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Background: TP53 mutation is the most common mutation in hepatocellular carcinoma (HCC), and it affects the
progression and prognosis of HCC. We investigated how TP53 mutation regulates the HCC immunophenotype
and thus affects the prognosis of HCC.
Methods:We investigated TP53 mutation status and RNA expression in different populations and platforms and
developed an immune prognostic model (IPM) based on immune-related genes that were differentially
expressed between TP53WT and TP53MUT HCC samples. Then, the influence of the IPM on the immune microen-
vironment in HCC was comprehensively analysed.
Findings: TP53mutation resulted in the downregulation of the immune response in HCC. Thirty-seven of the 312
immune response-related genes were differentially expressed based on TP53 mutation status. An IPM was
established and validated based on 865 patients with HCC to differentiate patients with a low or high risk of
poor survival. A nomogram was also established for clinical application. Functional enrichment analysis showed
that the humoral immune response and immune system diseases pathway represented the major function and
pathway, respectively, related to the IPM genes. Moreover, we found that the patients in the high-risk group had
higher fractions of T cells follicular helper, T cells regulatory (Tregs) and macrophages M0 and presented higher
expression of CTLA-4, PD-1 and TIM-3 than the low-risk group.
Interpretation: TP53 mutation is strongly related to the immune microenvironment in HCC. Our IPM, which is
sensitive to TP53 mutation status, may have important implications for identifying subgroups of HCC patients
with low or high risk of unfavourable survival.
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1. Introduction

Hepatocellular carcinoma (HCC) ranks sixth among the most com-
mon types of cancer and has one of the highest mortality rates among
cancers [1,2]. Currently, there are a number of established treatments
for HCC, including chemotherapy with sorafenib, vascular catheteriza-
tion, radiofrequency ablation, surgical resection, and liver
. This is an open access article under
transplantation [3,4]. However, the recurrence rate is high, even for pa-
tients who have received treatment in the early stage, and the survival
rate of patients with advanced cancer, including those who receive
treatment, is poor [4]. Tumour-promoting immune diseases are consid-
ered to enable the development of HCC. HCC cells stimulate a significant
immune response, which yields the proper microenvironment for their
development [5]. Because of the poor prognosis after standard treat-
ment, immunotherapy is being studied in depth as an additional treat-
ment [6]. In addition, a number of immune-related parameters have
been reported to predict the prognosis of patientswithHCC, further em-
phasizing the significance of immune status for determining the
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

We searched PubMed through Feb 20, 2019, for research articles
containing the terms “immune prognosticmodel AND hepatocellu-
lar carcinoma” without language or date restrictions. This search
did not find any previous high-throughput studies that had investi-
gated the potential prognostic role of immune prognostic models
in hepatocellular carcinoma. In addition, the same search method
was used to identify articles containing the terms “immune prog-
nostic model AND TP53”. This search also identified no previous
high-throughput studies that had investigated the relationship be-
tween immune prognostic models and TP53.

Added value of this study

We found that the immune phenotype was related to TP53 muta-
tion and developed and validated an immune prognostic model for
hepatocellular carcinoma thatwas affected by TP53mutation sta-
tus. Thismodel is based on the expression of 2 immune genes that
differentiate patientswith a lowor high risk of poor survival in both
the training and validation cohorts. Our study included 865 pa-
tients with hepatocellular carcinoma to establish and validate an
immune prognostic model, and to our knowledge, it is the largest
prognostic model discovery project for hepatocellular carcinoma.
Our results suggest that this immune prognosticmodel ismore ac-
curate than clinicopathological risk factors alone. We further de-
veloped a nomogram to predict patient prognosis, and it
consisted of the immune prognostic model, vascular tumour inva-
sion and hepatitis C status.

Implications of all available evidence

For the first time, we identified and validated an immune prognos-
tic model based on 2 immune genes. This model has independent
prognostic significance for patients with hepatocellular carcinoma
and directly quantifiesmRNA expression; thus, it has considerable
potential for use in future clinical trials and could be implemented
for determining the prognoses of individual patients in clinical
practice.Moreover, themodel reflects the intensity of the immune
response triggered by TP53 status in themicroenvironment of he-
patocellular carcinoma. This study is also the first to describe an
immune prognostic model associated with TP53 mutations and
can be used as a reference for understanding other cancers.
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outcomes of HCC [5,7]. Nevertheless, few studies have systematically in-
vestigated the immune phenotype within the HCC microenvironment
and its relationship with prognosis.

Sentences similar to “In human cancer, TP53 is the most commonly
mutated gene” have appeared in the introductions of thousands of pub-
lications dating back to 1990, one year after the first TP53mutationwas
described in colorectal and lung cancer [8,9]. This discovery was
followed by the identification of hundreds of new cancer genes, al-
though none of them surpassed the importance of the discovery of
TP53. Although thousands of cancer genomes have been sequenced,
candidates of paramount importance have not been found. TP53 muta-
tion is often observed and is among the five most conspicuous muta-
tions in common human cancers [10,11]. The wild-type TP53 protein
plays important roles in apoptosis after DNA damage and in cell cycle
regulation [12]. However, in the event of TP53 mutation, cells with
DNA damage can escape apoptosis and transform into cancer cells.
Furthermore, the mutant TP53 protein loses its wild-type function and
accumulates in the nucleus [13]. This accumulation is considered to be
a highly specific marker of malignant tumours [13]. A study covering
12 tumour types with a total of 3281 tumours found that the average
mutation frequency of TP53 was approximately 42% [11]. The high mu-
tation rate of TP53 makes its genetic alteration a very attractive poten-
tial therapeutic target. Gene therapy, targeted tumour vaccines, and
anticancer drugs targeting TP53 mutations, including APR-246, MK-
1775, ALT-801, and Kevetrin, are in the early stages of clinical trials.
TP53 mutation is also the most common mutation in HCC [14]. This
gene plays an important role in maintaining genomic stability, and its
functional deletion can cause centrosome amplification, aneuploid cell
proliferation and chromosomal instability (CIN) [15]. In particular,
when TP53 mutations are combined with functional defects in the tu-
mour suppressor pRb or with spindle checkpoint defects, they are
more likely to cause high-level CIN and genomic instability [16]. Consid-
erable data have shown that mutant TP53 proteins simultaneously lose
their tumour-suppressive functions and obtain new capacities to ad-
vance tumourigenesis [17]. In HCC, TP53 alterations are correlated
with serum alpha-fetoprotein (AFP) levels, tumour stage, vascular inva-
sion, tumour differentiation and Child-Pugh class [18–21]. Compared
with HCC patients with wild-type TP53, those with tumour TP53 muta-
tions have shorter overall survival (OS) and relapse-free survival times
[22]. Thus, understanding the exact effects of TP53 on the pathogenesis
of HCC and other forms of cancer is critical.

