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Abstract. In 2017, it is two hundred years since James Parkinson provided the first complete clinical description of the disease
named after him, fifty years since the introduction of high-dose D,L-DOPA treatment and twenty years since �-synuclein
aggregation came to the fore. In 1998, multiple system atrophy joined Parkinson’s disease and dementia with Lewy bodies
as the third major synucleinopathy. Here we review our work, which led to the identification of �-synuclein in Lewy bodies,
Lewy neurites and Papp-Lantos bodies, as well as what has happened since. Some of the experiments described were carried
out in collaboration with ML Schmidt, JQ Trojanowski and VMY Lee.

Keywords: Alpha-synuclein, Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy, protein aggregation,
aggregate propagation, neurodegeneration

INTRODUCTION

Parkinson’s disease (PD) has a long and rich his-
tory. Although partial descriptions can be found in
some ancient texts, the first complete clinical descrip-
tion of the disease was provided by James Parkinson
in 1817 [1]. He captured the disease’s distinctive
motor symptoms: “involuntary tremulous motion,
with lessened muscular power, in parts not in action
and even when supported; with a propensity to bend
the trunk forward, and to pass from a walking to a
running pace: the senses and intellect being unin-
jured.” Jean-Martin Charcot named the shaking palsy
(or “paralysie agitante”) after Parkinson in 1888 [2].

Close to one hundred years passed, before severe
nerve cell loss in the pigmented pars compacta of the
substantia nigra was identified as the most consistent
pathological lesion of PD, together with the presence
there and in other brainstem regions of what Kon-
stantin Tretiakoff called “corps de Lewy” or Lewy
bodies [3]. Friedrich Lewy first described these inclu-
sions in the dorsal motor nucleus of the vagus nerve,
the nucleus basalis of Meynert and some thalamic
nuclei of PD patients [4]. Rolf Hassler showed that
nerve cell loss in PD is most severe in the ventro-
lateral nerve cell group of the substantia nigra, with
relative sparing of the more heavily pigmented dorso-
medial group [5]. In the 1960 s, electron microscopy
was used to show that the Lewy pathology is made of
abnormal filaments [6].

The discovery of dopamine as a brain neurotrans-
mitter [7, 8] and the finding that 80% of it is found
in the striatum, unaccompanied by noradrenaline [9,
10], together with experiments showing that reser-
pine depletes brain dopamine and that levodopa
increases dopamine levels [8], led Arvid Carlsson
to propose that dopamine deficiency might underlie
the motor symptoms of PD [11, 12]. Striatal
dopamine deficiency was subsequently documented
by Herbert Ehringer and Oleh Hornykiewicz in six
cases of parkinsonism, four with post-encephalitic
parkinsonism and two with PD [13]; the loss

was greatest in post-encephalitic parkinsonism.
Dopamine was also found to be reduced in the
substantia nigra [14]. With the advent of the Falck-
Hillarp fluorescence histochemical technique [15],
dopamine-containing nerve cell bodies were found
in the pars compacta of the substantia nigra, from
where their nerve terminals ascend to the striatum
[16]. Experiments in monkeys showed that lesion-
ing the substantia nigra was followed by a loss of
dopamine in the striatum [17].

This led to attempts at replacing the miss-
ing dopamine. Catecholamines are unable to cross
the blood-brain barrier. The dopamine precursor
3,4-dihydroxyphenylalanine (DOPA), which crosses
the blood-brain barrier and is decarboxylated to
dopamine by aromatic amino acid decarboxylase,
was therefore administered [18–20]. In the end,
it took 150 years from Parkinson’s description of
the disease to the development of what has been
described as “the second coming” [21]: high-dose
oral levodopa treatment [23–25]. In the 1967 paper
[23], D-L-DOPA was used; however, since the D-
isomer is not converted to dopamine in vivo, the 1969
studies [24] used the L-isomer of DOPA. In 1970,
L-DOPA was approved by the US Food and Drug
Administration as a treatment for PD.

Cotzias and colleagues believed that PD was
caused by a reduction in neuromelanin; they adminis-
tered high-dose levodopa in an attempt to re-pigment
the substantia nigra, not to replace the depleted
dopamine [25]. As a result, the symptoms of PD were
much improved. Theirs seems to have been a case of
obtaining the right result for the wrong reasons. There
are currently no mechanism-based therapies for PD.
The miraculous effects of levodopa are described in
“Awakenings”, Oliver Sacks’ account of the treatment
of patients with post-encephalitic parkinsonism [26].
His book inspired Harold Pinter’s play “A Kind of
Alaska” [27] and the film “Awakenings” directed by
Penny Marshall [28].

Despite these advances, it remained unclear what
caused PD. Encouraged by William Langston’s report
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of sudden-onset parkinsonism in multiple patients
following the injection of 1-methyl-4-phenyl-1,2,5,6-
tetrahydropyridine (MPTP) [29, 30], environmental
factors were sought, and PD was mostly considered
to be a sporadic disorder. David Marsden described
PD as a Lewy body disease and wrote: “The crux
of Parkinson’s disease is the Lewy body, but the ori-
gin of this inclusion is a mystery” [31]. Although a
large number of proteins had been reported in Lewy
bodies and Lewy neurites by immunohistochemistry,
this work did not allow one to distinguish between
integral components of the Lewy pathology and cel-
lular constituents that get trapped in the abnormal
filaments.

