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CTLA-4 is a co-receptor on T-cells that controls peripheral tolerance and the

development of autoimmunity. Immune check-point blockade (ICB) uses monoclonal

antibodies (MAbs) to block the binding of inhibitory receptors (IRs) to their natural ligands.

A humanized antibody to CTLA-4 was first approved clinically followed by the use of

antibody blockade against PD-1 and its ligand PD-L1. Effective anti-tumor immunity

requires the activation of tumor-specific effector T-cells, the blockade of regulatory cells

and the migration of T-cells into the tumor. Here, we review data implicating CTLA-4 and

PD-1 in the motility of T-cells with a specific reference to the potential exploitation of these

pathways for more effective tumor infiltration and eradication.
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INTRODUCTION

T-cells circulate continuously between blood, lymphoid tissues and lymph nodes as a mechanism
to encounter and respond to foreign antigen. The movement or motility of T-cells involves integrin
and selectin mediated adhesion, increased velocity and arrest, chemotaxis to sites of inflammation,
homing back to compartments of initial antigen contact, transmigration to enter tissues and
movement inside tissues (Figure 1). Antigen-experienced T-cells extravase into non-lymphoid
tissue and travel back via lymphatic vessels. In other instances, i.e., in the lymph nodes where
foreign antigen is presented to T-cells by dendritic cells (DCs), integrins such as lymphocyte
function-associated antigen 1 (LFA-1) are activated by chemokines and antigen-receptor (T-cell
receptor; TCR) ligation to bind to their ligands inter-adhesion molecules (ICAMs) to facilitate the
“stop signal” for T-cell-dendritic cell (DC) conjugate formation (Figures 1, 2A). The operations of
adhesion and chemokine reactivity from blood to tissue involves multi-step transmigration (6).

Integrin-activation supports activation of chemokine receptors that directs migration of T-
cells from blood into tissues or back home into lymph nodes and spleen. The movement
of T-cells responds to intrinsic and environmental clues. Chemokines play central roles
in inducing the movement of mammalian cells to various niches of the immune system
(7, 8). Chemokines effect the motility of CD4 and CD8 T-cells, as well as, suppressor
regulatory T-cells (Tregs), although not always in a similar fashion (9, 10) (Figure 1). T-cells
in distinct differentiation states such as naïve, effector, or memory T-cells move differently
in the same environment to the same clues. Classically, the presence of sensitive CCR7
mediates homing of T-cells to lymph nodes and spleen, while the presence of CXCR5 in
follicular T-cells dictates their movement to germinal centers, whereas CXCR3 and CCR5
directs them to the site of injury and inflammation (11). Antigen-experienced T-cells involve
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movement over long distances were infection might occur, while
naïve cells tend to explore the local environment over shorter
distances in search of presented antigen (12). Co-receptors such
as CD28 and CTLA-4 also modulate these pathways for effective
migration.

CD28

CD28 plays a central role in providing a second signal needed
for T-cell activation (13, 14). Activation signals from the antigen-
receptor (TCR) are modified by signals from CD28 and other
co-receptors (15–17). CD28 signals via the binding of the lipid
kinase phosphatidylinositol- 3-kinase (PI3K) and the adaptor
GrB2-SOS complex (18, 19) and p56lck which recruits the
protein kinase C (20). It changes the organization of the
cytoskeleton (16, 21, 22) and promotes the localization of T-
cells to target tissue following antigenic priming (23). With
this, it promotes egress from lymphoid tissue and migration
to sites of inflammation. Although the downstream pathways
that link CD28 to adhesion and migration are not fully
understood, loss of CD28 binding to PI3K changes localization to
tissues and may favor primed T-cell migration to non-lymphoid
tissues (24).

