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Abstract 

Background: 

The number of proposed prognostic models for COVID-19 is growing rapidly, but it is unknown 

whether any are suitable for widespread clinical implementation.  

Methods: 

We independently externally validated the performance candidate prognostic models, identified 

through a living systematic review, among consecutive adults admitted to hospital with a final 

diagnosis of COVID-19. We reconstructed candidate models as per original descriptions and 

evaluated performance for their original intended outcomes using predictors measured at admission. 

We assessed discrimination, calibration and net benefit, compared to the default strategies of treating 

all and no patients, and against the most discriminating predictor in univariable analyses.   

Results: 

We tested 22 candidate prognostic models among 411 participants with COVID-19, of whom 180 

(43.8%) and 115 (28.0%) met the endpoints of clinical deterioration and mortality, respectively. 

Highest areas under receiver operating characteristic (AUROC) curves were achieved by the NEWS2 

score for prediction of deterioration over 24 hours (0.78; 95% CI 0.73-0.83), and a novel model for 

prediction of deterioration <14 days from admission (0.78; 0.74-0.82). The most discriminating 

univariable predictors were admission oxygen saturation on room air for in-hospital deterioration 

(AUROC 0.76; 0.71-0.81), and age for in-hospital mortality (AUROC 0.76; 0.71-0.81). No prognostic 

model demonstrated consistently higher net benefit than these univariable predictors, across a range 

of threshold probabilities. 

Conclusions: 

Admission oxygen saturation on room air and patient age are strong predictors of deterioration and 

mortality among hospitalised adults with COVID-19, respectively. None of the prognostic models 

evaluated here offered incremental value for patient stratification to these univariable predictors.   



Introduction 

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 

(SARS-CoV-2), causes a spectrum of disease ranging from asymptomatic infection to critical illness. 

Among people admitted to hospital, COVID-19 has reported mortality of 21-33%, with 14-17% 

requiring admission to high dependency or intensive care units (ICU)[1–4]. Exponential surges in 

transmission of SARS-CoV-2, coupled with the severity of disease among a subset of those affected, 

pose major challenges to health services by threatening to overwhelm resource capacity[5]. Rapid 

and effective triage at the point of presentation to hospital is therefore required to facilitate adequate 

allocation of resources and to ensure that patients at higher risk of deterioration are managed and 

monitored appropriately. Importantly, prognostic models may have additional value in patient 

stratification for emerging drug therapies[6, 7].  

As a result, there has been global interest in development of prediction models for COVID-19[8]. 

These include models aiming to predict a diagnosis of COVID-19, and prognostic models, aiming to 

predict disease outcomes. At the time of writing, a living systematic review has already catalogued 

145 diagnostic or prognostic models for COVID-19[8]. Critical appraisal of these models using quality 

assessment tools developed specifically for prediction modelling studies suggests that the candidate 

models are poorly reported, at high risk of bias and over-estimation of their reported performance[8, 

9]. However, independent evaluation of candidate prognostic models in unselected datasets has been 

lacking. It therefore remains unclear how well these proposed models perform in practice, or whether 

any are suitable for widespread clinical implementation. We aimed to address this knowledge gap by 

systematically evaluating the performance of proposed prognostic models, among consecutive 

patients hospitalised with a final diagnosis of COVID-19 at a single centre, when using predictors 

measured at the point of hospital admission.   



Methods 

Identification of candidate prognostic models 

We used a published living systematic review to identify all candidate prognostic models for COVID-

19 indexed in PubMed, Embase, Arxiv, medRxiv, or bioRxiv until 5th May 2020, regardless of 

underlying study quality[8]. We included models that aim to predict clinical deterioration or mortality 

among patients with COVID-19. We also included prognostic scores commonly used in clinical 

practice[10–12], but not specifically developed for COVID-19 patients, since these models may also 

be considered for use by clinicians to aid risk-stratification for patients with COVID-19. For each 

candidate model identified, we extracted predictor variables, outcome definitions (including time 

horizons), modelling approaches, and final model parameters from original publications, and 

contacted authors for additional information where required. We excluded scores where the 

underlying model parameters were not publicly available, since we were unable to reconstruct them, 

along with models for which included predictors were not available in our dataset. The latter included 

models that require computed tomography imaging or arterial blood gas sampling, since these 

investigations were not routinely performed among unselected patients with COVID-19 at our centre.  

Study population 

Our study is reported in accordance with transparent reporting of a multivariable prediction model for 

individual prognosis or diagnosis (TRIPOD) guidance for external validation studies[13]. We included 

consecutive adults admitted to University College Hospital London with a final diagnosis of PCR-

confirmed (including all sample types) or clinically diagnosed COVID-19, between 1
st
 February and 

30
th
 April 2020. Since we sought to use data from the point of hospital admission to predict outcomes, 

we excluded patients transferred in from other hospitals, and those with hospital-acquired COVID-19 

(defined as 1
st
 PCR swab sent >5 days from date of hospital admission, as a proxy for the onset of 

clinical suspicion of SARS-CoV-2 infection). Clinical COVID-19 diagnoses were made on the basis of 

manual record review by an infectious disease specialist, using clinical features, laboratory results 

and radiological appearances, in the absence of an alternative diagnosis. During the study period, 

PCR testing was performed on the basis of clinical suspicion, and no SARS-CoV-2 serology 

investigations were routinely performed.  



Data sources and variables of interest 

Data were collected by direct extraction from electronic health records, complemented by manual 

curation. Variables of interest in the dataset included: demographics (age, gender, ethnicity), 

comorbidities (identified through manual record review), clinical observations, laboratory 

measurements, radiology reports, and clinical outcomes. Each chest radiograph was reported by a 

single radiologist, who was provided with a short summary of the indication for the investigation at the 

time of request, reflecting routine clinical conditions. Chest radiographs were classified using British 

Society of Thoracic Imaging criteria, and using a modified version of the Radiographic Assessment of 

Lung Edema (RALE) score[14, 15]. For each predictor, measurements were recorded as part of 

routine clinical care. Where serial measurements were available, we included the measurement taken 

closest to the time of presentation to hospital, with a maximum interval between presentation and 

measurement of 24 hours. 

Outcomes 

For models that used ICU admission or death, or progression to ‘severe’ COVID-19 or death, as 

composite endpoints, we used a composite ‘clinical deterioration’ endpoint as the primary outcome. 

We defined clinical deterioration as initiation of ventilatory support (continuous positive airway 

pressure, non-invasive ventilation, high flow nasal cannula oxygen, invasive mechanical ventilation or 

extra-corporeal membrane oxygenation) or death, equivalent to World Health Organization Clinical 

Progression Scale  6[16]. This definition does not include standard oxygen therapy. We did not apply 

any temporal limits on (a) the minimum duration of respiratory support; or (b) the interval between 

presentation to hospital and the outcome. The rationale for this composite outcome is to make the 

endpoint more generalisable between centres, since hospital respiratory management algorithms may 

vary substantially. Defining the outcome based on level of support, as opposed to ward setting, also 

ensures that it is appropriate in the context of a pandemic, when treatments that would usually only be 

considered in an ICU setting may be administered in other environments due to resource constraints. 