Interestingly, one of themost recent studies suggested that different
immune responses are related to TP53mutational status [23,24]. There-
fore, we speculate that the shorter OS of HCC patients with TP53 muta-
tion may be partly caused by the specific influences of these mutations
on the cancer-associated immune system. In this study, we conducted a
comprehensive analysis of TP53mutation status and RNA expression to
study the relationship between TP53mutations and immune responses
in HCC. The results showed that the immune response of HCC without
TP53 mutation (TP53WT) was markedly stronger than that of HCC
with TP53 mutation (TP53MUT). Importantly, our immune prognostic
model (IPM) including immunological genes whose expression is af-
fected by TP53 mutations can be used as an important prognostic
model and has potential for use in patient management, and the in-
cluded genes can serve as potential therapeutic biomarkers for HCC.
2. Materials and methods

2.1. RNA-sequencing data

The somatic mutation status for 364 HCC samples (workflow type:
VarScan2 Variant Aggregation and Masking), and gene expression
data and the corresponding clinical datasheets for 374 HCC samples
were obtained from the Cancer Genome Atlas (TCGA) website
(https://portal.gdc.cancer.gov/repository) (up to September 10, 2018)
[14]. Surgical resection samples were collected from patients diagnosed
with HCC, and these patients did not receive prior treatment for their
disease [14]. Among these HCC samples, 359 HCC samples with RNA-
sequencing data and TP53mutation informationwere subjected to sub-
sequent analyses. Sequence data were obtained using the Illumina
HiSeq_RNA-Seq and Illumina HiSeq_miRNA-Seq platforms. The study
reported herein fully satisfies the TCGA publication requirements
(http://cancergenome.nih.gov/publications/publicationguidelines).
The gene symbols were annotated based on the Homo_sapiens.
GRCh38.91.chr.gtf file (http://asia.ensembl.org/index.html). Log2 trans-
formationswere performed for all gene expression data. The function of
the trimmed mean of M values (TMM) normalization method of the
edgeR R package (Version 3.24.3; http://www.bioconductor.org/
packages/release/bioc/html/edgeR.html) in R software (Version 3.5.2;
https://www.r-project.org/) was applied to normalize the downloaded
data [25]. The average RNA expression value was used when duplicate
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data were found. Genes with an average expression value N1 were
retained, and low-abundance RNA-sequencing data were removed.

2.2. Microarray data

The gene expression profile matrix files from GSE54236 based on
platform GPL6480 (including 78 HCC samples and 77 adjacent noncan-
cerous samples), GSE76427 based on platform GPL10558 (including
115 HCC samples and 52 adjacent noncancerous samples), and
GSE14520 based on platform GPL571 (including 225 HCC samples and
220 adjacent noncancerous samples) were downloaded from the
Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/). Among these datasets, only gene expression data for
GSE76427 were subjected to log2 transformation. The average RNA ex-
pression value was taken when duplicate data were found. Genes with
an average expression value N1 were retained, and low-abundance
RNA-sequencing data were removed. Three datasets (GSE54236 (n =
78), GSE76427 (n = 115), and GSE14520 (n = 221)) with survival in-
formation were integrated into the meta-GEO HCC cohort (n = 414)
to validate the IPM. The sva package (Version: 3.30.1; http://
bioconductor.org/packages/release/bioc/html/sva.html) was used to
eliminate batch effects, and the scale method of the limma R package
(Version 3.38.3; http://www.bioconductor.org/packages/release/bioc/
html/limma.html) was used to normalize the data [26]. The obtained
data were used according to the TCGA and GEO data access policies.
BothmRNAprofile data and clinical feature data for HCC are publicly ob-
tainable and open access. All analyses were carried out based on perti-
nent guidelines and regulations.

2.3. Patients in the Peking HCC cohort and sample collection

From 2004 to 2015, 101 patients who underwent surgery and were
diagnosed with HCC at Peking Union Medical College Hospital (Beijing,
China) participated in this study in accordance with the provisions of
theHelsinki Declaration (Table S1). These patients did not undergo neo-
adjuvant therapy before surgery. Two experienced pathologists exam-
ined all haematoxylin and eosin (H&E)-stained slides of each tumour
sample. All final diagnoses were based on the morphology of the tu-
mour samples after staining with H&E. Informed consent forms were
signed by all patients. One-hundred thirty-one formalin-fixed
paraffin-embedded HCC samples were collected to examine the protein
levels of immune genes.

