown as a thick black line. Because 

of the shortness of the heatwave, the acclimatisation EHI is positive for rather longer than 

is the significance EHI. The notional T95 value in the schematic is 30 °C. 

 

Figure 3. As per Figure 2 but for an actual short heatwave occurring in January 2014 in 

Melbourne, Australia. Data from the Melbourne Regional Office site (Bureau of 

Meteorology station number 086071). The T95 value at this site is 24.9 °C. 
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Figure 4 shows a schematic example of a much longer heatwave, one in which the period for which 

the DMT exceeds T95 is no longer short with respect to the acclimatisation window of 30 days. While 

the acclimatisation EHI is positive well before the significance EHI becomes positive (and the onset of 

the heatwave is deemed to have arrived), we can see that it is possible in a long heatwave for EHIaccl to 

go negative before the end of the heatwave, with the implication that because of the length of the 

heatwave there may be some acclimatisation or adaption occurring within the duration of the 

heatwave. This raises the difficulty of how to characterise the heat impact of a waning heatwave, 

where the DMT has started to fall, but not so much below T95 that the heatwave can be deemed to have 

ended. A consideration of this issue has influenced the form of our EHF definition, particularly the 

aspect of it where the EHIaccl only affects the magnitude of the EHF if it exceeds some minimum 

positive value. Accordingly, our previous statement about the “1 °C” in Equation (3) needs further 

elaboration: it should be small and positive, but not too small. A now-superseded construction of the 

EHF is given in Nairn et al. [37]. 

 

Figure 4. As per Figure 2, but for a long heatwave. Because of the length of the heatwave, 

the acclimatisation EHI can go negative before the end of the heatwave. 

This issue, of EHIaccl becoming negative while heatwave conditions are still in place (i.e., EHIsig > 0), 

can also occur in the context of repeated shorter heatwaves, as illustrated in Figure 5. The data for 

Oodnadatta in inland Australia are obtained from gridded analyses (described in Section 3). They show 

an extended period of around six weeks where the DMT hovers around T95, causing repeated short 

heatwaves of low intensity. This episode is preceded by a period of cooler weather, and so EHIsig < 

EHIaccl in the first half of the period represented in Figure 5, but by the end of the period the opposite is 

the case (EHIsig > EHIaccl), and indeed EHIaccl is negative at times while EHIsig is still positive. The 

assumed acclimatisation to the protracted high temperatures is reflected in the declining amplitude of 

the EHF in Figure 5.  

A threshold for severity is obtained at each location by counting all the TDPs within a climatology 

period (we have adopted 1958–2011 for this purpose), and computing the 85th percentile of all the 

positive EHF values within the climatology period, noting that the distribution of EHF is well 

described by the generalised Pareto distribution [22]. We denote this severity threshold EHF85. We 
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will see that the severity threshold is far from being uniform across Australia, and that in fact there is a 

strong dependence of the severity threshold upon latitude. Hence it becomes useful to map the EHF for 

individual three-day heatwave periods as a multiple of the severity threshold. Lastly, we have chosen 

to designate a heatwave as being extreme if EHF ≥ 3 × EHF85. 

 

Figure 5. An actual period of extended heatwave activity at Oodnadatta (South Australia) 

in late 2005/early 2006. The DMT hovers around the heatwave threshold for the EHIsig to 

exceed the EHIaccl, and for EHIaccl to become negative while heatwave conditions are in 

place. Data are obtained from interpolated gridded analyses. 

The intent of these definitions is to create a heatwave intensity index and classification scheme 

which is relative to the local climate. Such an approach is clearly necessary given the abundant 

evidence that people and supporting infrastructure are largely adapted to the local climate, in 

physiology, culture and engineered supporting infrastructure. 

3. Data 

While excess heat indices may clearly be computed from site observational data, our principal 

dataset has been the 0.25°-resolution daily temperature analyses produced operationally by the Bureau 

of Meteorology [38]. These analyses are available back to 1911, but the underlying observational 

network is much sparser prior to 1957 in terms of its availability in digitised form. Therefore for most 

purposes, in particular climatological calculations, we only use the analyses from 1958 onwards. The 

analyses are near-whole-network analyses of site data that have been subjected to a considerable 

amount of quality control but no specific data homogenisation procedures. 