It was believed that it was possible to use biochem-
istry, as well as structural and molecular biology to
unravel the composition of the inclusions that charac-
terise the most common neurodegenerative diseases,
including Alzheimer’s disease (AD) and PD, and that
this would throw light on their aetiology and patho-
genesis. As it happened, this was true of AD. In order
to deconstruct the Lewy pathology of PD, genet-
ics had to join biochemistry, structural biology and
molecular biology.

HUMAN �-SYNUCLEIN AND
�-SYNUCLEIN

Our findings on synucleinopathies grew out of
work on tau, which we showed to be an integral com-
ponent of the paired helical filaments of AD [32–34].
In the early 1990s, Ross Jakes, Maria Grazia Spillan-
tini and Michel Goedert (Fig. 1), then at the MRC
Laboratory of Molecular Biology in Cambridge,
noticed that the partially characterized anti-tau anti-
body 11.57 [35] also labelled two proteins from a
cytosolic extract of normal adult human brain, each
with an apparent molecular mass of 19 kDa. Partial
purification took advantage of the heat stability of
both proteins and their separation by ion exchange
chromatography. Complete purification required an
additional HPLC step. The amino-termini were not
amenable to Edman degradation (acetylated, formy-
lated?). Analysis of peptides purified after cyanogen
bromide cleavage allowed us to sequence up to
55 continuous residues by automated amino acid
sequence analysis. From these successful results,
we initially named the two proteins “Perfectin”
(�-synuclein) and “Imperfectin” (�-synuclein). Poly-
merase chain reaction (PCR) products were then used
to isolate full-length cDNA clones from a library of

Fig. 1. Twenty years ago: Ross Jakes, Maria Grazia Spillantini and
Michel Goedert (from left to right) in 1997.

adult human hippocampus. The predicted proteins
consisted of 140 (Perfectin) and 134 (Imperfectin)
amino acids [36].

At the “Second International Symposium on
Dementia” in Oiso (Japan) on November 16–19,
1993, we heard a talk from Tsunao Saitoh and realized
that his precursor of the non-A� component of AD
amyloid (NACP) was the same as our 140 amino acid
protein. The paper describing Saitoh’s findings was
published one month later [37]. The authors con-
cluded that residues 61–95 of NACP (the peptide
NAC) were an integral component of the A� plaques
of AD. However, subsequent work using additional
antibodies failed to confirm these findings [38, 39].
It is now clear that NAC/NACP is not an integral
component of A� plaques.

In addition to its identity with NACP, we realized
that the 140 amino acid protein was homologous to
synucleins from the Pacific electric ray (Torpedo cal-
ifornica) and rat brain [40, 41], identifying it as a
human synuclein. We also realized that the 134 amino
acid protein from human brain was homologous to
bovine phosphoneuroprotein-14. The latter had been
identified as a new brain-specific protein that was
present in synapses, but not glial cells [42, 43].

The previously unknown similarities between
these proteins established the existence of a family of
human brain synucleins. We named the 140 and 134
amino acid proteins �-synuclein and �-synuclein,
respectively (the 140 amino acid protein was named
“�-synuclein”, because it eluted before the 134
amino acid protein from a cation exchange HPLC
column) [36]. By sequence alignment, �-synuclein
was 61% identical to �-synuclein (Fig. 2). The 127
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Fig. 2. Sequence comparison of human �-synuclein and �-
synuclein. Amino acids were aligned and two gaps introduced to
maximize homology. Amino acid identities between �-synuclein
(�-syn) and �-synuclein (�-Syn) are indicated by black bars. From
Jakes et al. [36].

amino acid �-synuclein was subsequently identi-
fied [44, 45]. Synucleins have a highly conserved
amino-terminal repeat region, a hydrophobic middle
region and a less well-conserved negatively charged
carboxy-terminal region. An early study reported
that NACP/�-synuclein is a natively unfolded
protein [46].

Over half the �-synuclein sequence is taken up
by seven imperfect repeats of eleven amino acids,
each having a conserved six amino acid core with the
consensus sequence KTKEGV (residues 7–87). Core
sequences of individual repeats are separated by five
amino acids, with the exception of repeats four and
five, which are separated by nine amino acids. We
produced antibodies [PER (for Perfectin) 1–3] that
were specific for either �- or �-synuclein and showed
that both proteins are predominantly expressed in
brain, where they are concentrated in nerve termi-
nals. For historical reasons, we decided to keep the
name “synuclein” [36].

We isolated genomic clones and analysed a panel
of monochromosomal human-rodent somatic cell
hybrids by PCR, followed by fluorescence in situ
hybridization of metaphase spreads of human chro-
mosomes. We found that SNCA (the �-synuclein
gene) and SNCB (the �-synuclein gene) are encoded
by genes that are located on the long arms of chromo-
somes 4 (region q21) and 5 (region q35), respectively
[47]. The chromosomal location of SNCA to 4q21.3-
q22 was also reported independently [48]. The
�-synuclein gene (SNCG) maps to the long arm of
chromosome 10 (region q21) [49, 50].

