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A detailed clinical and molecular survey of subjects
with nonsyndromic USH2A retinopathy reveals an
allelic hierarchy of disease-causing variants

Eva Lenassi1,2, Ajoy Vincent3, Zheng Li1,4, Zubin Saihan1, Alison J Coffey5, Heather B Steele-Stallard6,
Anthony T Moore1, Karen P Steel5, Linda M Luxon7,8, Elise Héon3, Maria Bitner-Glindzicz6

and Andrew R Webster*,1

Defects in USH2A cause both isolated retinal disease and Usher syndrome (ie, retinal disease and deafness). To gain insights

into isolated/nonsyndromic USH2A retinopathy, we screened USH2A in 186 probands with recessive retinal disease and no

hearing complaint in childhood (discovery cohort) and in 84 probands with recessive retinal disease (replication cohort).

Detailed phenotyping, including retinal imaging and audiological assessment, was performed in individuals with two likely

disease-causing USH2A variants. Further genetic testing, including screening for a deep-intronic disease-causing variant and

large deletions/duplications, was performed in those with one likely disease-causing change. Overall, 23 of 186 probands

(discovery cohort) were found to harbour two likely disease-causing variants in USH2A. Some of these variants were

predominantly associated with nonsyndromic retinal degeneration (‘retinal disease-specific’); these included the common

c.2276 G4T, p.(Cys759Phe) mutation and five additional variants: c.2802 T4G, p.(Cys934Trp); c.10073 G4A, p.

(Cys3358Tyr); c.11156 G4A, p.(Arg3719His); c.12295-3 T4A; and c.12575 G4A, p.(Arg4192His). An allelic hierarchy was

observed in the discovery cohort and confirmed in the replication cohort. In nonsyndromic USH2A disease, retinopathy was

consistent with retinitis pigmentosa and the audiological phenotype was variable. USH2A retinopathy is a common cause of

nonsyndromic recessive retinal degeneration and has a different mutational spectrum to that observed in Usher syndrome. The

following model is proposed: the presence of at least one ‘retinal disease-specific’ USH2A allele in a patient with USH2A-related
disease results in the preservation of normal hearing. Careful genotype–phenotype studies such as this will become increasingly

important, especially now that high-throughput sequencing is widely used in the clinical setting.
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INTRODUCTION

Retinitis pigmentosa is the most common inherited retinal degenera-
tion and a major cause of visual impairment among individuals aged
20–64 years.1,2 It is genetically heterogeneous (over 60 genes impli-
cated so far) and associated with significant variability in age of onset,
disease progression and retinal appearance (RetNet; http://www.sph.
uth.tmc.edu/retnet/, accessed 31 December 2014).3 Although retinitis
pigmentosa is a disease confined to the eye, some 20–30% of patients
have associated non-ocular disease; Usher syndrome, in which retinitis
pigmentosa is combined with, typically prelingual, sensorineural
hearing loss, is the most frequent syndromic form.4

Disease-causing variants in the USH2A gene are the most common
cause of Usher syndrome (29% of all cases) and one of the most
common causes of nonsyndromic autosomal recessive retinitis pig-
mentosa (19–23% of all cases).4,5 The USH2A gene is located on 1q41
and has two alternatively spliced transcripts: a short one consisting of
21 exons, and a longer one consisting of 51 additional 3′ exons; the
latter encodes a 5202 amino-acid matrix protein expressed specifically
in photoreceptors and developing cochlear hair cells.6,7 It has been

shown that the USH2A protein is required for long-term maintenance
of retinal photoreceptors and the development of cochlear cells.7

Over 2900 coding variants have been reported in the USH2A gene
(1000 genomes project database, National Heart, Lung and Blood
Institute Exome Sequencing Project or NHLBI ESP and LOVD-
USHBase, accessed 15 September 2014). Over 470 of these changes are
presumed to be pathogenic (HGMD, accessed 15 September 2014);
most of these disease-causing variants are found in one or a few cases
each, with the exception of c.2299delG, p.(Glu767Serfs*21) and
c.2276G4T, p.(Cys759Phe), which are more commonly found in
patient cohorts. The c.2299delG variant causes a substantial propor-
tion of cases of Usher syndrome,8 while the c.2276 G4T change has
been associated mainly with disease confined to the eye.9,10 This
suggests the existence of alleles that are likely to be specific to those
with nonsyndromic disease (‘retinal disease-specific’). However, this
has not been studied in detail and to date no other such ‘retinal
disease-specific’ alleles have been identified.
Here, we have performed a comprehensive screen of the USH2A