These daily temperature analyses allow us to compute the EHIs and EHFs for all TDPs from 1958 

onwards. Within the climatology period, statistics such as the mean positive EHF, the number of TDPs 

with positive EHF, and so on, may be calculated. The earlier data obviously may still be used to 

characterise particular heatwave events, in spite of the sparser observational network which lead us to 

exclude them from our climatological calculations. 
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4. Results 

Climatologies of heatwave intensity and severity are described in this section. The location-specific 

heatwave methodology utilised establishes a baseline for the characteristics of heatwave severity 

across Australia.  

Figure 6 shows the mean positive EHF across Australia in the climatology period 1958–2011. Mean 

values are lowest in the tropical north, and highest around the southern continental coastline, resulting 

in a strong dependence of mean EHF upon latitude. This broadly reflects daily temperature variability. 

 

Figure 6. Mean positive EHF, in K2, based on all positive EHF values in the period  

1958–2011, calculated using the gridded analyses of Jones et al. [38]. 

Figure 7 shows the average annual number of TDPs with positive EHF across Australia in the 

period 1958–2011. The highest values are in the northwest and north, peaking at around 20 events per year. 

The lowest rates are in Tasmania and around the southern and southeast coasts of continental Australia. 

 

Figure 7. Average annual number of TDPs with positive EHF in the period 1958–2011. 
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The spatial pattern of the severity threshold EHF85 across this same period (Figure 8) is fairly 

similar to that of the mean positive EHF (Figure 6), and consequently there is a strong dependence of 

EHF85 upon latitude. Hence large temperature excursions are required in the south to cause a severe 

heatwave, according to the definition proposed here, while the corresponding temperature excursions 

required for the tropical north are much smaller. In consequence heatwave severity is likely to be more 

accurately predicted in the south, assuming that the ability to predict temperature itself (in terms of 

mean forecast errors) is approximately uniform across the country. 

 

Figure 8. 85th percentile of positive EHF values in the period 1958–2011 (in K2). These 

values are used as the threshold for a heatwave to be designated severe. The threshold for 

an extreme heatwave is taken to be three times the threshold for a severe heatwave. 

Having chosen the severity threshold as shown in Figure 8, we calculate the average annual rate of 

TDPs with EHF exceeding the severity threshold. This calculation is shown in Figure 9, and shows a 

considerable degree of similarity to Figure 7. It is interesting that severe EHF TDPs occur more 

frequently in the tropical north, with the lowest rates being around the southern continental coastline, 

in spite of this being the region where the positive EHF values are typically largest. The occurrence 

rate for TDPs with positive EHF will be influenced by both the shape of the annual cycle and the 

 short-range autocorrelation in DMT. A low short-range autocorrelation in DMT implies that a hot day 

is not likely to be followed by another hot day, thereby reducing the chance of a positive EHF and 

consequently the chance of a severe EHF. 

An analogous calculation is done for the average annual occurrence of TDPs in the extreme range 

across the period 1958–2011 (Figure 10). Not surprisingly, extreme events occur much more 

infrequently than severe events at individual locations. The pattern in Figure 10 is also spatially much 

noisier than that shown in Figure 9, a statistical consequence of the rareness of these events. 
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Figure 9. Average annual occurrence of TDPs with EHF above the severity threshold 

EHF85 in the period 1958–2011. Values are expressed in the form of TDPs per year. 

 

Figure 10. Average annual occurrence of TDPs with EHF above the extreme threshold in 

the period 1958–2011. Values are expressed in the form of TDPs per year. 

Figure 11 shows the linear trend in the intensity of EHF-positive events across the period 1958–2011. 

The trend is calculated in the usual way, using the ordinary least-squares (OLS) method, on points of 

the form (ti,EHFi) where ti represents the time variable and EHFi the corresponding EHF value, but 

only those points where the EHF value is positive are included in the calculation. The trends are 

positive across most of New South Wales and South Australia, but elsewhere in the country the spatial 

pattern is less consistent. The highest trends are around coastal South Australia, where they approach 

0.15 K2/year. This implies an increase in the average intensity of heatwaves of up to 8 K2 across the 

study period. Not surprisingly, the strongest trends occur in the places of highest mean positive EHF 

(Figure 6).  
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Figure 11. Trend in the intensity of EHF-positive events across 1958–2011. Values are 

expressed in units of K2 per year. 