�-SYNUCLEIN AND LEWY PATHOLOGY

Although much research on the pathogenesis of
PD was focused on the search for environmental

risk factors, inherited cases of PD were known. In
1990, an Italian-American family with early-onset
PD and autopsy-confirmed Lewy pathology (the Con-
tursi kindred) was described [51]. In 1996, Robert
Nussbaum and colleagues identified genetic markers
on the long arm of chromosome 4 (region q21-q23)
that segregated with disease in this family [52]. This
is the region that SNCA maps to.

In June 1997, Mihael Polymeropoulos and col-
leagues identified SNCA as the gene that is mutated
in the Contursi kindred [53]. The mutation segre-
gated with disease in the affected family and was
identified as an alanine-to-threonine substitution at
position 53 of the 140 amino acid protein. It was
found not only in the Italian-American kindred, but
also in three apparently unrelated Greek families with
inherited PD. The pattern of inheritance was con-
firmed as autosomal-dominant. Surprisingly, A53 is
only found in �-synuclein from humans and Old
World primates, with T53 being present in rodents
and several other mammalian species [54]. However,
six additional amino acids differ between mouse and
human �-synucleins.

In August 1997, we showed that the Lewy bod-
ies and Lewy neurites from the substantia nigra
of six patients with idiopathic PD (Fig. 3) and
four with dementia with Lewy bodies (DLB) were
strongly immunoreactive for �-synuclein [55]. The
same was true of the Lewy pathology from the cin-
gulate cortex of DLB. Two different anti-�-synuclein
antibodies (PER1 and PER2), which are specific
for the amino- and carboxy-termini, respectively,
of recombinantly expressed �-synuclein, stained the
inclusions equally well, consistent with the presence
of the whole molecule. An antibody specific for �-
synuclein (PER3) failed to stain the inclusions of PD
and DLB. These findings showed that brainstem-type
and cortical Lewy pathologies were immunoreactive
for �-synuclein. We concluded that both PD and DLB
could be �-synuclein diseases. This work was a col-
laboration with Marie-Luise Schmidt, Virginia Lee
and John Trojanowski. Abundant �-synuclein inclu-
sions are also characteristic of the diseases caused by
SNCA mutations [56, 57].

In May 1998, we reported that Lewy neurites
were more abundant in PD and DLB than hitherto
believed (Fig. 4) [58]. The staining of intraneuritic
Lewy bodies helped to reinforce the view that Lewy
pathology is unlikely to be benign. Prior to this, ubiq-
uitin staining had been the most sensitive means of
detecting Lewy pathology [59], but it lacked in speci-
ficity. We showed that staining for �-synuclein was
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Fig. 3. The �-synuclein pathology of Parkinson’s disease. Lewy bodies and Lewy neurites in the substantia nigra and several other brain
regions define Parkinson’s disease at a neuropathological level. They are shown here at light (a-c) and electron microscopic (d-g) levels,
labelled by �-synuclein antibodies. (a), Two pigmented nerve cells, each containing an �-synuclein-positive Lewy body (red arrows). Lewy
neurites (black arrows) are also immunopositive. Scale bar, 20 �m. (b), Pigmented nerve cell with two �-synuclein-positive Lewy bodies.
Scale bar, 8 �m. (c) �-Synuclein-positive extracellular Lewy body. Scale bar, 4 �m. (d-g), Isolated filaments from the substantia nigra of
patients with Parkinson’s disease are decorated with an antibody directed against the carboxy-terminal (d and e) or the amino-terminal (f,g)
region of �-synuclein. The gold particles conjugated to the second antibody appear as black dots. Note the uniform decoration (d,e), and the
labelling of only one filament end (f,g). Scale bar, 100 nm. From Goedert [205].
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Fig. 4. The �-synuclein pathology of dementia with Lewy bodies. (a,b) �-Synuclein-positive Lewy bodies and Lewy neurites in substantia
nigra. Scale bar, 100 �m. (c,d) �-Synuclein-positive Lewy bodies and Lewy neurites in hippocampus. Scale bar, 80 �m. (e) �-Synuclein-
positive Lewy body inside a Lewy neurite in substantia nigra. Scale bar, 40 �m. From Spillantini et al. [58].
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more extensive than staining for ubiquitin, indicating
that accumulation of �-synuclein precedes ubiqui-
tination. Similar findings have subsequently been
reported [60, 61]. Together, they suggest that ubiqui-
tination of �-synuclein occurs after fibril formation
and may be an attempt by cells to promote clear-
ance of aggregated �-synuclein by targeting it for
degradation by the proteasome.

We also confirmed that �-synuclein did not accu-
mulate in the Lewy pathology and showed that the
same was true of �-synuclein. Of the three mam-
malian synucleins, only �-synuclein is found in the
Lewy pathology. These findings suggested, but did
not prove, that �-synuclein is a major component of
the abnormal filaments that make up Lewy bodies and
Lewy neurites.