CTLA-4

Check-point blockade of cytotoxic T lymphocyte antigen 4
(CTLA-4, CD152) is a major focus in tumor immunotherapy (25,
26). Ipilimumab, a humanized antibody against the inhibitory
co-receptor CTLA-4, was the first checkpoint-block mAb to
be approved (27). It is thought to act during neo-antigen
presentation in lymph nodes and can affect primary and
secondary responses to antigen. The loss of CTLA-4 in mice leads
to a dramatic lymphoproliferative disorder where animals die
within 3–5 weeks of age. Activated CD4 T-cells show an increased
localization and infiltration of non-lymphoid and lymphoid
organs where they accumulate in lymph nodes, the heart, liver,
and pancreas (28–30). Other in vivo models involving antigen-
specific T-cell responses combined with CTLA-4 blockade using
specific antibodies (31, 32) or reduced CTLA-4 expression (10)
support the notion that CTLA-4 can control T-cell infiltration
into allo-grafts and tumors.

CTLA-4 dampens T-cell responses via cell intrinsic and
extrinsic pathways. Intrinsic events include the inhibition of
protein translation, recruitment of phosphatases, activation of
ubiquitin ligases, inhibition of cytokine receptor signaling (33–
38) and inhibition of lipid microdomain formation on the
surface of T-cells (39). CTLA-4 has also been reported to bind
to the phosphatases SHP2 and PP2A (34, 40, 41), although
the cytoplasmic tail lacks ITIMs for SHP2 binding (42) and
PP2A also binds to CD28 (34). Cell extrinsic events include
the competition for CD28 in binding to its ligands CD80/86
(43), the removal of CD80/86 (44), the release of suppressive
indoleamine (2,3)-dioxygenase (IDO) and the modulation of
Treg function (35, 45). Eachmodel has strengths and weaknesses.
While competition with CD28 can occur, the induction of

autoimmune disease in Ctla-4−/− mice depends on a C-terminal
intracellular proline CD28 motif in in vivo co-stimulation (46).
Similarly, while CD80/86 can be trans-endocytosed from the
surface of DCs by CTLA-4 (44), the level of CD80/86 removal
in vivo is low and the ligands can be rapidly re-expressed on
presenting cells. Further, whereas the selective deletion of CTLA-
4 on FoxP3+ Tregs can delay the onset of disease, mice still die
within 2–3 months (35, 45). Moreover, the CTLA-4 YVKMmotif
binding to PI3K activates pro-survival signals (47, 48) and LFA-1
adhesion (49). Beyond this, the TCR/CD3mediated stop-signal is
decoupled in T-cells fromCTLA-4 deficientmice (50) and CTLA-
4 has regulatory effects on homeostasis which modulates overall
levels of peripheral T-cells (35). It is likely that multiple factors
account for the auto-proliferative phenotype in the Ctla-4−/−

mice.

PD-1

PD-1 is a member of the CD28 superfamily which negatively
regulates T-cell activation. Blockade of the inhibitory co-receptor
PD-1 or its ligand ligand PD-L1 has shown survival rates of
20–30% in treating various types of cancer (27, 51). Negative
signals are generated by a cytoplasmic immunoreceptor tyrosine-
based switch motif (ITSM) motif that binds to the protein
tyrosine phosphatase SHP-2 and which can limit B-cell and T-
cell signaling (52, 53). While PD-1-SHP-2 inhibits TCR and/or
CD28 signaling (52–54), it is unclear whether PD-1 signals in
the same manner in different T-cell subsets. To date, PD-1 has
been found to primarily regulate the cytolytic effector function of
CD8+ cells (55, 56). Anti-PD-1 immunotherapy also depends on
the expression of CD28 (57).