gene in 186 patients with autosomal recessive retinal degeneration and
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no complaint of childhood hearing loss to gain insights into
nonsyndromic USH2A-related disease. Detailed phenotyping, includ-
ing fundus autofluorescence imaging and audiological assessment, was
performed in individuals found to harbour two likely disease-causing
variants. The effect of three splice site changes on nasal mRNA was
investigated and multiplex ligation-dependent probe amplification
(MLPA) was performed in selected patients with the aim of detecting
deletions and duplications in USH2A. Additionally, we have investi-
gated whether nonsyndromic versus syndromic disease can be
explained by the presence of an allelic hierarchy of USH2A disease-
causing variants, and have addressed this by studying USH2A allelic
heterogeneity in the discovery (n= 186) and two additional (n= 84
and n= 187) cohorts.

MATERIALS AND METHODS

Study subjects
A total of 186 unrelated individuals with recessive retinal degeneration and no
hearing complaint in childhood were ascertained from the clinics of Moorfields

Eye Hospital (London, UK; discovery cohort). Of these, 168 patients were
affected with rod–cone dystrophy (ie, retinitis pigmentosa), 12 with cone–rod
dystrophy and 6 with childhood-onset retinal dystrophy. Further to this

discovery cohort, 84 additional probands with recessive retinal degeneration
(62 with nonsyndromic disease and 22 with Usher syndrome) were recruited at

the Hospital for Sick Children (Toronto, ON, Canada); both cohorts under-
went full sequencing of USH2A (see below). A third cohort of 187 unrelated
patients with nonsyndromic, adult-onset, retinitis pigmentosa was also ascer-

tained from the Moorfields Eye Hospital. This cohort was only used to test for
selected variants in exons 13, 51, 57 and 63. A complete eye examination was

performed and a detailed clinical history was obtained in all patients. Only
patients with a family history compatible with autosomal recessive inheritance
(ie, no evidence of dominant inheritance) were studied. For the purposes of this

study, we define the phenotype observed in retinitis pigmentosa patients
without prelingual/childhood-onset hearing loss as nonsyndromic disease.

Subjects with Usher syndrome were not tested for common genetic causes of
nonsyndromic hearing impairment.
After informed consent was obtained, blood samples were collected and

genomic DNA was extracted from peripheral blood leucocytes. Control DNA
and mRNA were obtained from consented unrelated healthy individuals. All
investigations were conducted in accordance with the Declaration of Helsinki
principles. Institutional Review Board (IRB)/Ethics Committee approval was
obtained from the Moorfields Eye Hospital and the Hospital for Sick Children
local ethics committees.

USH2A screening and method used to distinguish disease-causing
variants
The 186 probands with recessive retinal degeneration and no hearing complaint
in childhood and the 84 probands with recessive retinal degeneration under-
went bidirectional DNA sequencing of the 72 exons of the USH2A gene.
Primers were designed for all exons and intron–exon boundaries of the
transcript with accession number NM_206933.2 (a total of 105 primer pairs;
genomic reference sequence NG_008212.3).8 The additional panel of 187
unrelated individuals with nonsyndromic, adult-onset, recessive retinitis
pigmentosa underwent bidirectional DNA sequencing of exons 13, 51, 57
and 63 of the USH2A gene; these exons were the location of presumed ‘retinal
disease-specific’ variants. In 24 patients from the discovery cohort, only one
likely disease-causing USH2A variant was identified. These patients were: (i)
sequenced for the USH2A c.7595-2144 A4G, p.Lys2532Thrfs*56 change,
which causes inclusion of a pseudoexon;11 and (ii) screened using MLPA to
detect deletions and duplications in the USH2A gene. The SALSA MLPA FAM-
labelled reagent kit with probe mixes P361-A1/P362-A2 developed by MRC-
Holland (MRC-Holland, Amsterdam, The Netherlands) was used and reactions
were performed according to the manufacturer's instructions. Two subjects
with previously identified heterozygous deletions were included to act as
positive controls and confirm the validity of the method.
Sequence alterations were classified as ‘likely disease-causing variants’ if they

(i) were either nonsynonymous (including missense) or coding insertions/
deletions or splice site (positions ± 3) or large duplications/deletions and (ii)
have a minor allele frequency (MAF) of 0.15% or less in the NHLBI ESP data

Figure 1 Schematic of the usherin protein and localisation of the likely disease-causing variants detected in the discovery cohort of patients (n=186);
mutations previously reported in individuals with Usher syndrome type II are shown below the schematic. Presumed ‘retinal disease disease-specific’ alleles
are shown in red.
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set (accessed 15 June 2014); this is the MAF of c.2276 G4T, the most common
change identified in patients with recessive retinitis pigmentosa.9 The effect of
synonymous variants on splicing was not assessed in the present study. All
relevant data (variants and associated phenotypes) were submitted to the
appropriate LOVD-USHBase, which can be accessed in http://www.LOVD.nl/
USH2A (submission IDs: 0004401− 0004452).