We note as an important caveat to the results shown in Figure 11 that the residuals of the OLS 

linear regression calculation are a long way from being normally distributed. This is to be expected as 

the underlying data in the regression calculation consist of relatively many small positive EHF values 

and relatively few large positive EHF values. Accordingly we have also computed the linear trend 

using the Siegel [39] methodology, which should produce results which are much less sensitive to the 

presence of the long right tail of large positive EHF values. The Siegel linear trends (not shown) are 

considerably weaker than the OLS linear trends of Figure 11, suggesting that the OLS linear trends are 

being influenced to a considerable amount by the distribution (in time and amplitude) of the relatively 

infrequent but large positive EHF values, and so need to be interpreted with some caution. 

This motivates our exploration of an alternative way of approaching the trend question is to 

calculate the annual maximum EHF value in each 12-month period, and then calculate the linear trend 

in those annual maxima. For the purposes of this calculation, we do this calculation over 12-month 

July-to-June periods, so that the summer period is in the middle of the 12 months. Figure 12 shows the 

trend in the annual maximum EHF, expressed in units of K2/year, while Figure 13 shows those trends 

in severity units per year. The calculation uses data from July 1958 to June 2014, and as before uses 

the (OLS) method. 

Consistent with Figure 6 and Figure 8, the trend in the annual maximum is largest around the top of 

the Great Australian Bight, when expressed in units of K2/year. When the trend is expressed in severity 

units per year (Figure 13), we see that over a large part of eastern Australia, the annual maximum EHF 

has risen by around one half of a severity unit across the period represented by the calculation. Trends 

in the northern part of the country are more variable, with some negative trends seen. The stronger 

trend in the maximum heatwave intensity (Figure 12) compared to that of average heatwave intensity 

(Figure 11) suggests that heatwaves are becoming more intense. Heatwave extremes are rising faster. 
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Figure 12. Trend in the annual maximum EHF across the period 1958/1959 to 2013/2014 (in K2/year). 

 

Figure 13. As per Figure 12 but in severity units per year. 

The robustness of the trends shown in Figure 12, and consequently those shown in Figure 13, has 

been assessed by comparing the results of the OLS trend calculation with analogous calculations 

following the Sen [40] and Siegel [39] methodologies. The comparisons (not shown), while spatially 

noisier than the OLS calculation, suggest that the OLS calculation for Figure 12 is robust (unlike that 

for Figure 11). 

5. Discussion 

The distribution of mean EHF across Australia in Figure 6 reflects a narrower climatic temperature 

variation in the tropics during the warm season compared to southern Australia where northerly flow 

of hot air from the interior and cool changes sweeping in from the Southern Ocean generate a much 

wider temperature range. The same aspects of the synoptic climate lead to the 85th percentile of the 
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positive EHF climate record (Figure 8) having similar characteristics. For this reason maps of EHF  

are difficult to interpret unless normalised to an impact or severity scale, something which we 

recommend doing. 

Our interpretation of heatwave severity relies upon an expected local adaptation to low-intensity 

heatwaves which are frequently experienced, leading us to nominate the 85th percentile of all 

heatwaves in the climate record as a representative point at which we consider heatwaves to be no 

longer of low intensity. In earlier work, we found that heatwave intensities investigated for locations in 

Australia and elsewhere (including North America and Europe) are well modelled by a generalised 

Pareto distribution [22], and so the rapid rate of increase in intensity for the remaining 15% of 

heatwaves in the upper tail of the distribution is regarded as progressively more challenging for 

vulnerable people, requiring increasingly greater adaptive responses. For the last few percentage points 

of the heatwave population the remaining heatwave intensities are so extreme and rare that normally 

resilient people and engineered systems are vulnerable unless protective measures are adopted. 

Historical Australian examples of extreme heatwaves occur chiefly between mid-December and 

late-February [22], coinciding with regional drought and longer days. The loss of evaporative cooling 

in dry soils and reduced radiative cooling due to shorter nights has been shown [41] to contribute to 

elevated minimum temperatures and higher levels of retained environmental heat during heatwaves. 

Warning rates for low-intensity, severe and extreme heatwaves are shown in Figures 7, 9 and 10. 

The increased rate of warning in the tropics is likely to occur with seasonally drier soils prior to the 

arrival of warm-season rains. More intense heatwaves occur when warm-season rains are delayed with 

dry soils in combination with shorter nights contributing to higher minimum temperatures and more 

intense heat conditions. Extreme tropical heatwaves are most likely to occur when failed monsoon 

rains result in dry soils during January and February. Dry environments associated with extreme 

heatwaves present an interesting phase switch for northern (tropical) and eastern (sub-tropical) 

Australia, where low-intensity heatwaves occur in humid air masses. The transition from humid to dry 

conditions through the severe to extreme heatwave spectrum poses an interesting question. Adaptation 

strategies for humid heatwaves may not be appropriate for higher-intensity dry heatwaves. The spatial 

and temporal relationship between dry soils and more intense heatwaves will be explored in future 

investigations. 