2.4. Immunohistochemistry (IHC)

Paraffin-embedded HCC samples were serially sectioned at 4-μm in-
tervals and subsequently mounted on glass slides. The slides were then
baked in the oven at 60 °C for 1 h, deparaffinized, and rehydrated. Heat-
mediated antigen retrieval was conducted in a pressure cooker in
10mmol/L Tris-citrate buffer (pH: 6.0). Endogenous peroxidase activity
was blocked by incubating the sections with 3% hydrogen peroxide at
room temperature for 10 min. After washing with phosphate-buffered
saline (PBS) and incubation with goat serum at room temperature for
30 min, the slides were incubated with primary antibodies overnight
at 4 °C. After washing with PBS, each slide was incubated with the ap-
propriate peroxidase-labelled AffiniPure goat anti-rabbit IgG (H + L)
(111–035-0030, 1:200, Jackson) secondary antibody for 30 min. Each
section was washed with PBS and then developed with 3.3′-diamino-
benzidine (DAB) solution for 5 min. Each section was washed with
water before counterstaining with haematoxylin. The results of IHC
stainingwere evaluated and scored by two pathologists. For EXO1 (exo-
nuclease 1) expression analysis, a primary anti-EXO1 antibody (LS-
C408381, 1:100; LifeSpan) was used. EXO1 is localized in the nucleus
of tumour cells. The proportion of stained tumour cells was counted
by two pathologists. Scores for the intensity of staining were deter-
mined as follows: 0 (negative), 1 (weak), 2 (moderate), and 3 (strong).
The staining index (SI) for EXO1 was calculated as staining intensity
× the proportion of positive tumour cells. For TREM-1 (triggering recep-
tor expressed on myeloid cells-1) expression analysis, a primary anti-
TREM-1 antibody (ab225861, 1:200; Abcam)was used, and two pathol-
ogists counted the number of TREM-1-positive infiltrating lymphocytes
(TILs). Images were obtained using a NanoZoomer S210 C13239-01
scanner.

2.5. Gene set enrichment analysis (GSEA)

To determine how the immunological pathways and corresponding
immune genes differ between HCC samples without (n = 249) and
with (n=110) TP53mutations in the TCGAHCC cohort, GSEA (Version:
3.0; http://software.broadinstitute.org/gsea/index.jsp) was performed
[27]. An annotated gene set file (c5.bp.v6.2.symbols.gm) was selected
for use as the reference gene set. The threshold was set at P b 0.05.

2.6. Differentially expressed gene (DEG) analysis

We compared 249 HCC samples without TP53 mutations and 110
HCC samples with TP53 mutations to identify DEGs using the edgeR R
package, and the thresholds were |log2-fold change (FC)| N 2.0 and
FDR b 0.01 [25].

2.7. Construction and validation of an immune-related prognostic model

Among the 359 HCC samples with RNA-sequencing data and TP53
mutation information, 350 HCC samples with survival information
were subjected to subsequent analyses. The expression profiles of the
DEGs from 350 HCC patients with survival information were analysed
via univariate Cox regression analysis. The prognostic value of the
DEGs for OS was defined by univariate Cox regression analysis. In this
analysis, genes were regarded as significant at P b 0.001. For highly cor-
related genes, the traditional Cox regression model cannot be used di-
rectly; thus, least absolute shrinkage and selection operator (LASSO)
with L1-penalty, which is a popular method for determining interpret-
able prediction rules that can handle the collinearity problem, was
used [28]. Among the immune genes thatwere significant in the univar-
iate Cox regression analysis, key immune genes were selected by the
LASSO method. In this approach, a sub-selection of immune genes in-
volved in HCC patient prognosis was determined by shrinkage of the re-
gression coefficient via the imposition of a penalty proportional to their
size. Finally, a relatively small number of indicators with a weight of
nonzero remained, and most of the potential indicators were shrunk
to zero. Therefore, LASSO-penalized Cox regression was implemented
to further reduce the number of immune genes. In this analysis, we sub-
sampled the dataset 1000 times and chose the immune genes that were
repeated N900 times [29]. LASSO Cox analysis was performed by using
the glmnet R package (Version: 2.0–16; https://cran.r-project.org/
web/packages/glmnet/index.html). Finally, an immune-related prog-
nostic model was constructed utilizing the regression coefficients de-
rived from multivariate Cox regression analysis to multiply the
expression level of each immune gene. X-tile 3.6.1 software (Yale Uni-
versity, New Haven, CT, USA) was applied to determine the best cutoff
for HCC patients classified as low risk and high risk. The log-rank test
and Kaplan-Meier survival analysis were used to assess the predictive
ability of the prognostic model.

2.8. Estimation of immune cell type fractions

CIBERSORT is an approach to characterizing the cell composition of
complex tissues based on their gene expression profiles, and it is highly
consistentwith ground truth estimations inmany cancers [30]. A leuko-
cyte gene signature matrix consisting of 547 genes, which was termed
LM22, was used to distinguish 22 immune cell types, and these types
contained myeloid subsets, natural killer (NK) cells, plasma cells, naive
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and memory B cells and seven T cell types. We utilized CIBERSORT in
combination with the LM22 signature matrix to estimate the fractions
of 22 human haematopoietic cell phenotypes between HCC samples
with and without TP53 mutations. The sum of all estimated immune
cell type fractions is equal to 1 for each sample.

2.9. Functional enrichment analysis

The Database for Annotation, Visualization and Integrated Discovery
(DAVID) (Version: 6.8; https://david.ncifcrf.gov/) and the KO-Based An-
notation System (KOBAS) (Version: 3.0; http://kobas.cbi.pku.edu.cn/)
were used to perform functional and pathway enrichment analyses to
assess the biological implications of the prognostic model [31,32].
Significant biological processes and pathways were visualized using
the GOplot (Version: 1.0.2; https://cran.r-project.org/web/packages/
GOplot/index.html) and ggalluvial (Version: 0.9.1; https://cran.
r-project.org/web/packages/ggalluvial/index.html) R packages,
respectively.