Where models specified their intended time horizon in their original description, we used this timepoint 

in the primary analysis, in order to ensure unbiased assessment of model calibration. Where the 

intended time horizon was not specified, we assessed the model to predict in-hospital deterioration or 

mortality, as appropriate. All deterioration and mortality events were included, regardless of their 

clinical aetiology.  



Participants were followed-up clinically to the point of discharge from hospital. We extended follow-up 

beyond discharge by cross-checking NHS spine records to identify reported deaths post-discharge, 

thus ensuring >30 days’ follow-up for all participants.   

Statistical analyses 

For each prognostic model included in the analyses, we reconstructed the model according to 

authors’ original descriptions, and sought to evaluate the model discrimination and calibration 

performance against our approximation of their original intended endpoint. For models that provide 

online risk calculator tools, we validated our reconstructed models against original authors’ models, by 

cross-checking our predictions against those generated by the web-based tools for a random subset 

of participants.  

For all models, we assessed discrimination by quantifying the area under the receiver operating 

characteristic curve (AUROC)[17]. For models that provided outcome probability scores, we assessed 

calibration by visualising calibration of predicted vs. observed risk using loess-smoothed plots, and by 

quantifying calibration slopes and calibration-in-the-large (CITL). A perfect calibration slope should be 

1; slopes <1 indicate that risk estimates are too extreme, while slopes >1 reflect risk estimates not 

being extreme enough. Ideal CITL is 0; CITL>0 indicates that predictions are systematically too low, 

while CITL<0 indicates that predictions are too high. For models with points-based scores, we 

assessed calibration visually by plotting model scores vs. actual outcome proportions. For models that 

provide probability estimates, but where the model intercept was not available, we calibrated the 

model to our dataset by calculating the intercept when using the model linear predictor as an offset 

term, leading to perfect CITL. This approach, by definition, overestimated calibration with respect to 

CITL, but allowed us to examine the calibration slope in our dataset.  

We also assessed the discrimination of each candidate model for standardised outcomes of: (a) our 

composite endpoint of clinical deterioration; and (b) mortality, across a range of pre-specified time 

horizons from admission (7 days, 14 days, 30 days and any time during hospital admission), by 

calculating time-dependent AUROCs (with cumulative sensitivity and dynamic specificity)[18]. The 

rationale for this analysis was to harmonise endpoints, in order to facilitate more direct comparisons of 

discrimination between the candidate models.  



In order to further benchmark the performance of candidate prognostic models, we then computed 

AUROCs for a limited number of univariable predictors considered to be of highest importance a 

priori, based on clinical knowledge and existing data, for prediction of our composite endpoints of 

clinical deterioration and mortality (7 days, 14 days, 30 days and any time during hospital admission). 

The a priori predictors of interest examined in this analysis were age, clinical frailty scale, oxygen 

saturation at presentation on room air, C-reactive protein and absolute lymphocyte count[8, 19].  

Decision curve analysis allows assessment of the clinical utility of candidate models, and is 

dependent on both model discrimination and calibration[20]. We performed decision curve analyses to 

quantify the net benefit achieved by each model for predicting the intended endpoint, in order to 

inform clinical decision making across a range of risk:benefit ratios for an intervention or 

‘treatment’[20]. In this approach, the risk:benefit ratio is analogous to the cut point for a statistical 

model above which the intervention would be considered beneficial (deemed the ‘threshold 

probability’). Net benefit was calculated as sensitivity × prevalence – (1 – specificity) × (1 – 

prevalence) × w where w is the odds at the threshold probability and the prevalence is the proportion 

of patients who experienced the outcome[20]. We calculated net benefit across a range of clinically 

relevant threshold probabilities, ranging from 0 to 0.5, since the risk:benefit ratio may vary for any 

given intervention (or ‘treatment’). We compared the utility of each candidate model against strategies 

of treating all and no patients, and against the best performing univariable predictor for in-hospital 

clinical deterioration, or mortality, as appropriate. To ensure that fair, head-to-head net benefit 

comparisons were made between multivariable probability based models, points score models and 

univariable predictors, we calibrated each of these to the validation dataset for the purpose of 

decision curve analysis. Probability-based models were recalibrated to the validation data by refitting 

logistic regression models with the candidate model linear predictor as the sole predictor. We 

calculated ‘delta’ net benefit as net benefit when using the index model minus net benefit when: (a) 

treating all patients; and (b) using most discriminating univariable predictor. Decision curve analyses 

were done using the rmda package in R[21].  

We handled missing data using multiple imputation by chained equations[22], using the mice package 

in R[23]. All variables and outcomes in the final prognostic models were included in the imputation 



model to ensure compatibility[22] . A total of 10 imputed datasets were generated; discrimination, 

calibration and net benefit metrics were pooled using Rubin’s rules[24].  

All analyses were conducted in R (version 3.5.1).  

Sensitivity analyses 

We recalculated discrimination and calibration parameters for each candidate model using (a) a 

complete case analysis (in view of the large amount of missingness for some models); (b) excluding 

patients without PCR-confirmed SARS-CoV-2 infection; and (c) excluding patients who met the 

clinical deterioration outcome within 4 hours of arrival to hospital. We also examined for non-linearity 

in the a priori univariable predictors using restricted cubic splines, with 3 knots. Finally, we estimated 

optimism for discrimination and calibration parameters for the a priori univariable predictors using 

bootstrapping (1,000 iterations), using the rms package in R[25].  

Ethical approval 

The pre-specified study protocol was approved by East Midlands - Nottingham 2 Research Ethics 

Committee (REF: 20/EM/0114; IRAS: 282900).   



Results 

Summary of candidate prognostic models 

We identified a total of 37 studies describing prognostic models, of which 19 studies (including 22 

unique models) were eligible for inclusion (Supplementary Figure 1 and Table 1). Of these, 5 models 

were not specific to COVID-19, but were developed as prognostic scores for emergency department 

attendees[26], hospitalised patients[12, 27], people with suspected infection[10] or community-

acquired pneumonia[11], respectively. Of the 17 models developed specifically for COVID-19, most 

(10/17) were developed using datasets originating in China. Overall, discovery populations included 

hospitalised patients and were similar to the current validation population with the exception of one 

study that discovered a model using community data[28], and another that used simulated data[29]. A 

total of 13/22 models use points-based scoring systems to derive final model scores, with the 

remainder using logistic regression modelling approaches to derive probability estimates. A total of 

12/22 prognostic models primarily aimed to predict clinical deterioration, while the remaining 10 

sought to predict mortality alone. When specified, time horizons for prognosis ranged from 1 to 30 

days. Candidate prognostic models not included in the current validation study are summarised in 

Supplementary Table 1.  