Nasal epithelial mRNA analysis
Nasal epithelial mRNA analysis was performed in individuals carrying the
variants c.12295-3 T4A (subject D13), c.9056-2 A4G (subject D10) or c.5776
+1G4A (subject D10). Nasal epithelial cell samples were obtained by gently
brushing the lateral inferior turbinate with bronchial cytology brush (Diagmed
Ltd, North Yorkshire, UK) and RNA was extracted from these samples using
the NucleoSpin RNA II Extraction Kit (Macherey-Nagel, Duren, Germany)
according to the manufacturer’s guidelines. cDNA was reverse transcribed using
a cDNA Synthesis Kit (BioLine, London, UK) with a random hexamer primer
mix. For reverse transcriptase (RT)-PCR reactions, USH2A was amplified
between exons 27 and 32, exons 45 and 49, exons 58 and 64 and exons 62 and
66. The housekeeping gene β-actin was amplified as a positive control. The
identity of USH2A RT-PCR products was established by direct sequencing
using standard procedures (primer sequences and conditions are available on
request).

Ophthalmological and audiological assessment
Detailed ophthalmological evaluation was performed in 23 probands with two
likely disease-causing variants in USH2A (all from the discovery cohort); 4
affected siblings of the 23 probands were also assessed. Ophthalmological
examination included best-corrected visual acuity testing, dilated fundus
examination, colour fundus photography (TRC-50IA; Topcon, Tokyo, Japan),
spectral domain optical coherence tomography (OCT) and fundus autofluor-
escence imaging. The Spectralis HRA+OCT with viewing module version
5.1.2.0 (Heidelberg Engineering, Heidelberg, Germany) was used to acquire
tomographs in 24 patients; fundus autofluorescence images were acquired in 24
patients using the HRA2 and Spectralis HRA+OCT (over a 30°× 30° and/or a
55°× 55° field; Heidelberg Engineering) instruments.
Pure tone audiometry was conducted, in a sound-treated booth, using a

calibrated GSI 61 audiometer with TDH 49 headphones to assess hearing
thresholds12 in 19 patients with no complaint of hearing loss, who were found
to have two disease-associated variants in USH2A (all from the discovery
cohort); the method has been described previously.8 The audiology thresholds
(0.25–8 kHz) were reviewed for right and left ear separately and compared with
age- and gender-matched percentile bands of normative data.13 Patients were
classified into three groups: Group 1 with normal hearing thresholds falling in
the interquartile normative range for age and gender across all frequencies (1 A
if all thresholds o40th percentile; 1B if thresholds fell in the 50–60th percentile
band); Group 2 with high-frequency hearing thresholds (3–8 kHz) 475th
percentile and markedly greater than low-frequency threshold (0.25–2 kHz)
percentiles (ie, 30–70 percentile bands difference); and Group 3 with atypical/
abnormal audiometric configurations14 and without other aetiological
explanation.

RESULTS

USH2A retinopathy is a major cause of adult-onset recessive retinal
degeneration
In the discovery cohort (n= 186), a total of 206 different sequence
alterations were recorded in the exons and intron–exon boundaries of
USH2A; 88 variants were missense, coding insertions/deletions or
splice site changes. Of these, 52 were rare with an MAF o0.15% and
thus were classified as likely disease-causing (21 were novel to this
study and 31 were previously reported). Notably, 22 patients were
found to harbour two of these likely disease-causing variants, whereas
24 were found to carry one likely disease-causing variant. In the latter
group, one proband was found on MLPA testing to harbour a
heterozygous duplication of exons 57–60. None of them was foundT
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to carry the c.7595-2144 A4G change, which causes inclusion of a
pseudoexon.11