2.10. Independence of the IPM from traditional clinical features

Among 350 HCC samples with survival information, 213 HCC sam-
ples with complete clinical information, including AFP, gender, weight,
age, pathologic stage, vascular tumour invasion, weight, histologic
grade, hepatitis B status, hepatitis C status, alcohol consumption status
and non-alcoholic fatty liver disease status, were subjected to subse-
quent analyses. To validate whether the predictions of the prognostic
model were independent of traditional clinical features (including
AFP, gender, weight, age, pathologic stage, vascular tumour invasion,
weight, histologic grade, hepatitis B status, hepatitis C status, alcohol
consumption status and non-alcoholic fatty liver disease status) for pa-
tients with HCC, univariate and multivariate Cox regression analyses
were conducted.

2.11. Construction and evaluation of the nomogram

To individualize the predicted survival probability for 1 year, 3 years
and 5 years, a nomogram was constructed based on the results of the
multivariate analysis. The rms R package (Version: 5.1–3; https://cran.
r-project.org/web/packages/rms/index.html) was used to generate a
nomogram that included significant clinical characteristics and calibra-
tion plots. Calibration and discrimination are the most commonly used
methods for evaluating the performance of models. In this study, the
calibration curves were graphically assessed by mapping the
nomogram-predicted probabilities against the observed rates, and the
45° line represented the best predictive values. A concordance index
(C-index) was used to determine the discrimination of the nomogram,
and it was calculated by a bootstrap approach with 1000 resamples
[33]. In addition, the predictive accuracies of the nomogram and sepa-
rate prognostic factors were compared using the C-index and receiver
operating characteristic (ROC) analyses. All statistical tests were two-
tailed with a statistical significance level set at 0.05 in this study.

3. Results

3.1. Association between immune phenotype and TP53 mutations in HCC

In HCC, TP53 mutation is the most common type of mutation
(Fig. 1A). Pioneering investigations demonstrated that TP53 mutation
is associated with OS in patients with HCC [22]. Although the pathoge-
netic role of TP53 mutations in the prognosis of patients with HCC has
been well documented, their specific influences on immune profiles in
HCC have not been thoroughly investigated. Hence, for the first time,
we utilized gene expression data and clinical information on HCC pa-
tients in TCGA to find immune-related biological processes linked to
TP53 status. GSEA analysis of HCC samples without (n = 249) and
with (n = 110) TP53 mutations was performed. The results showed
that TP53WT HCCs were significantly enriched in 414 biological pro-
cesses, and 4 immune-related biological processes were selected:
REGULATION_OF_HUMORAL_IMMUNE_RESPONSE (normalized en-
richment score, NES = 2.201, size = 47), NEGATIVE_REGULATION_
OF_DEFENSE_RESPONSE_TO_VIRUS (NES = 1.722, size = 17),
NEGATIVE_REGULATION_OF_IMMUNE_EFFECTOR_PROCESS (NES =
1.681, size = 95), and HUMORAL_IMMUNE_RESPONSE (NES = 1.586,
size = 153) (P b 0.05) (Fig. 1B) (Table S2). In contrast, TP53MUT HCCs
were not enriched in any immune-related biological processes
(Table S3).

3.2. Identification of differentially expressed immune-related genes be-
tween HCC samples with and without TP53 mutations

To identify the correlations between TP53 status and 4 immune-
related processes, 312 immune-related genes were obtained from the
4 immune-related processes. To identify differentially expressed
immune-related genes between TP53WT HCC and TP53MUT HCC tissues,
we performed differential expression analysis using the edgeR package
[25]. Of the 312 immune-related genes investigated, 37 genes were dif-
ferentially expressed between TP53WT and TP53MUT HCCs (FDR b 0.05
and |log2 FC| N 1) (Table S4).

3.3. Construction of an IPM and evaluation of its predictive ability in the
TCGA HCC cohort

Taking the differences in immune status between TP53WT and
TP53MUT HCCs into consideration,we attempted to assess the predictive
ability of the DEGs. Univariate Cox regression analysis was performed,
and it revealed that 7 of the 37 DEGs were significantly related to OS
(Table S5). To find the genes with the greatest prognostic value, we ap-
plied Cox-proportional hazards analysis based on the L1-penalized
(LASSO) estimation, and two genes (TREM1 and EXO1) that appeared
N900 times out of 1000 repetitions were selected [29,34]. We used
LASSO because it is suitable for constructing models when there are a
large number of correlated covariates [34]. To obtain a uniform cutoff
value to stratify the patients into high- and low- risk groups, we con-
ducted normalization of the expression levels of TREM1 and EXO1 in
the TCGA, meta-GEO and Peking HCC cohorts with mean value = 0
and standard deviation (SD) = 1 [35]. Then, by weighting the normal-
ized expression level of each immune gene to the regression coefficients
of the multivariate Cox regression analysis, we established a risk score
model to predict patient survival (risk score = normalized expression
level of TREM1 * 0.336 + normalized expression level of EXO1 *
0.392). We calculated the risk score for each patient and categorized
the patients into high-risk or low-risk groups according to the optimal
cutoff point (1.37) obtained from X-tile software. The cutoff point
(1.37) in the TCGA HCC cohort served as the cutoff to assign patients
into high- and low- risk groups across all the HCC cohorts. As shown
in Fig. 2A, the high-risk patients had a shorter OS than their low-risk
counterparts. In addition, the high-risk group showed a 3.17-fold higher
risk (95% confidence interval (CI): 2.02–4.98, P b 0.001) than the low-
risk group. The risk score distribution and gene expression data are
shown in Fig. 2B. Fig. 2C shows the predictive potential of the IPM
using time-dependent ROC curves. The area under the ROC curve
(AUC) of the prognostic model for OS was 0.7048 at 0.5 years,
0.7388 at 1 year, 0.7119 at 2 years, 0.7276 at 3 years and 0.6558 at
5 years.