In collaboration with Tony Crowther and Masato
Hasegawa, we studied sarkosyl-insoluble filaments
extracted from cingulate cortex of patients with
DLB by immunoelectron microscopy [58]. Antibody
PER4, which recognizes the carboxy-terminal region
of �-synuclein, labelled filaments with a diameter of
5–10 nm and a length of 200–600 nm, indicating that
they contained �-synuclein as a major component
(Fig. 3). Antibody PER1, which was raised against
residues 11–34 of �-synuclein, only labelled one
end of each filament (Fig. 3). This suggested that
the PER1 epitope is buried in the body of the fila-
ment and that the filaments are polar structures. We
subsequently reported similar findings on filaments
extracted from the substantia nigra of PD patients
[62]. Some of the above findings were quickly con-
firmed [63–67]. Staining for �-synuclein is now used
routinely for identifying Lewy bodies and Lewy neu-
rites in tissue sections and PD and DLB.

�-SYNUCLEIN AND PAPP-LANTOS
BODIES

Multiple system atrophy (MSA) is a neurodegen-
erative disease characterized by a combination of
autonomic, cerebellar, parkinsonian and pyramidal
symptoms [68, 69]. Depending on the motor pheno-
type, it is divided into parkinsonian (MSA-P) and
cerebellar (MSA-C) variants. MSA-P is only poorly
L-DOPA-responsive. MSA comprises what used to
be called olivopontocerebellar atrophy, striatonigral
degeneration and Shy-Drager syndrome. In most
countries, MSA-P is more common than MSA-C.
Like PD, the onset of MSA is usually in the sixth
decade of life, but it progresses faster than PD. The

mean survival time of MSA from the onset of symp-
toms is only 6–10 years.

Proteinaceous oligodendroglial cytoplasmic inclu-
sions (Papp-Lantos bodies) are the major histological
hallmark of MSA [70]. Less often, oligodendroglial
nuclear inclusions are present, as are neuronal
cytoplasmic and nuclear inclusions. Schwann cell
cytoplasmic inclusions are also a common feature
[71].

We teamed up with Nigel Cairns and Peter Lan-
tos at the Institute of Psychiatry of King’s College
London, and showed in July 1998 that glial and
neuronal inclusions of MSA contained �-synuclein
(Fig. 5) [72]. The inclusions were stained by antibod-
ies recognizing the amino- and carboxy-termini of
�-synuclein. Double-labelling showed that staining
for �-synuclein was more extensive than stain-
ing for ubiquitin, indicating that the accumulation
of �-synuclein preceded ubiquitination. Antibodies
directed against �- or �-synuclein failed to stain
glial or neuronal inclusions. Similar findings were
reported by others at about the same time [73, 74].

Isolated, sarkosyl-insoluble filaments extracted
from MSA brains had a diameter of 5–18 nm and
were strongly labelled by PER4. Antibody PER1 only
labelled one filament end, as was the case in PD
and DLB (Fig. 5). This work revealed an unexpected
molecular link between MSA and Lewy pathology
disorders. However, unlike PD and DLB, where �-
synuclein filaments are present predominantly in the
cytoplasm of nerve cells in the form of Lewy bod-
ies and Lewy neurites, in MSA, �-synuclein-positive
inclusions are found in the cytoplasm and nuclei of
both nerve cells and glial cells.

With Crowther, we then showed that filaments
assembled from bacterially expressed human �-
synuclein were structurally and antigenically similar
to those extracted from PD, DLB and MSA brains
[75]. Since 1998 [76], PD, DLB and MSA have fre-
quently been referred to as “synucleinopathies”.

TWENTY YEARS ON

The work described above identified synucle-
inopathies as a new group of human neurodegen-
erative diseases, with PD, DLB and MSA as the
most common. Lewy pathology is also the defin-
ing feature of several rarer diseases, including pure
autonomic failure, in which pathology is mostly
restricted to the peripheral nervous system (PNS)
[77]. In incidental Lewy body disease, a condition
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Fig. 5. The �-synuclein pathology of multiple system atrophy. Glial cytoplasmic inclusions in several brain regions define multiple system
atrophy. Similar inclusions are also present in the nuclei of some glial cells, as well as in the cytoplasm and nuclei of some nerve cells, and
in nerve cell processes. Inclusions are shown here at light (a-f) and electron microscopic (g-j) levels, labelled by �-synuclein antibodies.
(a-d) �-Synuclein-immunoreactive oligodendrocytes and nerve cells in white matter of pons (a,b,d) and cerebellum (c,e,f). �-Synuclein-
immunoreactive oligodendrocytes and nerve cells in grey matter of pons (e) and frontal cortex (f). Arrows identify the characteristic lesions:
cytoplasmic, oligodendroglial inclusions (a,f), cytoplasmic nerve cell inclusions (b), nuclear oligodendroglial inclusions (c), neuropil threads
(d) and nuclear nerve cell inclusions (e). Scale bar, 33 �m in (e) and 50 �m in (f). (g-j), Isolated filaments from the frontal cortex and cerebellum
of patients with multiple system atrophy are decorated by antibodies specific for the carboxy-terminal (g,h) and amino-terminal (i,j) regions
of �-synuclein. The gold particles conjugated to the secondary antibody appear as black dots. Note the uniform decoration in (g,h) and the
labelling of only one filament end in (i,j). A twisted filament is shown in (g), whereas (h) shows a straight filament. Scale bar, 100 nm. From
Goedert [205].

characteristic of 5–10% of individuals over the age
of 60, which may be a preclinical form of PD
[78–80], Lewy bodies and Lewy neurites are present
in the absence of clinical symptoms. At the time
of clinical diagnosis, around 30% of the dopamin-
ergic neurons of the substantia nigra and 50–60%
of their axon terminals have been lost [81], con-
sistent with a centripetal mechanism of aggregate
formation and neurodegeneration. In incidental Lewy
body disease, no statistically significant nerve cell
loss was observed in the substantia nigra [79]. How-
ever, a separate study reported that significant nerve
cell loss occurred in the absence of Lewy pathology
[82].