Overview of study cohort 

During the study period, 521 adults were admitted with a final diagnosis of COVID-19, of whom 411 

met the eligibility criteria for inclusion (flowchart shown in Supplementary Figure 2). Median age of the 

cohort was 66 years (interquartile range (IQR) 53-79), and the majority were male (252/411; 61.3%). 

Table 2 shows the baseline demographics, comorbidities, laboratory results and clinical 

measurements of the study cohort, of whom most (370/411; 90.0%) had PCR-confirmed SARS-CoV-2 

infection (315/370 (85.1%) were positive on their first PCR test). A total of 180 (43.8%) and 115 

(28.0%) of participants met the endpoints of clinical deterioration and mortality, respectively, above 

the minimum requirement of 100 events recommended for external validation studies [30]. The risks 

of clinical deterioration and death declined with time since admission (median days to deterioration 

1.4 (IQR 0.3-4.2); median days to death 6.6 (IQR 3.6-13.1); Supplementary Figure 3). Most variables 

required for calculation of the 22 prognostic model scores were available among the vast majority of 

participants. However, admission lactate dehydrogenase was only available for 183/411 (44.5%) and 



D-dimer measured for 153/411 (37.2%), resulting in significant missingness for models requiring 

these variables (Supplementary Figure 4).  

Evaluation of prognostic models for original primary outcomes 

Table 3 shows discrimination and calibration metrics, where appropriate, for the 22 evaluated 

prognostic models in the primary multiple imputation analysis. The highest AUROCs were achieved 

by the NEWS2 score for prediction of deterioration over 24 hours (0.78; 95% CI 0.73 - 0.83), and the 

Carr ‘final’ model for prediction of deterioration over 14 days (0.78; 95% CI 0.74 - 0.82). Of the other 

prognostic scores currently used in routine clinical practice, CURB65 had an AUROC 0.75 for 30-day 

mortality (95% CI 0.70 - 0.80), while qSOFA discriminated in-hospital mortality with an AUROC of 0.6 

(95% CI 0.55 - 0.65).  

For all models that provide probability scores for either deterioration or mortality, calibration appeared 

visually poor with evidence of overfitting and either systematic overestimation or underestimation of 

risk (Figure 1). Supplementary Figure 5 shows associations between prognostic models with points-

based scores and actual risk. In addition to demonstrating reasonable discrimination, the NEWS2 and 

CURB65 models demonstrated approximately linear associations between scores and actual 

probability of deterioration at 24 hours and mortality at 30 days, respectively.  

Time-dependent discrimination of candidate models and a priori univariable predictors for 
standardised outcomes 

Next, we sought to compare the discrimination of these models for both clinical deterioration and 

mortality across the range of time horizons, benchmarked against preselected univariable predictors 

associated with adverse outcomes in COVID-19[8, 19]. We recalculated time-dependent AUROCs for 

each of these outcomes, stratified by time horizon to the outcome (Supplementary Figures 6 and 7). 

These analyses showed that AUROCs generally declined with increasing time horizons. Admission 

oxygen saturation on room air was the strongest predictor of in-hospital deterioration (AUROC 0.76; 

95% CI 0.71-0.81), while age was the strongest predictor of in-hospital mortality (AUROC 0.76; 95% 

CI 0.71-0.81).  

Decision curve analyses to assess clinical utility 

We compared net benefit for each prognostic model (for its original intended endpoint) to the 

strategies of treating all patients, treating no patients, and using the most discriminating univariable 



predictor for either deterioration (i.e. oxygen saturation on air) or mortality (i.e. patient age) to stratify 

treatment (Supplementary Figure 8). Although all prognostic models showed greater net benefit than 

treating all patients at the higher range of threshold probabilities, none of these models demonstrated 

consistently greater net benefit than the most discriminating univariable predictor, across the range of 

threshold probabilities (Figure 2).  

Sensitivity analyses 

Recalculation of model discrimination and calibration metrics for prediction of the original intended 

endpoint using (a) a complete case analysis; (b) excluding patients without PCR-confirmed SARS-

CoV-2 infection; and (c) excluding patients who met the clinical deterioration outcome within 4 hours 

of arrival to hospital revealed similar results to the primary multiple imputation approach, though 

discrimination was noted to be lower overall when excluding early events (Supplementary Tables 2a-

c). Visual examination of associations between the most discriminating univariable predictors and log 

odds of deterioration or death using restricted cubic splines showed no evidence of non-linear 

associations (Supplementary Figure 9). Finally, internal validation using bootstrapping showed near 

zero optimism for discrimination and calibration parameters for the univariable models 

(Supplementary Table ).   



Discussion 

In this observational cohort study of consecutive adults hospitalised with COVID-19, we systematically 

evaluated the performance of 22 prognostic models for COVID-19. These included models developed 

specifically for COVID-19, along with existing scores in routine clinical use prior to the pandemic. For 

prediction of both clinical deterioration or mortality, AUROCs ranged from 0.56-0.78. NEWS2 

performed reasonably well for prediction of deterioration over a 24-hour interval, achieving an AUROC 

of 0.78, while the Carr ‘final’ model[31] also had an AUROC of 0.78, but tended to systematically 

underestimate risk. All COVID-specific models that derived an outcome probability of either 

deterioration or mortality showed poor calibration. We found that oxygen saturation (AUROC 0.76) 

and patient age (AUROC 0.76) were the most discriminating single variables for prediction of in-

hospital deterioration and mortality respectively. These predictors have the added advantage that they 

are immediately available at the point of presentation to hospital. In decision curve analysis, which is 

dependent upon both model discrimination and calibration, no prognostic model demonstrated clinical 

utility consistently greater than using these univariable predictors to inform decision-making. 

While previous studies have largely focused on novel model discovery, or evaluation of a limited 

number of existing models, this is the first study to our knowledge to evaluate systematically-identified 

candidate prognostic models for COVID-19. We used a comprehensive living systematic review[8] to 

identify eligible models and sought to reconstruct each model as per the original authors’ description. 

We then evaluated performance against its intended outcome and time horizon, wherever possible, 

using recommended methods of external validation incorporating assessments of discrimination, 

calibration and net benefit[17]. Moreover, we used a robust approach of electronic health record data 

capture, supported by manual curation, in order to ensure a high-quality dataset, and inclusion of 

unselected and consecutive COVID-19 cases that met our eligibility criteria.  In addition, we used 

robust outcome measures of mortality and clinical deterioration, aligning with the WHO Clinical 

Progression Scale[16].  