Southern Australian heatwaves away from the eastern sea board are normally dry, although 

occasional low-intensity heatwaves may be more humid according to the synoptic situation. As a 

consequence dry-atmosphere adaptation strategies are employed throughout the heatwave intensity 

range. The lower incidence rate for low-intensity and severe heatwaves (Figures 7 and 8) over the 

southern coastal areas of the continent are counter-balanced by this strip experiencing a relatively 

higher extreme incidence rate (Figure 10). The episodic nature of heatwaves is more evident for this 

region. The rising trend in extreme heatwaves is evident for most of this area (Figures 12 and 13) and 

large areas of eastern Australia, although the southwest of the continent has been experiencing a slight 

falling trend. This falling trend in the west may be a shift over time to synoptic conditions that permit 

more frequent coastal wind changes. Trends in heatwave patterns across Australia associated with 

trends in synoptic conditions will be explored in future investigations. 
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Australia’s heatwave climatology maps presented in Section 4 have set the stage for further 

heatwave discussion. It is now possible in Australia’s highly variable climate to examine the alternate 

antecedent conditions that result in differing rates of heatwave incidence and intensity.  

6. Case Study: Southeast Australia 2009 Extreme Heatwave 

In this section we explore a significant heatwave which occurred across southeast Australia in 

January/February 2009 using the EHF and its associated metrics, noting that the graphical 

representations of the data shown in Figures 13 to 17 could readily be adapted to a real-time weather 

forecasting context. At the end of January 2009, Adelaide (at the Kent Town site) saw five consecutive 

days with daily maximum temperatures above 41 °C (27–31 January), with the first four of them 

exceeding 43 °C. A maximum temperature of 40.6 °C on 1 February made six consecutive days above 

40 °C. In consequence, the EHF exceeded the severity threshold in the Adelaide region by a factor of 

four (Figure 13) at the peak of the heatwave, placing the event well into the “extreme” range. Two 

further hot days (6–7 February) caused a minor resurgence of the heatwave index after the main event. 

 

Figure 14. EHF for Adelaide (South Australia) across the period 21–23 January to 9–11 

February 2009 (black line). The horizontal axis indicates the first day of each TDP. The 

horizontal grey line marks the threshold for a low-intensity heatwave (i.e., zero EHF), 

while the orange and red horizontal lines mark the thresholds for severe and extreme 

heatwaves respectively. Data are derived from interpolating gridded analyses of EHF.  

T95 = 24.9 °C, with the severity threshold being 30.5 K2. 
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Figure 15. As per Figure 14 but for Melbourne (Victoria). T95 = 24.1 °C, with the severity 

threshold being 24.0 K2. 

 

Figure 16. Maximum EHF for the period 21–23 January to 9–11 February 2009 (in K2). 

Melbourne (Victoria) saw three consecutive days with daily maximum temperatures above 43 °C 

(28–30 January) at the official weather site (Bureau Station Number 086071), and in the Melbourne 

area more generally the severity threshold was exceeded by a factor of more than five (Figure 15) at 

the peak of the heatwave. The resurgent heatwave was shorter in Melbourne than in Adelaide, 

effectively only lasting one TDP (ending 07 February), but that day saw the Melbourne official 

weather site’s hottest day on record (46.4 °C) and bushfires of appalling severity [42]. 
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Figure 17. As per Figure 16 but expressed in multiples of the severity threshold. Yellow 

denotes a low-intensity heatwave (ratios between 0 and 1). Dark orange colours denote an 

extreme heatwave (ratios of 3 and higher). Ratios between 1 and 3 denote a severe but not 

extreme heatwave. 

We present two different methods for ranking the scale of the heatwave. The first method is in 

terms of the maximum EHF value seen at each location within the heatwave period, to characterise the 

peak intensity. These maximum values at each location can be expressed either in actual values (Figure 16) 

or as multiples of the local severity threshold (Figure 17). The second method integrates or sums the 

positive EHF values across the heatwave period, to calculate the heat load of the entire event (Figure 18). 