�-Synuclein inclusions are also found in a propor-
tion of cases with other neurodegenerative diseases.
Thus, in inherited and sporadic AD, approximately
60% have Lewy pathology, especially in the amyg-
dala [83, 84]. However, not all cases of parkinsonism
are characterized by the presence of �-synuclein
inclusions. Thus, abundant tau aggregates of the
Alzheimer type, in the absence of �-synuclein inclu-
sions, are typical of post-encephalitic parkinsonism
[85–88].

The clinical Parkinson’s syndrome, or parkinson-
ism, is defined as bradykinesia that worsens over time,
in conjunction with at least one of three additional
features: rigidity, resting tremor or gait disturbance
[89, 90]. Full diagnostic certainty of PD is impos-
sible during life, with 75–95% of patients having
their diagnosis confirmed at autopsy. Supporting fea-
tures are important for the clinical definition; they
include response to L-DOPA, asymmetry and, more
recently, the presence of non-motor symptoms. The
latter has given rise to the concept of prodromal PD
[91].

Physiological function of α-synuclein

The physiological function of �-synuclein is
incompletely understood. It binds to acidic phos-
pholipids through its amino-terminal repeats [92,
93], when it multimerizes and becomes �-helical
[94–96]. �-Synuclein appears to be able to remodel
membranes [97]. About 3,500 �-synuclein molecules
exist for an average of 300 synaptic vesicles in
synaptic boutons from rat brain [98]. Mitochon-
dria have been found to fragment upon �-synuclein
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expression [99, 100], despite the fact that in
nerve cells �-synuclein is concentrated in nerve
terminals, whereas most mitochondria localize to
nerve cell bodies and dendrites. It is possible that
�-synuclein localizes to mitochondria when overex-
pressed [101].

Loss of SNCA does not lead to a neurodegener-
ative phenotype. [102]. Mice without �-synuclein
showed increased release of striatal dopamine. Con-
versely, mice overexpressing �-synuclein showed
reduced neurotransmitter release [103]. It appears
that �-synuclein attenuates neurotransmitter release,
possibly through multimerisation at synapses, result-
ing in the redistribution of SNARE proteins and the
clustering of synaptic vesicles [104, 105]. A devel-
opmental function of �-synuclein for dopaminergic
neurons has also been proposed [106], even though
the SNCA locus was found to be deleted in a subset
of inbred C57BL/6J mice [107].

The existence of three synucleins raised the possi-
bility that redundancy might account for the relatively
modest phenotype of �-synuclein knockout mice.
Mice lacking �-,�- and �-synucleins were sub-
sequently produced [108, 109]. They showed an
increase in striatal dopamine release beyond that of
single knockouts, probably because of an increased
tendency of synaptic vesicles to fuse with the presy-
naptic membrane. However, the overall phenotype
was relatively mild. No synuclein homologues have
been identified in C. elegans or Drosophila.

Perhaps the strongest effect of �-synuclein in
vivo is its ability to rescue the loss of cysteine
string protein (CSP�), a presynaptic chaperone. In
mice, knockout of CSP� leads to progressive synap-
tic degeneration and death within 2 months [110].
Remarkably, overexpression of �-synuclein greatly
delayed the synaptic degeneration resulting from loss
of CSP�, whereas the loss of �-synuclein exacer-
bated the CSP� knockout phenotype [111]. These
findings suggested that �-synuclein may be a chaper-
one, like CSP�. However, the mechanism by which
�-synuclein rescues the loss of CSP� remains uncer-
tain. It may be related to its ability to bind acidic
phospholipids, because A30P �-synuclein, which has
a greatly reduced lipid-binding ability [93], failed to
rescue neurodegeneration resulting from the loss of
CSP�.

α-Synuclein inclusions

Within pathological inclusions from human brain,
the core of the filament extends over approximately

70 amino acids, which comprises the repeat region of
�-synuclein (residues 30–110) [112, 113]. The crys-
tal structure of residues 68–78 of human �-synuclein
showed paired �-sheets with parallel �-strands in
each sheet and anti-parallel �-strands between sheets.
The zipper structure that marked the region between
the paired sheets was longer than in other struc-
tures, and each pair of �-sheets contained two water
molecules instead of being dry [114]. In a high-
resolution structure obtained by solid-state nuclear
magnetic resonance, scanning transmission electron
microscopy and X-ray diffraction, core residues of
the �-synuclein fibril were arranged in parallel, in-
register �-sheets with the topology of a Greek key
[115].