A weakness of the current study is that it is based on retrospective data from a single centre, and 

therefore cannot assess between-setting heterogeneity in model performance. Second, due to the 

limitations of routinely collected data, predictor variables were available for varying numbers of 

participants for each model, with a large proportion of missingness for models requiring lactate 



dehydrogenase and D-dimer measurements. We therefore performed multiple imputation, in keeping 

with recommendations for development and validation of multivariable prediction models, in our 

primary analyses[32]. Findings were similar in the complete case sensitivity analysis, thus supporting 

the robustness of our results. Future studies would benefit from standardising data capture and 

laboratory measurements prospectively to minimise predictor missingness. Thirdly, a number of 

models could not be reconstructed in our data. For some models, this was due the absence of 

predictors in our dataset, such as those requiring computed tomography imaging, since this is not 

currently routinely recommended for patients with suspected or confirmed COVID-19[15]. We were 

also not able to include models for which the parameters were not publicly available. This 

underscores the need for strict adherence to reporting standards in multivariable prediction 

models[13]. Finally, we used admission data only as predictors in this study, since most prognostic 

scores are intended to predict outcomes at the point of hospital admission. We note, however, that 

some scores are designed for dynamic in-patient monitoring, with NEWS2 showing reasonable 

discrimination for deterioration over a 24-hour interval, as originally intended[27]. Future studies may 

integrate serial data to examine model performance when using such dynamic measurements.  

Despite the vast global interest in the pursuit of prognostic models for COVID-19, our findings show 

that none of the COVID-19-specific models evaluated in this study can currently be recommended for 

routine clinical use. In addition, while some of the evaluated models that are not specific to COVID-19 

are routinely used and may be of value among in-patients[12, 27], people with suspected infection[10] 

or community-acquired pneumonia[11], none showed greater clinical utility than the strongest 

univariable predictors among patients with COVID-19. Our data show that admission oxygen 

saturation on air is a strong predictor of clinical deterioration and may be evaluated in future studies to 

stratify in-patient management and for remote community monitoring. We note that all novel 

prognostic models for COVID-19 assessed in the current study were derived from single-centre data. 

Future studies may seek to pool data from multiple centres in order to robustly evaluate the 

performance of existing and newly emerging models across heterogeneous populations, and develop 

and validate novel prognostic models, through individual participant data meta-analysis[33]. Such an 

approach would allow assessments of between-study heterogeneity and the likely generalisability of 

candidate models. It is also imperative that discovery populations are representative of target 

populations for model implementation, with inclusion of unselected cohorts. Moreover, we strongly 



advocate for transparent reporting in keeping with TRIPOD standards (including modelling 

approaches, all coefficients and standard errors) along with standardisation of outcomes and time 

horizons, in order to facilitate ongoing systematic evaluations of model performance and clinical 

utility[13].  

We conclude that baseline oxygen saturation on room air and patient age are strong predictors of 

deterioration and mortality, respectively. None of the prognostic models evaluated in this study offer 

incremental value for patient stratification to these univariable predictors when using admission data. 

Therefore, none of the evaluated prognostic models for COVID-19 can be recommended for routine 

clinical implementation. Future studies seeking to develop prognostic models for COVID-19 should 

consider integrating multi-centre data in order to increase generalisability of findings, and should 

ensure benchmarking against existing models and simpler univariable predictors.   
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Table 1: Characteristics of studies describing prognostic models included in systematic evaluation.  

MEWS = modified early warning score; qSOFA = quick sequential (sepsis-related) organ failure assessment; REMS = rapid emergency medicine score; 

NEWS = national early warning score; TACTIC = therapeutic study in pre-ICU patients admitted with COVID-19; AVPU = Alert / responds to voice / 

responsive to pain / unresponsive; CRP = C-reactive protein; LDH = lactate dehydrogenase; RALE = radiographic assessment of lung edema; ARDS = acute 

respiratory distress syndrome; ICU = intensive care unit; ECMO = extra-corporeal membrane oxygenation.  

Units, unless otherwise specified, are: age in years; respiratory rate in breaths per minute; heart rate in beats per minute; blood pressure in mmHg; 

temperature in °C; oxygen saturation in %; CRP in mg/L; LDH in U/L; neutrophils, lymphocytes, total white cell count and platelets x 10^9/L; D-dimer in ng/mL; 

creatinine in μmol/L; estimated glomerular filtration rate in mL/min/1.73 m2, albumin in g/L.  

Authors Score name Country of 
derivation 

Development 
population 

Pre-existing or COVID-
specific? 

Model outcome Predictors Original 
modelling 
approach 

How are 
predictors 
combined? 

Subbe et 
al[34] 

MEWS
#
 UK Hospital inpatients Pre-existing (hospital 

patients) 
Mortality, ICU admission or 
cardiac arrest (no specified 
timepoint) 

Systolic blood pressure, pulse 
rate, respiratory rate, 
temperature, AVPU score 

Clinical 
consensus 

Points-based 
score 

Olsson et 
al[26] 

REMS
#
 Sweden Patients presenting 

to emergency 
department 

Pre-existing 
(emergency 
department patients) 

Mortality (in-hospital) Blood pressure, respiratory rate, 
pulse rate, Glasgow coma scale, 
oxygen saturation, age 

Logistic 
regression 

Points-based 
score 

Seymour et 
al[10] 

qSOFA USA Electronic health 
record encounters 

Pre-existing (suspected 
infection) 

Mortality (in-hospital) Systolic hypotension [≤100 mm 
Hg], tachypnoea [≥22/min], 
altered mentation 

Logistic 
regression 

Points-based 
score 

Lim et al[11] CURB65 UK, New 
Zealand, 
Netherlands 

Patients with 
community 
acquired 
pneumonia 

Pre-existing 
(community-acquired 
pneumonia) 

Mortality (30 days) Confusion, urea >7 mmol/L, 
respiratory rate >30/min, low 
systolic (<90 mm Hg) or diastolic 
(<60 mm Hg) blood pressure), age 
> 65 years 

Logistic 
regression 

Points-based 
score 

Royal College 
of 
Physicians[12] 

NEWS2^ UK Hospital admissions Pre-existing (hospital 
patients) 

Mortality, ICU admission or 
cardiac arrest (24h) 

Respiratory rate, oxygen 
saturation, systolic blood 
pressure, pulse rate, level of 
consciousness or new confusion, 
temperature 

Clinical 
consensus 

Points-based 
score 

Bello-Chavolla 
et al[28] 

Bello-Chavolla Mexico Confirmed COVID-
19 patients 

COVID-specific Mortality (30 day) Age ≥65 years, diabetes, early-
onset diabetes, obesity, age <40 

Cox regression Points-based 
score 



presenting in 
primary care 

years, chronic kidney disease, 
hypertension, 
immunosuppression (rheumatoid 
arthritis, lupus, HIV or 
immunosuppressive drugs) 