3.4. Validation and evaluation of the IPM in the meta-GEO HCC cohort and
Peking HCC cohort

To determine whether the IPM was robust, the performance of the
IPM with the TCGA HCC cohort was assessed in the meta-GEO HCC co-
hort, which consisted of 414 HCC patients. With the same formula and
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Fig. 1.Gene set enrichment analysis of TP53 in the TCGAdataset. (A) Genomic landscape of HCC and themutational signatures in the TCGA dataset, whichwere assayed on the FireBrowse
platform. (B) Significant enrichment of the immune-related phenotype in TP53WT HCC patients compared with that in TP53MUT HCC patients.
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the same cutoff obtained from the TCGA HCC cohort, the patients in the
meta-GEO HCC cohort were divided into a high-risk group and a low-
risk group. Consistent with the outcomes of the TCGA HCC cohort, pa-
tients who were assigned to the high-risk group had significantly
worse OS than those who were assigned to the low-risk group
(Fig. 2D). The risk in the high-risk group was 1.97-fold higher than
that in the low-risk group (95% CI: 1.37–2.83, P b 0.001), demonstrating
the applicability of the developed IPM in different platforms. The risk
score distribution and gene expression data are shown in Fig. 2E. Fur-
thermore, the IPM achieved an AUC of 0.6781 at 0.5 years, 0.5657 at
1 year, 0.6111 at 2 years, 0.6260 at 3 years and 0.6028 at 5 years
(Fig. 2F). Recently, Yang et al. proposed a prognostic model including
3 genes (secreted phosphoprotein 2 (SPP2); cell division cycle 37-like
1 (CDC37L1); and enoyl-CoA hydratase domain containing 2
(ECHDC2)) to predict the prognosis of patients with HCC [36]. They
first integrated 7 HBV-associated HCC datasets to identify DEGs. Second,
weighted gene co-expression network analysis (WGCNA) was per-
formed on those DEGs to identify the most significant module. Third, a
protein-protein interaction (PPI) network was constructed for the
most significant module to identify hub genes. Finally, a three-gene
prognostic signature (risk score = expression of SPP2 * - 0.1941 + ex-
pression of CDC37L1 * - 0.5466 + expression of ECHDC2 * - 0.4714)
for these hub genes was established by univariate and multivariate
Cox regression analysis in the GSE14520 dataset. We calculated the
C-indexes to compare the prognostic values of their model and our
IPM. The C-index is the most commonly used performance measure
for survival models; it ranges from 0.5 to 1 and is equal to the AUC
[37]. The higher the value of the C-index is, the better the predictability
of themodel. The C-index of the IPM for 1 to 5-year OS exceeded that of
the previous model in both the TCGA and meta-GEO HCC cohorts, sug-
gesting that our IPM had favourable efficacy for predicting both short-
and long-term prognosis (Fig. 2G and H ).

To further examine the robustness and practical application of the
IPM, we validated the prognostic power of the IPM using protein values
for immune genes and survival information for patients with HCC in our
cohort recruited from Peking Union Medical College Hospital. This co-
hort consisted of 101 HCC patients. We detected the protein levels of
two immune genes (TREM1 and EXO1) with IHC. The results revealed
that the IPM consisting of these two immune genes at the protein
level can differentiate HCC patients with a low or high risk of poor sur-
vival based on the same formula and the same cutoff obtained from the
TCGA HCC cohort. Representative staining images of TREM1 and EXO1
were demonstrated in Fig. S1. The patients in the high-risk group exhib-
ited poorer OS than the patients in the low-risk group (hazard ratio
(HR): 3.22; 95% CI: 0.73–14.24, P = 0.02) (Fig. 2I). Overall, our results
demonstrated that the IPM is robust across different molecular levels,
platforms and datasets.

3.5. Stratification analyses of OS for the IPM according to TP53 status in the
TCGA HCC cohort

Consistent with the IPM, TP53 status was also significantly related
to the prognosis of patients with HCC (Fig. 3A). Stratification analyses
were performed to test whether the prognostic value of the IPM was



Fig. 2. Prognostic analysis of the IPM. Kaplan-Meier survival, risk score and time-dependent ROC curves of the IPM for the TCGAHCC cohort (A-C) andmeta-GEOHCC cohort (D-F). (A and
D) OS was significantly higher in the low-risk score group than in the high-risk score group. (B and E) Relationship between the risk score (upper) and the expression of two prognostic
immune genes (bottom) is shown. (C and F) Time-dependent ROC curve analysis of the IPM. (G-H) The C-index was used to evaluate prognostic performance for survival prediction.
Performance was compared between the IPM and 3-gene signature_2018 by calculating the C-index in the TCGA and meta-GEO HCC cohorts. (I) Kaplan-Meier survival of the IPM for
the Peking HCC cohort by using immunohistochemistry.
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independent of TP53 status. Therefore, patients in the TCGA HCC co-
hort were divided into two groups according to TP53 status. Stratifica-
tion analyses suggested that the IPM was significantly related to OS in
the TP53WT and TP53MUT TCGA HCC cohorts (Fig. 3B and C). In addi-
tion, correlation analyses suggested that the risk score was signifi-
cantly negatively associated with OS in the TP53WT and TP53MUT

TCGA HCC cohorts (Fig. 3D). Furthermore, univariate and multivariate
Cox regression analyses showed that the predictive power of the IPM
for the OS of patients with HCC is independent of TP53 status
(Fig. 3E).