All 23 patients with two likely disease-causing variants were affected
with adult-onset retinitis pigmentosa (Table 1). Therefore, 14% of
patients with adult-onset recessive retinitis pigmentosa (23/168) were
found to harbour two likely disease-causing variants in USH2A.
In the replication cohort of 84 patients with recessive retinal

degeneration (syndromic and nonsyndromic), 25 additional probands
with two likely disease-causing USH2A variants were identified. All 25
had a retinal phenotype consistent with retinitis pigmentosa; 11 of
these had Usher syndrome type II and the remaining 14 reported no
hearing complaint in childhood (Table 2).
When the third panel of 187 patients with nonsyndromic, adult-

onset, recessive retinitis pigmentosa was sequenced for exons 13, 51,
57 and 63, the following variants were identified: c.2276 G4T (5
alleles); c.2299delG (3 alleles); c.2633 G4A, p.(Arg878His) (1 allele);
c.10073 G4A, p.(Cys3358Tyr) (8 alleles); c.11156 G4A, p.
(Arg3719Leu) (2 alleles); c.12575 G4A, p.(Arg4192His) (2 alleles);
and c.12574C4T, p.(Arg4192Cys) (1 allele). One subject harboured
the c.2276 G4T variant in homozygous state, a second subject had
c.2276 G4T and c.12575 G4A, a third subject had biallelic c.2276-
G4T and c.2299delG and two additional unrelated subjects carried
the same pair of changes: c.2299delG and c.10073 G4A.

Some USH2A alleles are only associated with nonsyndromic retinal
disease
We define as ‘retinal disease-specific’ variants or alleles that (i) were
present in more than one patient with nonsyndromic retinal
degeneration (in our discovery cohort and/or the literature) and (ii)
have not been clearly associated with Usher syndrome type II to date
(Table 3). On this basis, the following variants were categorised as
likely ‘retinal disease-specific’: c.2802 T4G, p.(Cys934Trp); c.10073-
G4A; c.11156 G4A; c.12295-3 T4A; and c.12575 G4A. The
c.2276 G4T variant that has been previously associated mainly with
disease confined to the eye9,10 was also included in this group.
Notably, the most prevalent c.2276G4T and c.10073 G4A variants
were statistically significantly enriched in nonsyndromic cases com-
pared with Usher syndrome type II cases (P= 0.0060 and P= 0.047,
respectively (Fisher's exact test); the data on Usher syndrome type II
were obtained from the UK National Collaborative Usher Study8). All
‘retinal disease-specific’ variants were located in laminin-type EGF-like
domains or fibronectin type 3 domains (Figure 1).
On examining our data, it was rare for nonsyndromic cases to have

two ‘null’ variants (ie, variants that are not missense and predicted to
cause nonsense-mediated decay and/or significant truncation of the
protein if translated), whereas this was common in those with Usher
syndrome. Of 47 probands with nonsyndromic USH2A-related retinal
degeneration (all three cohorts), only 5 had apparent biallelic ‘null’
variants (this is the exception due to c.12295-3 T4C; see Table 1).
This is significantly different to 39 out of 71 patients with USH2A-
associated Usher syndrome8 (P= 0.0001 (Fisher's exact test)). These
data support the model that Usher syndrome represents the null
phenotype consequent upon USH2A defects, and that ‘retinal disease-
specific’ alleles are partly functional, allowing them to contribute to
normal cochlea development.
Assuming our model of allelic hierarchy is correct, further rare

‘retinal disease-specific’ alleles can be sought. In those probands with
nonsyndromic retinal disease, an allele is likely to be ‘retinal disease-
specific’ if either (i) it is homozygous or (ii) it is paired with an allele
that has previously and consistently been reported to be associated
with Usher syndrome or (iii) it is paired with an allele that has

previously and consistently been reported to be associated with
nonsyndromic retinitis pigmentosa. On examining our discovery
and replication cohorts in this way, the following alleles are likely to
be ‘retinal disease-specific’: c.2332 G4T, p.(Asp778Tyr); c.3724C4T,
p.(Pro1242Ser); c.4378 G4A, p.(Gly1460Arg); c.8546G4T, p.
(Gly2849Val); c.6904_6920dup17, p.(Gln2307Hisfs*25); c.12580-
T4C, p.(Cys4194Arg) and c.15178 T4C, p.(Ser5060Pro). Further
data from other cohorts of nonsyndromic patients are needed to
confirm the ‘retinal disease-specific’ nature of these alleles.

The c.12295-3T4A, c.9056-2A4G and c. c.5776+1G4A variants
result in abnormal USH2A pre-mRNA splicing
The effect of c.12295-3 T4A, one of the probably ‘retinal disease-
specific’ changes, on splicing was investigated in subject D13.
Primers were used to amplify a 2550 bp fragment between exons
58 and 64. PCR products of the expected size were amplified for the
control sample, whereas a much smaller band was observed in the
patient sample. Further cDNA analysis (Figure 2a) revealed the
presence of an abnormal transcript (1033 bp) associated with an
out-of-frame skipping of exon 63; this would result in a premature
termination codon. Amplification of a 2371 bp fragment between
exons 62 and 66 combined with direct sequencing of the RT-PCR
product confirmed the above findings. Notably, direct sequencing
of the RT-PCR product demonstrated a normal sequence at
position c.12093, where the sequencing of the genomic DNA
identified a c.12093C4A, p.(Tyr4031*) change in heterozygous
state. This suggests that the two likely disease-causing variants
identified in this patient (c.12295-3 T4A and c.12093C4A) reside
on two different alleles (Figure 2b). The non-amplification of the
allele with c.12093C4A could be due to nonsense-mediated decay
or preferential amplification of the smaller, exon-skipped PCR
product from the other allele.
The effect of the c.9056-2 A4G (likely ‘retinal disease-specific’) and