Caramelo et 
al[29] 

Caramelo
$
 Simulated data Simulated data COVID-specific Mortality (period 

unspecified) 
Age, hypertension, diabetes, 
cardiovascular disease, chronic 
respiratory disease, cancer 

Logistic 
regression 

Logistic 
regression 

Carr et al[31] ‘Carr final', 'Carr 
threshold' 

UK Inpatients with 
confirmed COVID-
19 

COVID-specific ICU admission or death (14 
days from symptom onset) 

NEWS2, CRP, neutrophils, 
estimated glomerular filtration 
rate, albumin, age 

Regularized 
logistic 
regression with 
LASSO 
estimator 

Regularized 
logistic 
regression 

Colombi et 
al[35] 

Colombi_clinical
$
 

(clinical model 
only) 

Italy Inpatients with 
confirmed COVID-
19 

COVID-specific ICU admission or in-hospital 
mortality (period unspecified) 

Age > 68 years, cardiovascular 
disease, CRP > 76 mg/L, LDH > 347 
U/L, platelets > 180 x 10^9/L 

Logistic 
regression 

Logistic 
regression  

Galloway et 
al[36] 

Galloway UK Inpatients with 
confirmed COVID-
19 

COVID-specific ICU admission or death 
during admission 

Modified RALE score >3, oxygen 
saturation < 93%, creatinine > 100 
μmol/L, neutrophils > 8 x 10^9/L, 
age > 40 years, chronic lung 
disease, CRP > 40 mg/L, albumin < 
34g/L, male gender, non-white 
ethnicity, hypertension, diabetes. 

Logistic 
regression 
(LASSO) 

Points-based 
score 

Guo et al[37] Guo China Inpatients with 
confirmed COVID-
19 

COVID-specific Deterioration within 14 days 
of admission 

Age >50, underlying chronic 
disease (not defined), 
neutrophil/lymphocyte ratio > 5, 
CRP > 25 mg/L, d-dimer > 800 
ng/mL  

Cox regression Points-based 
score 

Hall et al[38] TACTIC UK Inpatients with 
confirmed COVID-
19 

COVID-specific Admission to ICU or death 
during admission 

Modified RALE score >3, age >40 
years, male sex, non-white 
ethnicity, diabetes, hypertension, 
neutrophils > 8 x 10^9/L, CRP > 40 
mg/L 

Logistic 
regression 
(LASSO) 

Points-based 
score 

Hu et al[39] Hu China Inpatients with 
confirmed COVID-
19 

COVID-specific Mortality (in-hospital) Age, CRP, lymphocytes, d-dimer 
(μg/mL) 

Logistic 
regression 

Logistic 
regression 

Huang et 
al[40] 

Huang China Inpatients with 
confirmed COVID-
19 

COVID-specific Progression to severe COVID 
(defined as respiratory rate ≥ 
30, oxygen saturation ≤ 93% 
in the resting state or arterial 
blood oxygen partial pressure 
/ oxygen concentration (FiO2) 
≤ 300mmHg), 3-7 days from 
admission 

CRP > 10 mg/L, LDH > 250 U/L, 
respiratory rate > 24/min, 
comorbidity (hypertension, 
coronary artery disease, diabetes, 
obesity, chronic obstructive 
pulmonary disease, chronic kidney 
disease, obstructive sleep apnoea) 

Logistic 
regression 

Logistic 
regression 

Ji et al[41] Ji China Inpatients with COVID-specific Progression to severe COVID- Age (> 60 years), lymphocytes (≤1 Cox regression Points-based 



confirmed COVID-
19 

19 at 10 days (defined as 
respiratory rate ≥ 30, resting 
oxygen saturation ≤ 93%, 
PaO2/FiO2 ≤ 300 mmHg, 
requirement of mechanical 
ventilation or worsening of 
lung CT findings) 

x 10^9/L) LDH (<250, 250-500, 
>500 U/L), comorbidity 
(hypertension, diabetes, 
cardiovascular disease, chronic 
lung disease, or  
HIV) 

score 

Lu et al[42] Lu China Inpatients with 
suspected or 
confirmed COVID-
19 

COVID-specific Mortality (12 days) Age ≥ 60 years, CRP ≥ 34 mg/L Cox regression Points-based 
score 

Shi et al[43] Shi China Inpatients with 
confirmed COVID-
19 

COVID-specific Death or 'severe' COVID-19 
(not defined) over 
unspecified period 

Age>50 years, male sex, 
hypertension 

Not specified Points-based 
score 

Xie et al[44] Xie China Inpatients with 
confirmed COVID-
19 

COVID-specific Mortality (in-hospital) Age, lymphocytes, LDH, oxygen 
saturation 

Logistic 
regression 

Logistic 
regression  

Yan et al[45] Yan China Inpatients 
suspected of 
COVID-19 

COVID-specific Mortality (period 
unspecified) 

LDH > 365 U/L, CRP > 41.2 mg/L, 
lymphocyte percentage > 14.7% 

Decision-tree 
model with XG 
boost 

Points-based 
score 

Zhang et 
al[46] 

‘Zhang poor', 
'Zhang death' 

China Inpatients with 
confirmed COVID-
19 

COVID-specific Mortality and poor outcome 
(ARDS, intubation or ECMO, 
ICU admission) as separate 
models; no timepoint 
specified 

Age, sex, neutrophils, 
lymphocytes, platelets, CRP, 
creatinine 

Logistic 
regression 
(LASSO) 

Logistic 
regression 

#
MEWS and REMS were evaluated among people with COVID-19 by Hu et al[47], and thus were included in the present study.  

$
No model intercept was available; the intercepts for these models were therefore calibrated to the validation dataset, using the model linear predictors as 

offset terms. 

^Using oxygen scale 1 for all participants, except for those with target oxygen saturation ranges of 88–92%, e.g. in hypercapnic respiratory failure, when scale 

2 is used, as recommended[12]. 



Table 2: Baseline characteristics of hospitalised adults with COVID-19 included in systematic 
evaluation cohort.  

Laboratory and physiological measurements reflect parameters at the time of hospital admission. N 

column shows number of participants with available data for each variable. Data are shown as N (%) 

for categorical data or median (interquartile range (IQR)) for continuous variables.  