 

Figure 18. Integrated EHF across the period 21–23 January to 9–11 February 2009. 

In terms of the integrated heat load (Figure 18), the heatwave extends across almost all of Victoria, 

southeast South Australia, southwestern New South Wales, and to a lesser extent northern Tasmania. 

The peak intensity in terms of actual EHF values (Figure 16) is highest in western Victoria, although in 

terms of severity (Figure 17) the heatwave reached “extreme” levels (ratios of three or higher) across 
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most of Tasmania, almost all of Victoria and much of southeastern South Australia. Only parts of New 

South Wales close to the Victorian border experienced an “extreme” heatwave according to this 

metric. It should be noted though that much of Victoria and the northern half of Tasmania experienced 

particularly extreme conditions at the peak of the heatwave (as seen in the severe threshold multiples 

in Figure 17) where the severity threshold was exceeded by a factor of four. 

Peak intensity and heat-load recorded for Adelaide (South Australia) and Melbourne (Victoria) in 

2009 ranked amongst the top four heatwave events in their respective climate records. All of these 

events occurred at the end of significant multi-year droughts and were associated with significant 

bushfire outbreaks. Nairn and Fawcett [22] show how Adelaide’s peak intensity preceded the mortality 

peak by three days, with the intensity and mortality displaying similar characteristics. Ambulance  

heat-related tasks in Melbourne demonstrated a similar response. 

Southeast Australia’s 2009 extreme heatwave resulted in South Australia recording 58 heat-related 

deaths [22,43] whilst Victoria reported 374 excess deaths [44]. By contrast the comparable 2003 

extreme heatwave [22] in France recorded approximately 15,000 excess deaths [45]. The population 

ratio for France and Victoria is approximately 11:1 whilst the excess mortality ratio for these 

comparable extreme heat events is about 40:1. France’s approximate 4:1 excess mortality when 

compared to Victoria for these two extreme heatwave events provides context for comparison of 

resilience and adaptation measures employed during these events. 

7. Concluding Remarks 

A two-step process involving the calculation of heatwave intensity, and the normalisation of this 

intensity via a severity classification scheme has allowed an assessment of the spatial and temporal 

characteristics of low-intensity, severe and extreme heatwaves. 

Heatwave intensity has been calculated as the product of the long-term and short-term daily mean 

temperature anomaly. Quality assured maximum and minimum temperature climate, forecast, seasonal 

and climate projection data present the opportunity to seamlessly assess how the intensity characteristics 

of heatwaves are changing for any location. 

Impacts of past and future heatwaves across sectors with and without thermo-physiological 

vulnerability can be analysed coherently.  

Whilst this heatwave intensity and severity percentile methodology has not involved humidity it has 

successfully categorised extreme heatwave events for both dry and humid climate regimes, where the 

highest heatwave impacts are observed across people, livestock, utilities, transport and economic 

activity. In Australia’s site-based daily temperature climate record (not shown) and in more recent, 

contemporary gridded climate and forecast data these high impact extreme heatwaves are found during 

periods of drought. 

Future work will examine how severe and extreme heatwave classifications translate into levels of 

impact. In early studies it would appear that vulnerable populations are threatened as heatwaves 

become severe and that many more people and their supporting infrastructure are exposed as 

heatwaves become extreme. The value of identifying low-intensity heatwaves should also be 

emphasised. Most cultures value periods of lower-intensity heat, particularly if this comes as a shift in 

season from uncomfortably cool weather. Affirming cultural value for a level of heatwave that is not 
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threatening to life provides a foothold for engaging and educating the public and business sectors in 

the dangers of more intense heatwaves. 

The Appendix that follows demonstrates the performance of a heatwave service that has been 

piloted by the Australian Bureau of Meteorology utilising the heatwave intensity and severity 

methodology. The Bureau is also adapting the same methodology to sub-seasonal timescale as an 

experimental forecast product [46]. 
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Appendix 

The Australian Bureau of Meteorology (the Bureau) utilised the EHF heatwave intensity and 

severity methodology to provide a pilot heatwave forecast service [47] for the summer of 2013/2014. 