Over 90% of aggregated �-synuclein is phos-
phorylated at serine 129, while only about 4% of
�-synuclein from normal brain is phosphorylated at
this site [116, 117]. It remains to be seen if phosphory-
lated �-synuclein assembles into abnormal filaments.
Antibodies that recognize �-synuclein phosphory-
lated at S129 are sensitive and specific tools for
identifying the inclusions of PD, DLB and MSA. �-
Synuclein can be phosphorylated at this site in vitro
by multiple protein kinases, including G-protein cou-
pled receptor kinases, casein kinases and polo-like
kinases [118–120].

Recombinant mammalian �-synuclein readily
assembles into filaments that share many of the
morphological and ultrastructural characteristics of
filaments from human brain (Fig. 6) [75, 121]. Upon
assembly, �-synuclein adopts structures rich in �-
sheet [122]. Assembly is a nucleation-dependent
process that occurs through sequences in the amino-
terminal 100 amino acids of �-synuclein. Deletion of
residues 71–82 abolished the ability of �-synuclein
to assemble into filaments [123]. Similarly, deletion
of residues 66–74 also prevented assembly [124]. By
contrast, the carboxy-terminal region of �-synuclein
inhibited assembly [75].

In parallel experiments, human �- and �-
synucleins failed to assemble into filaments and
remained in a natively unfolded conformation. �-
Synuclein lacks a hydrophobic region that spans
residues 73–83 of �-synuclein, suggesting that this
difference may explain the proteins’ different propen-
sities to assemble into filaments. However, deletion
of residues 73–83 from �-synuclein did not abol-
ish filament assembly. Moreover, a protein consisting
of �-synuclein with residues 73–83 of �-synuclein
inserted had a far lower fibrillogenic propensity
than wild-type �-synuclein [125]. The fibrillogenic
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Fig. 6. Filaments extracted from the brains of patients with demen-
tia with Lewy bodies (a) and multiple system atrophy (b) or
assembled from bacterially expressed human �-synuclein (c) were
decorated by an anti-�-synuclein antibody. The gold particles con-
jugated to the secondary antibody appear as black dots. From
Goedert and Spillantini [206].

propensity of �-synuclein was determined by amino
acid composition and �-strand contiguity. Mutants of
�-synuclein could be produced that assembled into
filaments [126].

Idiopathic PD constitutes over 90% of PD cases.
Studies of normal and diseased human brains have
shown that �-synuclein inclusions emerge in a pre-
dictable order in nerve cells in different parts of the
brain, making it possible to distinguish six stages
of �-synuclein deposition [127, 128]. The first �-
synuclein-positive structures in the brain occur in
the olfactory bulb and/or the dorsal motor nucleus
of the glossopharyngeal and vagal nerves (stage 1).
Lewy pathology then develops in medulla oblon-
gata and pontine tegmentum (stage 2), followed by
amygdala and substantia nigra (stage 3). It is dur-
ing stage 3 that the motor symptoms of PD begin to
appear. The pathology worsens and reaches the tem-
poral cortex (stage 4). During stages 5 and 6, Lewy
bodies and neurites appear in the neocortex, account-
ing for many of the cognitive problems associated
with advanced PD. Large numbers of �-synuclein-
immunoreactive astrocytes appear in stages 4–6 [129,
130].

�-Synuclein inclusions may form early in the
enteric nervous system, which is connected to the

brain through the vagal nerve, whose cell bodies
are located in the dorsal motor nucleus. They may
also form early in the PNS. The mechanisms through
which the disease process spreads remain unclear. It
could start in the gut and move retrogradely to the
brain through the vagal nerve; in support, vagotomy
has been reported to be associated with a reduced
risk of PD [131]. Alternatively, inclusion forma-
tion could begin in the vagal dorsal motor nucleus
and move from there to the spinal cord and gut in
an anterograde fashion [132], or it could start in
the periphery at multiple autonomic sites and sub-
sequently be transmitted to the spinal cord [133].
The distribution of Lewy pathology in the gut par-
allels the input from the vagal dorsal motor nucleus
[134]. This staging scheme is consistent with the fact
that most PD patients develop non-motor symptoms
before motor dysfunction. Constipation, hyposmia,
depression and rapid eye movement behaviour dis-
order can precede motor symptoms by many years
[135], something Parkinson had already noticed [1].
Their appearance correlates with the systemic dis-
tribution of Lewy pathology [136]. Several studies
support the view that �-synuclein aggregation begins
at synapses [137].

Similar staging schemes are not available for MSA.
However, a prodromal form has been described [138],
akin to incidental Lewy body disease. An atypical
form of MSA with abundant �-synuclein inclusions,
which presented clinically and pathologically as fron-
totemporal lobar degeneration has been described
in the presence of striatonigral degeneration and
variable olivopontocerebellar degeneration, but in
the absence of autonomic dysfunction [139, 140].
Besides MSA-C and MSA-P, MSA-FTLD may be
a third form of disease.