Variable n Level Overall 

   411 

Demographics    

Age (years) 411 (100)  66.0 [53.0, 79.0] 

Gender 411 (100) Female 159 (38.7) 

  Male 252 (61.3) 

Ethnicity 390 (94.9) Asian 52 (13.3) 

  Black 56 (14.4) 

  White 234 (60.0) 

  Mixed 7 (1.8) 

  Other 41 (10.5) 

Clinical frailty scale 411 (100)  2.0 [1.0, 6.0] 

Comorbidities    

Hypertension 411 (100)  172 (41.8) 

Chronic cardiovascular disease 410 (99.8)  108 (26.3) 

Chronic respiratory disease 411 (100)  99 (24.1) 

Diabetes 411 (100)  105 (25.5) 

Obesity^ 411 (100)  83 (20.2) 

Chronic kidney disease 410 (99.8)  40 (9.8) 

Laboratory measurements    

C-reactive protein (mg/L) 403 (98.1)  96.7 [45.2, 178.7] 

Lymphocytes (x 10^9) 410 (99.8)  0.9 [0.6, 1.4] 

Lactate dehydrogenase (U/L) 183 (44.5)  395.0 [309.0, 511.0] 

D-dimer (ng/mL) 153 (37.2)  1070.0 [640.0, 2120.0] 

SARS CoV-2 PCR 411 (100)  370 (90.0) 

Physiological measurements    

Respiratory rate (per min) 410 (99.8)  24.0 [20.0, 28.0] 

Heart rate (per min) 410 (99.8)  94.0 [81.2, 107.0] 

Systolic blood pressure (mmHg) 411 (100)  131.0 [115.0, 143.0] 

Oxygen saturation (%; on air) 403 (98.1)  91.0 [86.0, 95.0] 

Outcome    

Deteriorated 411 (100)  180 (43.8) 

Died 411 (100)  115 (28.0) 

^Clinician-defined obesity.  



Table 3: Validation metrics of prognostic scores for COVID-19, using primary multiple 
imputation analysis (n=411).  

For each model, performance is evaluated for its original intended outcome, shown in ‘Primary 

outcome’ column. AUROC = area under the receiver operating characteristic curve; CI = confidence 

interval.  

Score Primary outcome AUROC (95% CI) Calibration slope (95% CI) Calibration in the large (95% CI) 

NEWS2 Deterioration (1 day) 0.78 (0.73 - 0.83)   

Ji Deterioration (10 days) 0.56 (0.5 - 0.62)   
Carr_final Deterioration (14 days) 0.78 (0.74 - 0.82) 1.04 (0.8 - 1.28) 0.33 (0.11 - 0.55) 
Carr_threshold Deterioration (14 days) 0.76 (0.71 - 0.81) 0.85 (0.65 - 1.05) -0.34 (-0.57 - -0.12) 

Guo Deterioration (14 days) 0.67 (0.61 - 0.73)   
Zhang_poor Deterioration (in-hospital) 0.74 (0.69 - 0.79) 0.33 (0.22 - 0.43) 0.56 (0.3 - 0.81) 

Galloway Deterioration (in-hospital) 0.72 (0.68 - 0.77)   

TACTIC Deterioration (in-hospital) 0.7 (0.65 - 0.75)   
Colombi_clinical Deterioration (in-hospital) 0.69 (0.63 - 0.74) 0.53 (0.35 - 0.71) 0 (-0.23 - 0.23) 
Huang Deterioration (in-hospital) 0.67 (0.61 - 0.73) 0.18 (0.1 - 0.26) -4.26 (-4.61 - -3.91) 

Shi Deterioration (in-hospital) 0.61 (0.56 - 0.66)   

MEWS Deterioration (in-hospital) 0.6 (0.54 - 0.65)   

Lu Mortality (12 days) 0.72 (0.67 - 0.76)   

CURB65 Mortality (30 days) 0.75 (0.7 - 0.8)   

BelloChavolla Mortality (30 days) 0.66 (0.6 - 0.72)   

REMS Mortality (in-hospital) 0.76 (0.71 - 0.81)   
Xie Mortality (in-hospital) 0.76 (0.69 - 0.82) 0.83 (0.51 - 1.15) 0.41 (0.16 - 0.66) 
Hu Mortality (in-hospital) 0.74 (0.68 - 0.79) 0.33 (0.2 - 0.45) -1.07 (-1.37 - -0.77) 
Caramelo Mortality (in-hospital) 0.71 (0.66 - 0.76) 0.53 (0.36 - 0.69) 0 (-0.25 - 0.25) 
Zhang_death Mortality (in-hospital) 0.7 (0.65 - 0.76) 0.29 (0.19 - 0.4) 0.89 (0.6 - 1.19) 

qSOFA Mortality (in-hospital) 0.6 (0.55 - 0.65)   

Yan Mortality (in-hospital) 0.58 (0.49 - 0.67)   



Figure 1: Calibration plots for prognostic models estimating outcome probabilities. 

For each plot, the blue line represents a Loess-smoothed calibration curve from the stacked multiply 

imputed datasets and rug plots indicate the distribution of data points. No model intercept was 

available for the Caramelo or Colombi ‘clinical’ models; the intercepts for these models were 

calibrated to the validation dataset, by using the model linear predictors as offset terms. The primary 

outcome of interest for each model is shown in the plot sub-heading.  

 
  



Figure 2: Decision curve analysis showing delta net benefit of each candidate model, compared to treating all patients and best univariable 
predictors.  

For each analysis, the endpoint is the original intended outcome and time horizon for the index model. Each candidate model and univariable predictor was 

calibrated to the validation data during analysis to enable fair, head-to-head comparisons. Delta net benefit is calculated as net benefit when using the index 

model minus net benefit when: (1) treating all patients; and (2) using the most discriminating univariable predictor. The most discriminating univariable 

predictor is admission oxygen saturation (SpO2) on room air for deterioration models and patient age for mortality models. Delta net benefit is shown with 

Loess-smoothing. Black dashed line indicates threshold above which index model has greater net benefit than the comparator. Individual decision curves for 

each candidate model are shown in Supplementary Figure 8. 
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Supplementary Table 1: Characteristics of candidate prognostic models for COVID-19 not included in current external validation study. 

All candidate models included in a living systematic review were considered at high risk of bias[1]. ARDS = acute respiratory distress syndrome; ICU = intensive care unit; CT 

= computed tomography. 