Since the TP53 mutation type affects TP53 function, we performed
stratification analysis of different TP53 mutation types and found that
the TP53 mutation type affects the prognosis of patients with HCC
(Fig. 3F) [38,39]. To testwhether the prognostic value of the IPMwas in-
dependent of the TP53 mutation type, we performed prognostic analy-
sis of the TP53 missense mutation subgroup, which has the largest
proportion among various TP53 mutation types. As expected, the IPM
was able to classify patients into high- and low-risk groups within the
TP53 missense mutation subgroup (Fig. 3G).
3.6. Low risk indicated an enhanced local immune phenotype

GSEA was performed between the 253 low-risk and 97 high-risk
HCC patients in the TCGA HCC cohort. The GSEA revealed that the
low-risk HCC patients were associated with three immune processes:
HUMORAL_IMMUNE_RESPONSE (NES = 1.700, size = 153),
HUMORAL_IMMUNE_RESPONSE_MEDIATED_BY_CIRCULATING_
IMMUNOGLOBULIN (NES = 1.775, size = 63), and REGULATION_
OF_HUMORAL_IMMUNE_RESPONSE (NES = 2.157, size = 47) (P b

0.05) (Table S6). In contrast, the high-risk HCCs were related to only
one immune process: SOMATIC_DIVERSIFICATION_OF_IMMUNE_
RECEPTORS (NES = −0.548, size = 39) (Table S7). Therefore, the
local immune signature may confer an intense immune phenotype in



Fig. 3. Prognostic analysis of TP53mutation. (A-C) Kaplan-Meier survival of TP53 status (A), TP53mutation subgroup (B), and TP53wild-type subgroup (C). (D) Analysis of the correlation
between risk score and survival time according to TP53 status. (E) Univariate and multivariate regression analysis of the relation between the IPM and TP53 status regarding prognostic
value. Red indicates no statistical significance, and green indicates statistical significance. (F) Kaplan-Meier survival of the different types of TP53mutations. (G) Kaplan-Meier survival of
the TP53 missense mutation subgroup.
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the low-risk group and aweakened immune phenotype in the high-risk
group.

3.7. Immune landscape between the low- and high-risk HCC patients

Using the CIBERSORT method in combination with the LM22
signature matrix, we estimated the differences in the immune
infiltration of 22 immune cell types between low- and high-risk
HCC patients [30]. Fig. 4A summarizes the results obtained from
350 HCC patients. Within and between groups, the proportion of
immune cells in HCC varies (Fig. 4A). Therefore, variations in the
proportions of tumour-infiltrating immune cells might represent
an intrinsic feature that could characterize individual differences.
In addition, the proportions of different subpopulations of



Fig. 4. The landscape of immune infiltration in high- and low-risk HCC patients. (A) Relative proportion of immune infiltration in high- and low-risk patients. (B) Correlationmatrix of all
22 immune cell proportions. (C) Violin plots visualizing significantly different immune cells between high-risk and low-risk patients. (D) Principal components analysis performed onHCC
patients based on significant differences in immune cells between high-risk and low-risk HCC patients.
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tumour-infiltrating immune cells were weakly to moderately cor-
related (Fig. 4B). The high-risk HCC patients had significantly
higher proportions of T cells follicular helper, T cells regulatory
(Tregs) and macrophages M0, and significantly lower proportions
of T cells CD4 memory resting, T cells gamma delta and mast cells
resting than the low-risk HCC patients (P b 0.05) (Fig. 4C). Fur-
thermore, based on the above-identified cell subpopulations, the
samples of high-risk HCC patients and low-risk HCC patients
were clearly separated into two discrete groups based on principal
component analysis (Fig. 4D). Thus, these results suggest that
abnormal immune infiltration and the heterogeneity of immune
infiltration in HCC may serve as prognostic indicators and
targets for immunotherapy and may have significant clinical
implications.

Drugs targeting immune checkpoints have been shown to play
antitumour roles by reversing tumour immunosuppressive effects
[6]. The expression of immune checkpoints has emerged as a bio-
marker for the selection of HCC patients for immunotherapy [6].
Therefore, we assessed the correlation between patient risk scores
and expression of critical immune checkpoints (CTLA-4, PD-1, TIM-
3, LAG-3, and TIGIT) and found that the risk score was significantly
related to the expression of CTLA-4, PD-1 and TIM-3 (P b 0.05)
(Fig. 5A) (Table S8) [40]. In addition, we investigated the expression
of CTLA-4, PD-1 and TIM-3 between the low- and high-risk HCC pa-
tients. The expression of CTLA-4, PD-1 and TIM-3 in the high-risk
HCC group was significantly higher than that in the low-risk HCC
group (P b 0.05), indicating that the poor prognosis of high-risk
HCC patients is partly due to the immunosuppressive microenviron-
ment (Fig. 5B).
3.8. Altered pathways in high- and low-risk group patients

GO analysis was performed in this study to obtain a novel under-
standing of the biological effects of the IPM. The immune genes were
differentially expressed between the groups at low risk and high risk
for HCC (P b 0.05), and genes whose expression correlated with risk
scores (absolute Pearson correlation coefficient N 0.2 and P b 0.05)
were considered to be risk score-associated genes. Twenty-one immune
genes were identified (Fig. 5C) andwere subjected to GO and Kyoto En-
cyclopaedia of Genes and Genomes (KEGG) analyses to identify the po-
tential biological functions (FDRb 0.0001) and pathways (FDR b 0.01) of
these genes (Fig. 5D and E) (Tables S9 and S10). According to the results,
the genes related to the risk score in the TCGAHCC dataset weremainly
enriched in the humoral immune response and immune system dis-
eases pathway (Fig. 5D and E) (Tables S9 and S10).
3.9. The IPM is independent of conventional clinical characteristics

Univariate andmultivariate Cox regression analyseswere conducted
to explore whether the prognostic value of the IPMwas independent of
other clinical factors in the TCGA HCC cohort. After adjusting for clinical
characteristics, including gender, age, pathologic stage, vascular tumour
invasion, hepatitis B status and hepatitis C status, the IPM remained an
independent prognostic factor, thus confirming its robustness for inde-
pendently predicting HCC prognosis (Fig. 6A). The multivariate Cox re-
gression analysis indicated that the IPM was significantly correlated
with the survival information (P b 0.01) and the highest median risk
score (HR = 2.94, 95% CI = 1.70–5.08). Furthermore, we compared
the C-index between the IPM and conventional clinical characteristics,



Fig. 5. Enrichment analysis of the immune prognostic model. (A) Correlation of the risk score with the expression of several prominent immune checkpoints. (B) Violin plots visualizing
significantly different immune checkpoints between high-risk and low-risk patients. (C) Heatmap of immune genes that were differentially expressed in samples from patients with high
and low risk scores. (D) Circular plot of the biological processes enriched for the immune genes. (E) Sankey plot of the pathways enriched for the immune genes.
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and of the 11 survival-predictive factors, the IPM had a higher mean C-
index (0.6380) than the conventional clinical characteristics (0.5001 to
0.5900) (Fig. 6B). Altogether, these results indicated that the IPM was
independent of conventional clinical characteristics and performed bet-
ter than conventional clinical characteristics in survival prediction.