Genetics of SNCA

Six dominantly inherited missense mutations in
SNCA have been described as the cause of famil-
ial PD (Fig. 7). Besides A53T, they comprise A30P
[141], E46K [142], H50Q [143, 144], G51D [145,
146] and A53E [147, 148]. The ages of disease onset
can be variable, even within families, but mutations
G51D, A53E and A53T give rise to the earliest ages
of onset. Experimentally, mutations E46K, H50Q
and A53T increase �-synuclein inclusion formation
[122, 149, 150], whereas mutations A30P, G51D
and A53E [151–154] reduce its rates of aggrega-
tion. Mutations A30P, G51D and A53E also lead to
a reduced ability of mutant �-synuclein to interact
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Fig. 7. Human �-synuclein and its disease-causing mutations. (a), Diagram of the 140 amino acid human �-synuclein protein. The core regions
of the seven amino-terminal repeats are shown as blue bars. (b), An increase in gene dosage (duplication or triplication) of the chromosomal
region containing SNCA or missense mutations in SNCA cause dominantly inherited forms of Parkinson’s disease and dementia with Lewy
bodies. (c), The repeats (residues 7–87) of human �-synuclein are shown, with disease-causing missense mutations (A30P, E46K, H50Q,
G51D, A53E and A53T) given as blue letters. Amino acids that are identical in at least five of the seven repeats are shaded in blue.

with acidic phospholipids [94, 152, 153, 155]. None
of these missense mutations reduced both aggrega-
tion rates and the ability of �-synuclein to interact
with phospholipids. These findings are consistent
with other work, which has suggested the existence
of an antagonistic relationship between lipid binding
of �-synuclein and aggregation into cytotoxic species
[156–158].

Dominantly inherited duplications and triplica-
tions of the chromosomal region comprising SNCA
has also been found to cause PD [159–161]. In
these cases, the sequence of �-synuclein is wild-type,
showing that an increase in the protein levels rather
than a change in its properties is sufficient to cause
PD. Duplication of SNCA gives rise to a form of PD
that is similar to the sporadic disorder in terms of
age of onset and symptoms, but triplication causes a
more severe phenotype, with an earlier age of onset
and prominent cognitive impairment.

Individuals with the A53T mutation in SNCA
developed a severe form of PD that was often accom-
panied by dementia. A clinical picture resembling
DLB was characteristic of a family with the E46K
mutation, whereas individuals from the family with
the A30P mutation developed late-onset PD and had
only mild dementia. Neuropathologically, some indi-
viduals, in particular those with mutations G51D and
A53E, had features of both PD and MSA. This over-
lap of clinical and neuropathological characteristics
supports the view that the aetiologies of PD, DLB and
MSA are closely related.

Genome-wide association studies of risk in idio-
pathic PD showed that SNCA makes the largest
contribution. The implicated polymorphisms lie out-
side the coding region and thus probably affect
mRNA expression, resulting in increased expres-
sion of �-synuclein. [162, 163]. Variability in
LRRK2 (leucine-rich repeat kinase 2), GAK (cyclin

G-associated kinase) and MAPT (microtubule-
associated protein tau) has been implicated. Variants
in SNCA and MAPT are also risk factors for MSA
[164–166].

Animal models of synucleinopathies

Transgenic mice overexpressing human wild-type
or mutant �-synuclein in nerve cells can develop
abundant �-synuclein filaments [167–169]. The for-
mation of inclusions correlated with the development
of a movement disorder, possibly because of abun-
dant brainstem and spinal cord pathologies. In these
and other models, a major difference with PD was the
absence of significant pathology and neurodegener-
ation in dopaminergic nerve cells of the substantia
nigra.

This problem has been partially solved by trans-
genic mouse lines that express carboxy-terminally
truncated human �-synuclein under the control of
the rat tyrosine hydroxylase promoter on a mouse
�-synuclein null background [105, 170]. They devel-
oped �-synuclein aggregates, a striatal dopamine
deficiency and reduced locomotion. The carboxy-
terminal truncation of human �-synuclein promotes
aggregation [75]. Aggregation is also promoted when
full-length human �-synuclein is expressed on a
mouse SNCA or SNCB knockout background [171].
When wild-type human �-synuclein was expressed
in oligodendrocytes, the transgenic mice developed
MSA-like degeneration in brain and spinal cord [172,
173]. A mouse line that inducibly expressed A53T
�-synuclein in astrocytes developed widespread
astrocytosis, microglial activation and nerve cell
degeneration, as well as severe paralysis [174]. In
inducible transgenic mouse models of neuronal synu-
cleinopathy, which modelled DLB, suppression of
�-synuclein expression in the limbic system led to
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the clearing of �-synuclein inclusions and the disap-
pearance of synaptic defects [175].

Adeno-associated and lentiviral vectors have
been used to express human wild-type and mutant
�-synuclein in rodent and primate substantia nigra
[176–178], leading to the formation of Lewy
body-like inclusions and degeneration of nerve
cells. Aggregation of �-synuclein promoted neu-
rodegeneration [179, 180]. Membrane binding of
�-synuclein inhibited aggregation, whereas blocking
membrane binding enhanced aggregation [155].
Activation of autophagy mediated by Beclin 1
[181] or overexpression of transcription factor EB
(TFEB) [182] protected against the aggregation of
�-synuclein. Interestingly, dopaminergic neurons in
the ventral tegmental area, which are quite resistant
to the effects of virally expressed A53T �-synuclein
[183], degenerated upon repression of TFEB [182].
The differential vulnerability of nigral and ventral
tegmental dopaminergic neurons, which has been
documented in PD [184], may be due to differences
in lysosomal clearance [182] and/or a higher basal
rate of oxidative phosphorylation and a more com-
plex axonal arborisation [185]. This is reminiscent
of the concept of pathoclisis, which was put forward
by Cécile and Oskar Vogt in 1922 [186]. In con-
temporary parlance, pathoclisis amounts to selective
vulnerability.