c.5776+1G4A (previously associated with Usher syndrome type II
(LOVD-USHBase)) changes on splicing were investigated in subject
D10; the c.9056-2 A4G variant led to part of exon 46 being missed in
the mRNA, while the c.5776+1G4A variant was associated with
skipping of exon 28. These results are summarised in Supplementary
Figure S1.

Defects in USH2A consistently cause retinitis pigmentosa
The clinical features of 27 individuals with two likely disease-causing
variants in USH2A (23 from discovery cohort plus 4 of their affected
family members) are summarised in Table 1. All 27 patients were
noted to have typical features of retinitis pigmentosa such as
pigmentary changes in the midperipheral retina and vessel attenuation.
Patients usually presented with nyctalopia (median age of 24.5 years;
range 12–42 years). The median visual acuity at last visit was 0.24
logMAR (range − 0.10 to 2.2). Six patients (22%) underwent cataract
surgery at a median age of 47 (range 34–58) years. Central macular
oedema was noted in 10 patients (37%) at a median age of 50 (range
35–59) years.

Fundus autofluorescence imaging is a clinically useful test for
USH2A-related disease
From the fundus autofluorescence images of 24 patients (48 eyes)
three patterns were observed (Figure 3). Most patients (n= 39 eye;
81.3%) showed preserved central autofluorescence surrounded by a
variable diameter ring of high density (‘hyperautofluorescent ring’;
Figure 3, top row). Five (10.4%) eyes had an abnormally increased
signal in the fovea with no obvious hyperautofluorescent ring (‘central
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Table 2 Genotype and clinical characteristics of patients with USH2A-related disease (replication cohort)

Subject USH2A sequencing results Likely effect of allele Diagnosis

Variant 1 Variant 2 Variant 1 Variant 2

R1 c.2276G4T, p.(Cys759Phe) c.2276G4T, p.(Cys759Phe) Retina-specific Retina-specific Nonsyndromic retinitis pigmentosa

R2 c.2276G4T, p.(Cys759Phe) c.1225T4C, p.(Trp409Arg) Retina-specific Unknown (novel) Nonsyndromic retinitis pigmentosa

R3 c.2276G4T, p.(Cys759Phe) c.9912dup, p.(Glu3305Argfs*41) Retina-specific Unknown Nonsyndromic retinitis pigmentosa

R4 c.2276G4T, p.(Cys759Phe) c.2299delG, p.(Glu767Serfs*21) Retina-specific Usher Nonsyndromic retinitis pigmentosa

R5 c.99_100insT, (p.Arg34Serfs*41) c.2802T4G, p.(Cys934Trp) Unknown Retina-specific Nonsyndromic retinitis pigmentosa

R6 c.5776G4A, p.(Glu1926Lys) c.10073G4A, p.(Cys3358Tyr) Usher Retina-specific Nonsyndromic retinitis pigmentosa

R7 c.5776G4A, p.(Glu1926Lys) c.10073G4A, p.(Cys3358Tyr) Usher Retina-specific Nonsyndromic retinitis pigmentosa

R8 c.1256G4T, p.(Cys419Phe) c.11156G4A, p.(Arg3719His) Usher Retina-specific Nonsyndromic retinitis pigmentosa

R9 c.1256G4T, p.(Cys419Phe) c.11156G4A, p.(Arg3719His) Usher Retina-specific Nonsyndromic retinitis pigmentosa

R10 c.11864G4A, p.(Trp3955*) c.12580T4C, p.(Cys4194Arg) Usher Unknown (novel) Nonsyndromic retinitis pigmentosa

R11 c.8254G4A, p.(Gly2752Arg) c.15178T4C, p.(Ser5060Pro) Usher Unknown (novel) Nonsyndromic retinitis pigmentosa

R12 c.4378G4A, p.(Gly1460Arg) c.9424G4T, p.(Gly3142*) Unknown (novel) Usher Nonsyndromic retinitis pigmentosa