Authors Pre-existing or COVID-specific? Model outcome Reason for exclusion 

Bai et al[2] COVID-specific Deterioration CT imaging required 

Barda et al[3] COVID-specific Mortality Multiple predictors not available in validation data 

Chassagnon et al[4] COVID-specific Death or invasive mechanical ventilation CT imaging required 

Das et al[5] COVID-specific Mortality Province required - not generalisable, and not reproducible 

Gong et al[6] COVID-specific Risk of severe disease Model parameters not publicly available 

Jiang et al[7] COVID-specific Development of ARDS by Berlin criteria Model parameters not publicly available 

Levy et al[8] COVID-specific Mortality Emergency severity index not available in validation data 

Liang et al[9] COVID-specific Deterioration Symptom data not available in validation data 

Liu et al[10] COVID-specific Severity T lymphocyte subsets not available in validation data 

McRae et al[11] COVID-specific Mortality  Pro-calcitonin and myoglobin not available; exact model coefficients also not provided 

Pourhomayoun et al[12] COVID-specific Mortality Model parameters not publicly available 

Qi et al[13] COVID-specific Length of hospital stay CT imaging required 

Sarkar et al[14] COVID-specific Mortality  Not generalisable outside Wuhan and model not reproducible 

Singh et al[15] Pre-existing (EPIC deterioration index) ICU admission, mechanical ventilation or death Model parameters not publicly available 

Vaid et al[16] COVID-specific Mortality and 'critical events' Model parameters not publicly available 

Vazquez et al[17] COVID-specific Mortality (in-hospital) Intended for ICU admissions only 

Yuan et al[18] COVID-specific Mortality  CT imaging required 

Zeng et al[19] COVID-specific Progression to severe disease CT imaging required and no reproducible model 
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Supplementary Tables 2a-c: Validation metrics of prognostic scores for COVID-19, using (a) complete case 
sensitivity analysis (n=411); (b) excluding patients without PCR-confirmed SARS-CoV-2 infection; and (c) 
excluding patients who met the clinical deterioration outcome within 4 hours of arrival to hospital..  

For each model, performance is evaluated for an approximation of its original intended outcome, shown in 

‘Primary outcome’ column. AUROC = area under the receiver operating characteristic curve; CI = confidence 

interval. 

(a) Complete case analysis 

Score Primary outcome n AUROC (95% CI) Calibration slope (95% CI) Calibration in the large (95% CI)

NEWS2 Deterioration (1 day) 404 0.78 (0.73 - 0.83)

Ji Deterioration (10 days) 183 0.61 (0.53 - 0.69)

Carr_final Deterioration (14 days) 381 0.75 (0.71 - 0.8) 0.93 (0.7 - 1.18) 0.46 (0.23 - 0.69)

Carr_threshold Deterioration (14 days) 381 0.74 (0.69 - 0.79) 0.78 (0.59 - 0.99) -0.29 (-0.52 - -0.05)

Guo Deterioration (14 days) 153 0.7 (0.62 - 0.78)

Zhang_poor Deterioration (in-hospital) 400 0.74 (0.69 - 0.78) 0.31 (0.21 - 0.42) 0.59 (0.32 - 0.83)

Colombi_clinical Deterioration (in-hospital) 182 0.72 (0.64 - 0.79) 0.64 (0.38 - 0.93) 0 (-0.34 - 0.33)

Galloway Deterioration (in-hospital) 351 0.7 (0.65 - 0.75)

Huang Deterioration (in-hospital) 182 0.7 (0.63 - 0.78) 0.27 (0.16 - 0.38) -5.09 (-5.54 - -4.65)

TACTIC Deterioration (in-hospital) 366 0.68 (0.63 - 0.73)

Shi Deterioration (in-hospital) 411 0.61 (0.56 - 0.66)

MEWS Deterioration (in-hospital) 405 0.59 (0.54 - 0.65)

Lu Mortality (12 days) 403 0.71 (0.67 - 0.76)

CURB65 Mortality (30 days) 374 0.75 (0.7 - 0.8)

BelloChavolla Mortality (30 days) 385 0.66 (0.6 - 0.72)

Xie Mortality (in-hospital) 183 0.78 (0.7 - 0.86) 0.91 (0.55 - 1.31) 0.03 (-0.37 - 0.41)

REMS Mortality (in-hospital) 404 0.76 (0.71 - 0.81)

Hu Mortality (in-hospital) 153 0.75 (0.66 - 0.84) 0.38 (0.21 - 0.58) -1.61 (-2.11 - -1.14)

Caramelo Mortality (in-hospital) 408 0.71 (0.66 - 0.77) 0.53 (0.36 - 0.7) 0 (-0.26 - 0.25)

Zhang_death Mortality (in-hospital) 400 0.7 (0.64 - 0.76) 0.28 (0.18 - 0.39) 0.92 (0.63 - 1.21)

qSOFA Mortality (in-hospital) 405 0.6 (0.54 - 0.65)

Yan Mortality (in-hospital) 182 0.6 (0.52 - 0.68)

Age Mortality (in-hospital) 411 0.76 (0.71 - 0.81)

SpO2 on air Deterioration (in-hospital) 403 0.76 (0.71 - 0.81)



(b) Restriction to PCR-confirmed cases (n=370) 

Score Primary outcome AUROC (95% CI) Calibration slope (95% CI) Calibration in the large (95% CI)

NEWS2 Deterioration (1 day) 0.79 (0.74 - 0.84)

Ji Deterioration (10 days) 0.58 (0.52 - 0.64)

Carr_final Deterioration (14 days) 0.78 (0.73 - 0.83) 1.02 (0.77 - 1.27) 0.38 (0.14 - 0.61)

Carr_threshold Deterioration (14 days) 0.76 (0.71 - 0.81) 0.83 (0.62 - 1.04) -0.3 (-0.54 - -0.06)

Guo Deterioration (14 days) 0.68 (0.62 - 0.74)

Zhang_poor Deterioration (in-hospital) 0.74 (0.69 - 0.79) 0.3 (0.19 - 0.41) 0.64 (0.38 - 0.91)

Galloway Deterioration (in-hospital) 0.73 (0.68 - 0.78)

TACTIC Deterioration (in-hospital) 0.71 (0.65 - 0.76)

Colombi_clinical Deterioration (in-hospital) 0.68 (0.63 - 0.74) 0.52 (0.33 - 0.71) 0.02 (-0.23 - 0.26)

Huang Deterioration (in-hospital) 0.67 (0.61 - 0.73) 0.18 (0.1 - 0.26) -4.2 (-4.58 - -3.81)

Shi Deterioration (in-hospital) 0.61 (0.56 - 0.67)

MEWS Deterioration (in-hospital) 0.6 (0.55 - 0.66)

Lu Mortality (12 days) 0.73 (0.69 - 0.78)

CURB65 Mortality (30 days) 0.74 (0.69 - 0.79)

BelloChavolla Mortality (30 days) 0.66 (0.6 - 0.72)

REMS Mortality (in-hospital) 0.76 (0.71 - 0.81)

Xie Mortality (in-hospital) 0.75 (0.68 - 0.82) 0.78 (0.46 - 1.1) 0.46 (0.2 - 0.71)

Hu Mortality (in-hospital) 0.73 (0.67 - 0.79) 0.33 (0.2 - 0.46) -0.99 (-1.3 - -0.67)

Zhang_death Mortality (in-hospital) 0.71 (0.65 - 0.76) 0.3 (0.19 - 0.41) 0.99 (0.69 - 1.29)