Public distribution of the pilot products commenced on 8 January 2014, but the underlying forecasts 

were generated throughout the entire summer, and accordingly results for the period November 2013 

to March 2014 are presented here. Daily maximum and minimum temperature forecasts were 

generated using the Bureau of Meteorology’s gridded optimal consensus forecasting system [48], 

allowing forecasts with lead times of around 12 (“day 1”), 36 (“day 2”), 60 (“day 3”), 84 (“day 4”) and 

108 (“day 5”) hours between NWP model initialisation and the start of the TDP being forecast. This 

service provided images of heatwave severity with accompanying text for the next five TDPs. The 

forecasts are verified against EHF calculations derived from the Bureau’s operational daily 

temperature analyses [38]. An example of such a verifying analysis is shown in Figure A1. The forecasts 

were issued in largely the same format. 

Figure A2 shows a comparison of the percentage area of Australia forecast and observed to be in 

heatwave during the 2013/2014 Australian summer. Figure A3 shows the corresponding results for 

severe heatwaves, and Figure A4 for extreme heatwaves. The comparison of the percentage areas gives 

a basic insight into whether the forecast system is over-forecasting or under-forecasting, although 

obviously it does not indicate if the forecasted heatwaves are in the correct places. 
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There was a considerable degree of heatwave activity during the summer, but two episodes were 

particularly outstanding. Those were in Queensland and the Northern Territory around the start of the 

New Year, and in southern Australia around two weeks later. The comparisons show that there is 

considerable skill in the ability to forecast non-severe and severe heatwaves, although perhaps less so 

for extreme heatwaves. There are some tendencies towards over-forecasting and under-forecasting, 

likewise some false alarms, but no significant events went unforecast. 

 

Figure A1. Heatwave observational analysis for the TDP 1 to 3 January 2014. The map 

shows the EHF expressed as a multiple of the severity threshold EHF85, thereby indicating 

four categories; no heatwave (white), non-severe or low-intensity heatwave (yellow), 

severe but not extreme heatwave (orange), and extreme heatwave (red). The forecasts were 

issued in largely the same format. 

 

Figure A2. Percentage area of Australia in heatwave, as observed and forecast, across the 

period November 2013 to March 2014. The calculation is performed across continental 

Australia and the main island of Tasmania. Meridional convergence is taken into account 

when calculating the percentage areas. 
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Figure A3. As per Figure A2 but for percentage area in severe heatwave. 

 

Figure A4. As per Figure A2 but for percentage area in extreme heatwave. 

The Bureau convened a national workshop on 30 April 2014 to review the performance of the pilot 

service. Invited stakeholders from health, emergency services, power utility and media sectors agreed 

to form a Heatwave Services Reference Group (HSRG). Feedback from this group has been 

incorporated into an updated heatwave forecast service for Australia’s 2014/2015 warm season which 

commenced during November 2014. 

The Bureau is developing plans to upgrade the pilot heatwave forecasting service to the official 

forecast and warning system that supplies Australians with gridded forecasts and warnings that are 

quality controlled by forecasters and made available in a navigable, digital product suite that can be 

rendered for modern dissemination channels. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Coates, L. An overview of fatalities from some natural hazards in Australia. In Proceedings of 

Conference on Natural Disaster Reduction, Gold Coast, Australia, 29 September–2 October 1996. 



Int. J. Environ. Res. Public Health 2015, 12 251 

 

 

2. Changnon, S.A.; Kunkel, K.E.; Reinke, B.C. Impacts and responses to the 1995 heat wave: A call 

to action. Bull. Am. Meteorol. Soc. 1996, 77, 1497–1506. 

3. Alexander, L.V.; Hope, P.; Collins, D.; Trewin, B.; Lynch, A.; Nicholls, N. Trends in Australia’s 

climate means and extremes: A global context. Aust. Meteorol. Mag. 2007, 56, 1–18. 

4. Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st 

century. Science 2004, 305, 994–997. 

5. Amengual, A.; Homar, V.; Romero, R.; Brooks, H.E.; Ramis, C.; Gordaliza, M.; Alonso, S. 

Projections of heat waves with high impact on human health in Europe. Glob. Planet. Change 

2014, 119, 71–84. 

6. McMichael, A.J.; Woodruff, R.; Whetton, P.; Hennessy, K.; Nicholls, N.; Hales, S.; Woodward, A.; 

Kjellstrom, T. Human Health and Climate Change in Oceania: A Risk Assessment 2002; 

Commonwealth of Australia: Canberra, Australia, 2003. 

7. CSIRO; Bureau of Meteorology. Climate Change in Australia: Technical Report 2007; CSIRO: 

Melbourne, Australia, 2011; p. 148. 

8. Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing frequency, intensity and duration of observed 

global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, doi:10.1029/2012GL053361. 

9. Pezza, A.B.; van Rensch, P.; Cai, W. Severe heat waves in southern Australia: Synoptic 

climatology and large scale connections. Clim. Dyn. 2012, 38, 209–224. 

10. Perkins, S.E.; Alexander, L.V. On the measurement of heat waves. J. Clim. 2013, 26, 4500–4517. 

11. Parker, T.J.; Berry, G.J.; Reeder, M.J. The influence of tropical cyclones on heat waves in 

southeastern australia. Geophys. Res. Lett. 2013, 40, 6264–6270. 

12. Hirschi, M.; Seneviratne, S.I.; Alexandrov, V.; Boberg, F.; Boroneant, C.; Christensen, O.B.; 

Formayer, H.; Orlowsky, B.; Stepanek, P. Observational evidence for soil-moisture impact on hot 

extremes in southeastern Europe. Nature Geosci. 2011, 4, 17–21. 

13. Nicholls, N. Is australia’s continued warming caused by drought? Aust. Meteorol. Oceanogr. J. 

2012, 62, 93–96. 

14. Stéfanon, M.; Drobinski, P.; D’Andrea, F.; Lebeaupin-Brossier, C.; Bastin, S. Soil moisture-

temperature feedbacks at meso-scale during summer heat waves over western europe. Clim. Dyn. 

2014, 42, 1309–1324. 

15. Hudson, D.; Marshall, A.G.; Alves, O. Intraseasonal forecasting of the 2009 summer and winter 

australian heat waves using poama. Weather Forecast. 2011, 26, 257–279. 

16. Marshall, A.G.; Hudson, D.; Wheeler, M.C.; Alves, O.; Hendon, H.H.; Pook, M.J.; Risbey, J.S. 

Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Clim. Dyn. 

2014, 43, 1915–1937. 

17. Pattenden, S.; Nikiforov, B.; Armstrong, B.G. Mortality and temperature in Sofia and London.  

J. Epidemiol. Community Health 2003, 57, 628–633. 

18. Nicholls, N.; Skinner, C.; Loughnan, M.; Tapper, N. A simple heat alert system for Melbourne, 

Australia. Int. J. Biometeorol. 2008, 52, 375–384. 

19. Nitschke, M.; Tucker, G.R.; Bi, P. Morbidity and mortality during heatwaves in metropolitan 

adelaide. Med. J. Aust. 2007, 187, 662–665. 



Int. J. Environ. Res. Public Health 2015, 12 252 

 

 

20. Saez, M.; Sunyer, J.; Castellsague, J.; Murillo, C.; Anto, J.M. Relationship between weather 

temperature and mortality—A time-series analysis approach in barcelona. Int. J. Epidemiol. 1995, 

24, 576–582. 

21. Hajat, S.; Kovats, R.S.; Atkinson, R.W.; Haines, A. Impact of hot temperatures on death in 

london: A time series approach. J. Epidemiol. Community Health 2002, 56, 367–372. 

22. Nairn, J.; Fawcett, R. Defining Heatwaves: Heatwave Defined as a Heat-Impact Event Servicing 

All Communiy and Business Sectors in Australia; Centre for Australian Weather and Climate 

Research: Melbourne, Australia, 2013; p. 84. 

23. Langlois, N.; Herbst, J.; Mason, K.; Nairn, J.; Byard, R.W. Using the excess heat factor (EHF) to 

predict the risk of heat related deaths. J. Forensic Leg. Med. 2013, 20, 408–411. 

24. Braga, A.L.F.; Zanobetti, A.; Schwartz, J. The time course of weather-related deaths. 

Epidemiology 2001, 12, 662–667. 

25. Curriero, F.C.; Heiner, K.S.; Samet, J.M.; Zeger, S.L.; Strug, L.; Patz, J.A. Temperature and 

mortality in 11 cities of the eastern United States. Am. J. Epidemiol. 2002, 155, 80–87. 

26. Vandentorren, S.; Bretin, P.; Zeghnoun, A.; Mandereau-Bruno, L.; Croisier, A.; Cochet, C.; 

Riberon, J.; Siberan, I.; Declercq, B.; Ledrans, M. August 2003 heat wave in France: Risk factors 

for death of elderly people living at home. Eur. J. Public Health 2006, 16, 583–591. 