R13 c.6904_6920dup17 c.12877G4A, p.(Gly4293Ser) Unknown (novel) Unknown (novel) Nonsyndromic retinitis pigmentosa

R14 c.9611A4G, p.(His3204Arg) c.13768G4A, p.(Gly4590Ser) Unknown (novel) Unknown (novel) Nonsyndromic retinitis pigmentosa

R15 c.1876C4T, p.(Arg626*) c.1876C4T, p.(Arg626*) Usher Usher Usher syndrome

R16 c.1256G4T, p.(Cys419Phe) c.2299delG, p.(Glu767Serfs*21) Usher Usher Usher syndrome

R17 c.2299delG, p.(Glu767Serfs*21) c.14287G4A, p.(Gly4763Arg) Usher Usher Usher syndrome

R18 c.2299delG, p.(Glu767Serfs*21) c.14287G4A, p.(Gly4763Arg) Usher Usher Usher syndrome

R19 c.2209C4T, p.(Arg737*) c.2299delG, p.(Glu767Serfs*21) Usher Usher Usher syndrome

R20 c.2299delG, p.(Glu767Serfs*21) c.5168-2A4G Usher Unknown (novel) Usher syndrome

R21 c.2299delG, p.(Glu767Serfs*21) c.5858-1G4A Usher Unknown (novel) Usher syndrome

R22 c.2299delG, p.(Glu767Serfs*21) c.14180G4A, p.(Trp4727*) Usher Unknown (novel) Usher syndrome

R23 c.1679delC, p.(Pro560Leufs*31) c.11549-1G4A Unknown Unknown (novel) Usher syndrome

R24 c.854T4C, p.(Ile285Thr) c.10724G4A, p.(Cys3575Tyr) Unknown (novel) Usher Usher syndrome

R25 c.2081G4C, p.(Cys694Ser) c.10612C4T, p.(Arg3538*) Unknown (novel) Unknown (novel) Usher syndrome

Retina-specific corresponds to likely ‘retinal disease-specific’ alleles (shown in bold).
Usher corresponds to likely ‘Usher syndrome type II’-specific alleles.
Novel corresponds to alleles that are novel to this study. Of these novel changes, the following are found in the Exome Aggregation Consortium (ExAC) browser (accessed 31 December 2014):
c.12580T4C (1/122018), c.15178T4C (4/122952 alleles), c.4378G4A (3/122140) and c.9611A4G (22/122680). Segregation analysis was performed in subjects R12, R20 and R22 and has
confirmed that the reported variants are in trans.
Numbering of USH2A variants has been assigned in accordance with NCBI Reference Sequence NM_206933.2.

Table 3 Summary of phenotypes associated with the previously reported USH2A variants that were identified in the present series

Change in USH2A Number of previously reported cases References

Nonsyndromic

retinitis pigmentosa Usher type II Atypical Usher Usher. type I Usher type III Asymptomatic

c.2276G4T, p.(Cys759Phe) 96 (12 hom) 14 5 1a — 1 (hom) 8,15–26

c.2299delG, p.(Glu767Serfs*21) 58 327 (46 hom) 6 (3 hom) — 1 — 8–11, 15–17,19–22,24,25,27–43

c.2332G4T p.(Asp778Tyr) — 1 — — — — 35

c.2802 T4G, p.(Cys934Trp) 1 — — — — — 44

c.3902G4T, p.(Gly1301Val) — — — 1* — — 40

c.5776+1G4A — 4 — — 1 — 21,24,25,40

7595-3C4G, p.Pro2533Asnfs*5 — 5 — — — — 8,20,45

c.9371+1G4C — 1 — — — — 8

c.10073G4A, p.(Cys3358Tyr) 5 — 1 — — — 5,8,23,26,41

c.11156G4A, p.(Arg3719His) 1 — — — — — 5

c.12295-3 T4A — — 1b — — — 8

c.12575G4A, p.(Arg4192His) 4 (1 hom) — 1c (hom) — — — 5,8,23,26

c.13010C4T, p.(Thr4337Met) — 2 — — — — 5,35

c.13316C4T, p.(Thr4439Ile) — 5 — — — — 8,21,46

c.14426C4T p.(Thr4809Ile) — 3 — — — — 8,36

Numbering of USH2A variants has been assigned in accordance with NCBI Reference Sequence NM_206933.2. The complete list of references can be found in LOVD-USHBase.
aA single heterozygous variant in MYO7A was also reported in this patient; *a homozygous (hom) variant in MYO7A was also reported in this patient.
bAfter reviewing the clinical data, the patient was categorised as atypical due to adult onset of hearing loss (45 years old) and normal speech.
cAfter reviewing the clinical data, the patient was categorised as atypical due to very mild, progressive hearing loss.
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hyperautofluorescence’; Figure 3, middle row). Four (8.3%) eyes were
characterised by widespread hypoautofluorescence corresponding
to retinal pigment epithelial atrophy (‘severely decreased

autofluorescence’; Figure 3, bottom row). The findings were
concordant between the eyes in all but two patients. Overlaying of
fundus autofluorescence and OCT images suggested that the