Caramelo Mortality (in-hospital) 0.7 (0.65 - 0.76) 0.5 (0.32 - 0.67) 0.02 (-0.24 - 0.28)

qSOFA Mortality (in-hospital) 0.6 (0.55 - 0.66)

Yan Mortality (in-hospital) 0.58 (0.49 - 0.67)

SpO2 on air Deterioration (in-hospital) 0.76 (0.71 - 0.81)

Age Mortality (in-hospital) 0.75 (0.7 - 0.81)



(c) Excluding deterioration events <4 hours from admission (n=371) 

Score Primary outcome AUROC (95% CI) Calibration slope (95% CI) Calibration in the large (95% CI)

NEWS2 Deterioration (1 day) 0.74 (0.67 - 0.81)

Ji Deterioration (10 days) 0.55 (0.49 - 0.62)

Carr_final Deterioration (14 days) 0.74 (0.69 - 0.79) 0.87 (0.62 - 1.12) 0.14 (-0.1 - 0.37)

Carr_threshold Deterioration (14 days) 0.73 (0.67 - 0.78) 0.73 (0.52 - 0.94) -0.54 (-0.78 - -0.29)

Guo Deterioration (14 days) 0.65 (0.58 - 0.71)

Zhang_poor Deterioration (in-hospital) 0.72 (0.67 - 0.78) 0.39 (0.27 - 0.51) 0.3 (0.03 - 0.58)

Galloway Deterioration (in-hospital) 0.69 (0.64 - 0.75)

Colombi_clinical Deterioration (in-hospital) 0.68 (0.62 - 0.74) 0.48 (0.29 - 0.66) -0.25 (-0.5 - -0.01)

TACTIC Deterioration (in-hospital) 0.66 (0.6 - 0.71)

Huang Deterioration (in-hospital) 0.63 (0.56 - 0.71) 0.14 (0.06 - 0.23) -4.49 (-4.84 - -4.15)

Shi Deterioration (in-hospital) 0.59 (0.54 - 0.65)

MEWS Deterioration (in-hospital) 0.56 (0.5 - 0.62)

Lu Mortality (12 days) 0.73 (0.69 - 0.78)

CURB65 Mortality (30 days) 0.74 (0.69 - 0.8)

BelloChavolla Mortality (30 days) 0.65 (0.59 - 0.72)

REMS Mortality (in-hospital) 0.76 (0.71 - 0.81)

Xie Mortality (in-hospital) 0.75 (0.68 - 0.82) 0.83 (0.52 - 1.13) 0.32 (0.05 - 0.59)

Hu Mortality (in-hospital) 0.73 (0.67 - 0.79) 0.34 (0.21 - 0.48) -1.07 (-1.38 - -0.75)

Caramelo Mortality (in-hospital) 0.71 (0.65 - 0.77) 0.51 (0.33 - 0.69) -0.18 (-0.46 - 0.09)

Zhang_death Mortality (in-hospital) 0.69 (0.63 - 0.75) 0.29 (0.17 - 0.4) 0.88 (0.57 - 1.19)

qSOFA Mortality (in-hospital) 0.59 (0.53 - 0.66)

Yan Mortality (in-hospital) 0.57 (0.48 - 0.66)

Age Mortality (in-hospital) 0.77 (0.71 - 0.82)

SpO2 on air Deterioration (in-hospital) 0.7 (0.64 - 0.76)



Supplementary Table 3: Optimism estimates for most discriminating univariable predictors of clinical 
deterioration and mortality 

Optimism is calculated using bootstrapping with 1,000 iterations. AUROC = area under the receiver operating 

characteristic curve; CI = confidence interval. Dxy = Somers’ Delta, which is a measure of agreement between 

pairs of ordinal variables, ranging from -1 (no agreement) to +1 (complete agreement). 

Predictor Outcome AUROC (95% CI) Optimism 

Dxy Slope 

Age Mortality (in-hospital) 0.76 (0.71 - 0.81) 0.000 -0.009 

Oxygen saturation (room air) Deterioration (in-hospital) 0.76 (0.71 - 0.81) -0.001 -0.011 



Supplementary Figure 1: Flowchart showing prognostic models included in systematic evaluation. 



Supplementary Figure 2: Flowchart showing study participants included in analysis. 



Supplementary Figure 3: Timing of clinical deterioration and death following hospital admission among 
patients with COVID-19 

Shown as Kaplan-Meier plots and histograms. Days to deterioration histogram reflects the first time that the 

endpoint was met, with the criteria for meeting the endpoint indicated by colour. CPAP = continuous positive 

airway pressure; HFNO = high flow nasal cannula oxygen; IMV = invasive mechanical ventilation. 



Supplementary Figure 4: Missingness of candidate prognostic models. 

Shown as column-wise percentage missing, stratified by (a) composite outcome of clinical deterioration; and (b) mortality during hospital admission. 
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Supplementary Figure 5: Plots showing risk scores vs observed prevalence of outcomes for points-based 
prognostic scores. 

The primary outcome of interest for each model is shown in the plot sub-heading. Individual predictions for each 

prognostic model were averaged across imputations for each participant in the dataset in order to generate 

these pooled plots. 





Supplementary Figure 6: Heat map showing time-dependent receiver operating characteristic areas under the curve for each prognostic score to predict (a) deterioration 
or (b) mortality,  

For each model, discrimination is stratified by interval from hospital admission to the outcome event. The original intended primary outcome for the model is shown in 

brackets in the y-axis labels. AUROC = area under the receiver operating characteristic curve. 
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Supplementary Figure 7: Heat map showing time-dependent receiver operating characteristic areas under the curve for a priori clinical predictors of interest in univariable 
analyses to predict (a) clinical deterioration or (b) mortality 

For each predictor, discrimination is stratified by interval from hospital admission to the outcome event. AUROC = area under the receiver operating characteristic curve. 
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Supplementary Figure 8: Decision curve analysis comparing net benefit of each candidate model for (A) clinical 
deterioration; and (B) mortality.  

For each analysis, the endpoint is the original intended endpoint for the index model (purple line; endpoint 

shown in plot subheading). Comparisons are made to the strategies of treating all patients (red); treating no 

patients (blue); and offering treatment based on the most discriminating univariable predictor (green; admission 

oxygen saturation on room air for deterioration models (A); patient age for mortality models (B)). Each candidate 

model and univariable predictor was recalibrated to the validation data during analysis to enable fair, head-to-

head comparisons. All curves are shown with Loess-smoothing. 







Supplementary Figure 9: Restricted cubic splines plots showing associations between most discriminating univariable predictors of clinical deterioration and mortality 
and log odds of outcome, respectively.  

Age was the most discriminating univariable predictor of in-hospital mortality, while oxygen saturation (SpO2) on air was the most discriminating predictor of in-hospital 

clinical deterioration. For both univariable predictors, associations appear approximately linear on the log odds scale. 
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