Expression of human �-synuclein in Drosophila
led to the formation of filamentous Lewy body-like
inclusions, age-dependent loss of some dopaminergic
neurons, and locomotor deficits [187]. Aggregation
of �-synuclein was necessary for neurodegenera-
tion and these effects were modulated by chaperones
[188, 189]. Similarly, overexpression of human �-
synuclein in C. elegans also resulted in dopaminergic
nerve cell loss and motor deficits [190].

Propagation of α-synuclein aggregates

Evidence for the existence of prion-like mecha-
nisms in human brain has come from the development
of scattered Lewy pathology in foetal human mid-
brain neurons that were therapeutically implanted
into the striata of patients with advanced PD [191,
192]. Lewy pathology was detected in 2–5% of
grafted cells in patients who had survived for 10 or
more years, approximately the same percentage as
that of neurons with Lewy pathology in the pars com-
pacta of the substantia nigra in PD. After 24 years,
11–12% of grafted dopaminergic neurons exhibited
�-synuclein- and ubiquitin-positive inclusions [193].

Over the past nine years, experimental studies have
shown that the injection of �-synuclein inclusions
into animals induces nerve cells to form intracel-
lular inclusions at the injection sites, from where
they can spread to distant brain regions [194]. By
long-term in vivo imaging, aggregated recombi-
nant �-synuclein could seed the ordered assembly
of expressed �-synuclein [195]. Inclusion-bearing
neurons degenerated, demonstrating that inclusion
formation was linked to cellular toxicity. In the sub-
stantia nigra from PD patients, the proportion of
Lewy body-bearing neurons is approximately 4% and
it remains constant over time. The inclusions are
believed to be eliminated when the neurons that bear
them die. In a model, in which neurons are killed by
the Lewy pathology, it has been estimated that the
mean survival time of an eosinophilic Lewy body is
of the order of six months [196].

Morphological differences between disease-
associated �-synuclein filaments have been
described [72]. Lewy pathology was positive by
Campbell-Switzer silver staining and negative by
Gallyas-Braak silver [197]. By contrast, the glial
cytoplasmic inclusions of MSA were positive by
both Campbell-Switzer and Gallyas-Braak. Brain
extracts from MSA patients propagated in heterozy-
gous mice transgenic for human A53T �-synuclein,
in contrast to brain extracts from PD patients [198,
199]. However, unlike MSA, �-synuclein inclusions
were exclusively neuronal.

Polymorphs of recombinant aggregated �-
synuclein in the form of ribbons or fibrils have been
described [200]. When injected into the rat substantia
nigra, ribbons gave rise to Lewy pathology, whereas
fibrils, which did not seed Lewy pathology, led to
the loss of dopaminergic neurons [201]. It remains
to be determined if ribbons and fibrils have their
counterparts in human synucleinopathies. In sepa-
rate work, some �-synuclein filaments seeded both
tau and �-synuclein aggregation, whereas others
only seeded �-synuclein aggregation [202]. These
conformers of aggregated �-synuclein exhibited
different properties after proteinase K digestion.
They were similar to prion strains, in that they
showed structural variations, differences in seeding
properties and heritability of phenotypic traits.

Induced pluripotent stem cells

Induced pluripotent stem cell (iPSC)-derived neu-
rons from SNCA mutation carriers are playing
an increasingly important role as an experimental
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system [203, 204]. Their main advantage resides in
the fact that they are human nerve cells. However, the
application of iPSC technology to the modelling of
adult-onset diseases that are believed to be caused by
a gain of toxic function mechanism, as is the case of
the synucleinopathies, remains challenging. In prin-
ciple, the earliest pathological changes that lead to
disease can be studied in these systems, but their cor-
rect interpretation may require end-stage pathology.

CONCLUSION

The abnormal aggregation of �-synuclein has
proved to be the “rosetta stone” of PD, DLB and
MSA. Understanding disease aetiology and patho-
genesis is one thing, but developing safe and effective
mechanism-based treatments is quite another. When
mechanism-based therapies for PD, DLB and MSA
will become available, they will probably interfere
with the neurodegeneration caused by the aggrega-
tion of �-synuclein. Given the long preclinical phase,
it may be possible to develop preventive strategies,
provided at-risk individuals can be identified. In prin-
ciple, the earliest pathological changes that lead to
disease can be studied in model systems. However,
their correct evaluation may require the development
of end-stage pathology.
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[198] Woerman AL, Stöhr J, Aoyagi A, Rampersaud R, Krej-
ciova Z, Watts JC, Ohyama T, Patel S, Widjaja K, Oehler
A, Sanders DW, Diamond MI, Seeley WW, Middleton
LT, Gentleman SM, Mordes DA, Südhof TC, Giles K, &
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