Figure 2 (a) RT-PCR analysis of the c.12295-3T4A mutation. RT-PCR was performed on RNA extracted from nasal epithelial cells of subject D13 and an
unrelated control individual, using primers located in exons 58 and 64 of USH2A. In subject D13, RT-PCR produced a shorter product of 1033 bp
corresponding to skipping of USH2A exon 63 (partial sequence chromatogram of this transcript is shown in the box; the dashed line indicates the splice
junction between exons 62 and 64). The other allele of subject D13 harbouring a c.12093C4A, p.(Tyr4031*) mutation did not amplify. Amplification on
control template produced a band of 2550 bp, corresponding to wild-type sequence. (b) Partial sequence chromatogram of genomic DNA from subject D13
showing a heterozygous c.12093C4A variant in exon 62. Sequence analysis of the corresponding RT-PCR product (1033 bp, see above) revealed a normal
sequence at c.12093; this implies that the c.12295-3T4A and c.12093C4A variants reside on different alleles. NTC stands for no template control.

Figure 3 Fundus autofluorescence (FAF) imaging and foveal OCT scans of three patients with USH2A retinopathy. Three patterns were observed: (i) a
hyperautofluorescent ring on FAF and preserved photoreceptor inner segment ellipsoid line in the area within the hyperautofluorescent ring on OCT (subject
D8a; top row); (ii) central hyperautofluorescence on FAF and absent photoreceptor inner segment ellipsoid line on OCT (subject D17; middle row), and (iii)
severely decreased autofluorescence on FAF and absent outer retina layers with thinning of the retinal pigment epithelium/Bruch’s membrane complex band
(subject D19; bottom row). Y.o., years old.
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hyperautofluorescent ring represents a border between relatively
preserved and diseased retinal tissue (Figure 3), and future struc-
ture–function correlation studies are expected to provide important
insights into the clinical utility of this imaging modality

Audiological phenotype in USH2A retinopathy is variable
The 23 patients with two likely disease-causing variants from the
discovery cohort and their four affected relatives reported no hearing
loss in childhood, with 9 (33%) of these reporting subjective adult-
onset hearing loss. Audiological assessment was conducted in 19 of
these patients. In 14 (74%) patients, it was consistent with a Group 1
phenotype (ie, thresholds within normal limits); of those, 9 (47%)
were classified in Group 1A and 5 (26%) in Group 1B. Three (16%)
patients were classified in Group 2 and 2 (10%) in Group 3
(Supplementary Figure S2). Qualitative analysis revealed the c.12295-
3T4A variant to be correlated with a more severe audiological
phenotype (Groups 2 and 3). There seems to be no obvious
correlation between the severity of visual and audiological phenotypes
(Table 1, Figure 4 and Supplementary Figure S2).

DISCUSSION

In the present study, we confirm that recessive variants affecting
USH2A function are a common cause of retinitis pigmentosa with
disease-causing variants being spread throughout the gene. When
allelic heterogeneity was studied and compared with that reported in

Usher syndrome, the concept of ‘retinal disease-specific’ USH2A alleles
(ie, alleles associated with retinal degeneration and no hearing
complaint in childhood) became apparent. The presence of at least
one such allele in a patient with USH2A-related retinal degeneration
results in relative preservation of hearing (Figure 5). Five likely ‘retinal
disease-specific’ variants (c.2802T4G; c.10073G4A; c.11156G4A;
c.12295-3T4A and c.12575G4A) that are novel to this study were
identified in addition to c.2276G4T, a relatively common sequence
alteration previously associated with retinitis pigmentosa without
hearing impairment.9,10

Defects in the USH2A gene have been previously reported to
account for 12–25% of all retinitis pigmentosa cases, dominant,
recessive or X-linked; syndromic or nonsyndromic.5 McGee et al5

reported that among 80 patients with nonsyndromic recessive retinitis
pigmentosa, 23% had one or two likely disease-causing variants in
USH2A. This result was consistent with our findings: 24.7% (46/186)
of patients with recessive retinal degeneration and no reported hearing
loss in childhood harboured one or two likely disease-causing changes.
Many variants in USH2A can be overlooked when only coding regions
and intron–exon boundaries are sequenced. In previous studies, it was
found that screening for duplications, deletions and a common
deep-intronic sequence alteration (c.7595-2144A4G) detected a
second disease-causing variant in 35% of cases with Usher syndrome
type II that had only one variant affecting function on conventional
Sanger sequencing of all USH2A exons.11,47 In the present cohort,