3.10. Construction and validation of a nomogram based on the IPM

To provide clinicians with a quantitative approach to predicting the
prognosis of HCC patients, a nomogram that integrated the IPM and in-
dependent clinical risk factors (hepatitis C and vascular tumour inva-
sion) was constructed (Fig. 6C). In this nomogram based on
multivariate Cox analysis, a point scale was used to assign points to
these variables. A straight line was drawn upward to determine the
points for the variables, and the sum of the points assigned for each var-
iable was rescaled to a range from 0 to 100. The points of the variables
were accumulated and recorded as the total points. The probability of
HCC patient survival at 1, 3, and 5 years was determined by drawing a
vertical line from the total point axis straight downward to the outcome
axis. For example, anHCC patientwith high risk (100 points) hepatitis C
(64 points), and vascular tumour invasion (micro: 45 points) received a
total point score of 209. The probability of 1-year survival was deter-
mined by drawing a vertical line from the total point axis at a value of
209 straight downward to the outcome axis, which showed that the
probability of 1-year survival was 54%. The IPMwas found to contribute
the most risk points (ranging from 0 to 100) compared with the other
clinical information,whichwas consistentwith our Coxmultivariate re-
gression results. The C-index for the nomogram was 0.6969 with 1000
bootstrap replicates (95% CI: 0.6239–0.7698). The bias-corrected line
in the calibration plot was found to be close to the ideal curve (the 45-
degree line), which indicated good agreement between the prediction
and the observation (Fig. 6D). We also compared the predictive accu-
racy of this nomogramwith that of hepatitis C, vascular tumour invasion
and the IPM, and the nomogram performance (C-index: 0.6969) was
better than the performance of hepatitis C (C-index: 0.5390), vascular
tumour invasion (C-index: 0.5867) and the IPM (C-index: 0.6380).
The AUC was also the largest for the nomogram (Fig. 6E). In sum,
these findings suggest that the nomogram was a better model for
predicting short-term or long-term survival in HCC patients than indi-
vidual prognostic factors.

4. Discussion

In lung adenocarcinoma, TP53 mutation can significantly increase
the expression of immune checkpoints, activate effector T cells and in-
crease interferon gamma levels [23]. TP53 mutation can also be used
as a predictor of anti-PD-1 immunotherapy in lung cancer [41]. There-
fore, it is necessary to further investigate the immune-related effects
of TP53 status. However, the mechanism by which TP53 mutation af-
fects the regulation of the HCC immunophenotype and the prognosis
of HCC is unknown. In addition, it is important to develop meaningful
immune-related prognostic models to determine the immune status
of patients because these models represent powerful prognostic bio-
markers and can also be used to stratify patients to increase the effec-
tiveness of immunotherapy. In recent years, gene expression
signatures representative of tumour immune status have been identi-
fied, and their potential clinical relevance in several cancers has been
evaluated [42,43]. Several studies have sought to elucidate the immune



Fig. 6. Relationship between the IMP and other clinical information. (A) Univariate and multivariate regression analysis of the relation between the immune prognostic model and
clinicopathological features regarding prognostic value. Red indicates no statistical significance, and green indicates statistical significance. (B) The prognostic performance was
compared between the IPM and different conventional clinical characteristics by calculating the C-index. (C) Nomogram for predicting the probability of 1-, 3-, and 5-year OS for HCC
patients. (D) Calibration plot of the nomogram for predicting the probability of OS at 1, 3, and 5 years. (E) Time-dependent ROC curve analyses of the immune prognostic model,
hepatitis C status, vascular tumour invasion, and nomogram.
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microenvironment in HCC [44,45]. Rather than employing immune
privilege, HCC in fact coordinates a robust immune response involving
the innate and adaptive immune systems [44,45]. However, the role of
local immune response status in HCC prognosis prediction has not
been explored. In the current study, we investigated the role of TP53
mutations in the regulation of immune phenotype inHCC. In GSEA anal-
ysis, we found that TP53WT HCCs had a significantly stronger local
immunophenotype than TP53MUT HCCs. Then, we profiled an
immune-related gene set affected by TP53 mutation and generated a
2-gene-based IPM that could identify patients with HCC who had a
high risk of unfavourable prognosis. The results obtained in this study
may reveal a feasible therapeutic strategy that involves shaping the im-
mune microenvironment to improve clinical outcomes. The genes
(TREM-1 and EXO1) that constitute our IPM could be regarded as indi-
vidual targets, and they may provide better performance in combina-
tion, depending on their immune properties and prognostic
significance.

TREM-1 is a cell surface receptor as well as a constituent of the im-
munoglobulin superfamily, which effectively expands inflammatory re-
sponses by secreting proinflammatory mediators [46]. Previous studies
have reported that cancer cells can directly upregulate the expression of
TREM-1 in patient macrophages, and in patients with non-small cell
lung cancer, TREM-1 expression in tumour-associated macrophages is
related to poor survival and recurrence [47]. In addition, the expression
of TREM-1 by Kupffer cells is a pivotal factor in the evolution and pro-
gression of liver cancer [46]. EXO1 is an important nuclease in the mis-
match repair system, which helps maintain genomic stability, regulate
DNA recombination, andmediate cell cycle arrest [48]. Gene expression
profiles in breast tumours show that elevated EXO1 expression is re-
lated to unfavourable prognosis, and single-nucleotide polymorphisms
(SNPs) of EXO1 are related to hereditary susceptibility to HCC [49,50].
Furthermore, Tanaka et al. performed differential expression analysis
between an aggressive recurrence group and a non-aggressive recur-
rence group of HCC and found that EXO1 was significantly upregulated
in the aggressive recurrence group [51]. In our study, for the first time,
we discovered that high expression of TREM-1 and EXO1 is linked to
unfavourable prognosis in patients with HCC.