27. Tong, S.; Ren, C.; Becker, N. Excess deaths during the 2004 heatwave in brisbane, Australia.  

Int. J. Biometeorol. 2010, 54, 393–400. 

28. Kalkstein, L.S. Saving lives during extreme weather in summer—Interventions from local health 

agencies and doctors can reduce mortality. Br. Med. J. 2000, 321, 650–651. 

29. Robinson, P.J. On the definition of a heat wave. J. Appl. Meteorol. 2001, 40, 762–775. 

30. Steadman, R.G. Assessment of sultriness. 1. Temperature-humidity index based on human 

physiology and clothing science. J. Appl. Meteorol. 1979, 18, 861–873. 

31. Steadman, R.G. Assessment of sultriness. 2. Effects of wind, extra radiation and barometric 

pressure on apparent temperature. J. Appl. Meteorol. 1979, 18, 874–885. 

32. Steadman, R.G. A universal scale of apparent temperature. J. Clim. Appl. Meteorol. 1984, 23, 

1674–1687. 

33. Alexander, L.V.; Arblaster, J.M. Assessing trends in observed and modelled climate extremes 

over Australia in relation to future projections. Int. J. Climatol. 2009, 29, 417–435. 

34. Woldemeskel, F.M.; Sharma, A.; Sivakumar, B.; Mehrotra, R. An error estimation method for 

precipitation and temperature projections for future climates. J. Geophys. Res.-Atmos. 2012, 117, 

doi:10.1029/2012JD018062. 

35. McMichael, A.J.; Wilkinson, P.; Kovats, R.S.; Pattenden, S.; Hajat, S.; Armstrong, B.; 

Vajanapoom, N.; Niciu, E.M.; Mahomed, H.; Kingkeow, C.; et al. International study of temperature, 

heat and urban mortality: The ‘isothurm’ project. Int. J. Epidemiol. 2008, 37, 1121–1131. 

36. Guyton, A.C.; Hall, J.E. Textbook of Medical Physiology; Elsevier Saunders: Philadelphia, PA, 

USA, 2006. 

37. Nairn, J.; Fawcett, R.; Ray, D. Defining and predicting excessive heat events, a national system. 

In Understanding High Impact Weather, CAWCR Modelling Workshop; Bureau of Meteorology: 

Melbourne, Australia, 2009. 



Int. J. Environ. Res. Public Health 2015, 12 253 

 

 

38. Jones, D.A.; Wang, W.; Fawcett, R. High-quality spatial climate data-sets for Australia. Aust. 

Meteorol. Oceanogr. J. 2009, 58, 233–248. 

39. Siegel, A.F. Robust regression using repeated medians. Biometrika 1982, 69, 242–244. 

40. Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 

63, 1379–1389. 

41. Black, E.; Blackburn, M.; Harrison, G.; Hoskins, B.; Methven, J. Factors contributing to the 

summer 2003 European heatwave. Weather 2004, 59, 217–223. 

42. Teague, B.; McLeod, R.; Pascoe, S. The 2009 Victorian Bushfires Royal Commission Final 

Report. Available online: http://www.royalcommission.vic.gov.au/finaldocuments/summary/PF/ 

VBRC_Summary_PF.pdf (accessed on 20 December 2014). 

43. Mason, K.; Nairn, J.; Herbst, J.; Felgate, P. Heatwave—The Adelaide experience. In Proceedings of 

The 20th International Symposium on the Forensic Sciences, Sydney, Australia, 5–9 September 2010. 

44. Department of Human. January 2009 Heatwave in Victoria: An Assessment of Health Impacts; 

Department of Human: Victoria, Australia, 2009. 

45. Toulemon, L.; Barbieri, M. The mortality impact of the august 2003 heat wave in France: 

Investigating the ‘harvesting’ effect and other long-term consequences. Popul. Stud. 2008, 62, 39–53. 

46. Hudson, D.; Marshall, A.G. Extending the Bureau of Meteorology’s heatwave forecast to  

multi-week timescales. CAWCR Tech. Rep. 2015, in press. 

47. Bureau of Meteorology. Pilot Heatwave Forecast Service. Available online: 

http://www.bom.gov.au/australia/heatwave/index.shtml (accessed on 20 December 2014). 

48. Fawcett, R.; Hume, T.; The GOCF/AWAP system—Forecasting temperature extremes.  

In Proecedings of 17th National Conference of the Australian Meteorological and Oceanographic 

Society, Canberra, Australia, 27–29 January 2010. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