Figure 4 Variability in the severity of ocular and audiological phenotype due to mutations in USH2A in three patients of similar age. Fundus autofluorescence
(FAF) imaging and foveal OCT show a better preserved retina in subject D2 (group 3 corresponding to abnormal audiological assessment) and in a patient
with Usher syndrome type II compared with subject D3 (middle panel), who has normal hearing.
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despite performing MLPA analysis and testing for the c.7595-
2144A4G change, a significant number of cases with only one likely
disease-causing in USH2A variant remained (23/186, 12.4%). This
observation can be attributed to (i) a number of variants affecting
function still being overlooked and/or (ii) some changes defined here
as likely disease-causing being rare benign polymorphisms.
The first report of an USH2A change being associated with recessive

retinitis pigmentosa without hearing impairment was by Rivolta et al9

in 2000; this change was a G to T transversion in exon 13
(c.2276G4T).9 Since then many studies have confirmed this finding
(Table 1) and the c.2276G4T variant is often considered to be the
most common disease-causing variant in patients with nonsyndromic
retinitis pigmentosa.9,10,24 In the present study, c.2276G4T was found
in 6.5% (12/186) of cases; in all study subjects, it was in cis with a
previously reported polymorphism c.2256T4C, p.(His752His), sug-
gesting a common ancestral haplotype. However, previous reports
have shown that the c.2276G4T can be a recurrent sequence
alteration.17 We have found five additional changes that are also
associated with retinitis pigmentosa and no hearing complaint in
childhood (presumed ‘retinal disease- specific’ variants). These include
four previously reported missense variants (c.10073G4A,5,8,23,26,41

c.2802T4G,44 c.11156G4A5 and c.12575G4A5,8,23,26,41) and a splice
site change (c.12295-3T4A8). We have shown that the latter results in
exclusion of exon 63 and an out-of-frame deletion. Three out of four
patients harbouring this variant had no auditory complaint, despite
the presence of an abnormal auditory phenotype, which would suggest
a long-standing or very slowly progressive neurosensory hearing
impairment (Table 1).
Analysis of allelic heterogeneity in USH2A in our discovery cohort

(23 probands with presumed USH2A-related retinitis pigmentosa
and no hearing complaint in childhood) revealed that all but one
(patient D9) patient harboured at least one ‘retinal disease-specific’ or
novel (presumed ‘retinal disease-specific’) USH2A allele (Table 1).
Importantly, a similar pattern (Figure 5) was observed in our
replication cohort (16 probands with presumed USH2A-related
retinitis pigmentosa and no hearing complaint in childhood;
Table 3). Only in one case (patient D9; Table 1) there appeared to
be discordance: a c.2332G4T change was identified in homozygous
state in a Somali patient with retinitis pigmentosa and normal
audiometric testing; previously, this change has been reported in
heterozygous state in a patient with Usher syndrome type II.35 One
explanation for this could be that this is a rare polymorphism.
Recently, a similar allelic hierarchy has been reported for change
affecting CDH23 function: a ‘nonsyndromic deafness’ CDH23 allele in
trans configuration with a ‘syndromic/Usher syndrome type I’ CDH23
allele preserves vision and balance in deaf individuals.48

Audiometric findings were within normal limits for most patients
with two likely disease-causing USH2A variants and no hearing
complaint in childhood (14 of 19 tested; Table 1). Notably, the
severity of the retinal phenotype did not obviously correlate with the
severity of the hearing impairment (Figure 4); this is in keeping with
previous reports.24 Interestingly, the eldest subject D23 in the present
study reported adult-onset hearing loss and had a hearing defect
consistent with Usher syndrome type II at age 75 years. This is in
keeping with the notion that recessive variants in USH2A cause a
spectrum of hearing defects that range from an early-onset phenotype
consistent with Usher syndrome type II to completely normal hearing.
We have shown that an allelic hierarchy of variants affecting USH2A

function is likely with ‘retinal disease-specific’ alleles being phenoty-
pically dominant to ‘Usher syndrome type II’ alleles. Although this
finding has implications for counselling, the fact that USH2A disease-
causing variants are often private makes prediction of the fully evolved
phenotype challenging. In any case, the audiological phenotype in
USH2A-related disease is highly variable and a multidisciplinary
approach is often relevant even to cases without hearing complaints
in childhood.
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