Additionally, we demonstrated that the IPM remained an indepen-
dent prognostic factor after the modification of clinical characteristics.
This result suggests that local immune status has the potential to im-
prove the traditional features of accurate prognosis. Therefore, we pro-
pose a comprehensive assessment that combines our IPM and other
clinical features (hepatitis C, vascular tumour invasion and the IPM).
The calibration curve showed satisfactory agreement between the ob-
served values and the predicted values for 1-, 3-, and 5-year OS. The
main advantage of this model is that it provides a complementary per-
spective on individual tumours and develops an individual scoring sys-
tem for patients; therefore, our nomogram could be a promising tool for
clinicians in the future.

During cancer development in immune-competent hosts, to evade
antitumour immune responses, less immunogenic cancer cells are se-
lected (immune selection) and immunosuppressive networks are
established (immune escape) according to the cancer immunoediting
hypothesis [52,53]. Therefore, clinically significant cancers have several
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immunosuppressive mechanisms, such as increasing various immuno-
suppressive cells (e.g., Treg cells and tumour-associated macrophages),
increasing the expression of various immunosuppressive molecules
(e.g., cytotoxic T lymphocyte-associated antigen-4 (CTLA-4)), and de-
creasing the expression of cancer antigens, which results in the inability
of CD8+ T cells to recognize cancer cells [54,55]. By blocking the func-
tion of immunosuppressive cells and immunosuppressive mechanisms,
potential antitumour immune responses can be released. Here, we in-
vestigated the immune mechanisms between patients in the low- and
high-risk groups and the possible use of cancer immunotherapy to en-
hance the antitumour immune response, and the results indicated
that the proposed approach has promising clinical efficacy. High-risk
HCC patients generally had higher fractions of T cells follicular helper,
T cells regulatory (Tregs) and macrophages M0, and lower fractions of
T cells CD4 memory resting, T cells gamma delta and mast cells resting
than low-risk patients (P b 0.05). In addition, we investigated the ex-
pression of immune checkpoints (CTLA-4, PD-1 and TIM-3) between
the low- and high-risk groups. The high-risk HCC patients had signifi-
cantly higher expression of CTLA-4, PD-1 and TIM-3 than the low-risk
patients (P b 0.05). Previous research confirmed that T cells CD4 mem-
ory resting can be further differentiated and confer various functions,
including blocking CD8+ T cell activation and NK cell killing, suppress-
ing harmful immunological reactions to self-antigens and foreign anti-
gens, and aiding CD8+ T cells in tumour rejection [56,57]. Importantly,
Tregs also expressed immune checkpoints, such as PD-1 and CTLA-4
[58]. The anti-CTLA-4 antibody ipilimumab inhibits interactions be-
tween antigen-presenting cells (APCs) and Tregs [58]. Analyses of
anti-CTLA-4 antibodies in mouse models indicated that their
antitumour efficacy was based on the depletion of CTLA-4+ Treg cells
in tumours through antibody-dependent cellular cytotoxicity (ADCC),
since the loss of crystallizable fragment (Fc) function of anti-CTLA-4
mAbs completely eliminates their antitumour effects [59–61]. There-
fore, in our model, the risk score was compatible with the ability of
tumour-infiltrating immune cells to determine the expression of im-
mune checkpoints, suggesting that the poor prognosis of the high-risk
group may be due to the stronger immunosuppressive environment
and immune checkpoint expression in this group than in the low-risk
group, and these differences promoted HCC growth, progression, inva-
sion, and angiogenesis and resulted in poor prognosis. Furthermore,
these results also indicate that high-risk patients will benefit more
from immune checkpoint inhibitors than low-risk patients, thereby
resulting in a better prognosis.

In the GSEA analysis between the low- and high-risk group patients,
the high-risk and low-risk groups had different levels of immune path-
way enrichment. The low-risk groupwas associatedwith three immune
processes, while the high-risk risk group was related to only one im-
mune process; therefore, we speculated that the local immune signa-
ture conferred an intense immune phenotype in the low-risk group
and aweakened immune phenotype in the high-risk group. In addition,
the high-risk patients had significantly higher expression of immuno-
suppressive molecules (e.g., CTLA-4, PD-1 and TIM-3) and increased
levels of various immunosuppressive cells (e.g., Tregs and macro-
phages) than the low-risk group, suggesting that the weakened im-
mune phenotype in the high-risk group may be due to its stronger
immunosuppressive environment and immune checkpoint expression
than the low-risk group. Therefore, the IPM may reflect the intensity
of the immune response triggered by TP53 status.

Our research provides new insights into the HCC immune microen-
vironment and immune-related therapies. However, our research is
limited because it was retrospective, and our results should thus be fur-
ther confirmed by prospective studies. In addition, functional and
mechanistic studies of the two genes individually and in combination
should be conducted to support their clinical application.

In summary, for the first time, we identified and validated an IPM
that is based on 2 immune genes, has independent prognostic signifi-
cance for HCC patients and reflects the overall intensity of the immune
response in theHCCmicroenvironment. This study is also the first to de-
scribe an IPM associated with TP53 mutations and can be used as a ref-
erence for understanding other cancers. Notably, the IPM provides an
immunological perspective to elucidate themechanisms that determine
the clinical outcome of HCC.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.03.022.
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