CTLA-4 AND PD-1 REGULATION OF
T-CELL MOTILITY

The massive infiltration of organs observed in the Ctla-4−/−

provided the first clue that the co-receptor could alter migration
of T-cells. Whether this was due to the hyper-activated state of
activated Ctla-4−/− CD4 T-cells and/or was related to a direct
effect of the co-receptor on mechanisms that affected T-cell
motility and/or migration was unclear. An initial clue suggesting
that a cell intrinsic pathway might be induced by CTLA-4
was apparent in the observation that T-cells in Ctla-4−/−mice
expressing a tailless form of the gene showed alterations in cell
migration (58). Further, the acceleration of allograft rejection
by CTLA-4 blockade in vivo is associated with more severe
mononuclear cell infiltration (59). In addition, depletion of
CTLA-4 on T-cell subpopulations in vivo showed that while
CTLA-4 on Tregs inhibits the aberrant activation of T-cells,
the expression of CTLA-4 on conventional T-cells prevents
aberrantly activated T-cells from infiltrating and fatally damaging
non-lymphoid tissues (60).

CTLA-4 has been shown to engage mechanisms linked to
T-cell movement (1–4, 61) (Figures 1, 2). It was first shown
to activate LFA-1 adhesion via increased clustering of integrin
receptors (49). YVKM motif binding to PI3K mediates this
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FIGURE 1 | CD28 and CTLA-4-mediated T-cell motility. T-cell response is initiated in secondary lymphoid organs. Naïve and experienced T-cells enter lymph nodes

where they encounter antigen presented by DCs. CTLA-4 limits the interaction of CD4+ T-cells with DCs in the reverse-stop signal model involving an increase in

T-cell motility, and a raising of the threshold needed to activate T-cells. In the “reverse-stop signal model”, CTLA-4 induces T-cell motility and limits T-cell binding to

DCs during antigen-presentation (1, 2). Reverse stop-signaling might also promote the egress of T-cells as mediated by responses to Sphingosine-1-phosphate (S1P)

and chemokines. T-cells then migrate from the vasculature to infected tissue via a combination of chemokines and CTLA-4. CTLA-4 can alter motility by up-regulating

key chemokine receptors CCR5 and CCR7 and the sensitivity toward the chemokines (3, 4). In the presence of antibody blockade, T-cells accumulate in the blood

and remain circulating in the body (3). Upon entry into tissues, different T-cell subsets play important roles in determining the immune response to infection. The

scheme was drawn using pictures from Servier Medical Art.

adhesion (49). This observation suggested that distinct motifs in
co-receptor might mediate different intracellular events. Further,
it offered the interesting possibility that CTLA-4 could generate
both negative and positive signals. Indeed, a precedent was seen
in nerve growth factor (NGF) signaling where the binding of
PI3K determined whether positive or negative signals leading to
apoptosis or cell death were generated (62). The absence of PI3K
binding resulted in proapoptotic signaling via the receptor.

One key function of CTLA-4 is to interfere with the ability
of T-cells to form stable conjugates with antigen-presenting
cells (APCs) (Figure 2A). In the “reverse-stop signal model”,
CTLA-4 was found to induce T-cell motility and to limit T-
cell binding to DCs during antigen-presentation (1, 2). CTLA-4
ligation with specific antibodies activates the motility of T-
cells, while CTLA-4 on T-cells interferes with the dwell times
of cells with DCs presenting antigenic peptide. Strikingly,
antigen-specific Ctla-4−/− T-cells continue to move even in
the presence of antigen (1). Similarly, the expression of CTLA-
4 in transformed cell line, Jurkat promotes its motility (63).
In terms of cell biology, CTLA-4 ligation induces a polarized
morphology typical of motile T-cells, which in turn depends
on the mediator’s phosphatidylinositol 3-kinase, Vav-1, Cdc42,
and myosin light chain kinase (64). From this, we proposed
that the ability of CTLA-4 to limit contact times reduced the

efficacy of TCR ligation and signaling which in turn raises
the threshold needed to activate T-cells (2). Antigen-attracted
T-cells competent for CTLA-4 move specifically to sites of
inflammation and easily home to lymph nodes in vitro and in
vivo, whereas CTLA-4 incompetent T-cells migrate to a lesser
extent (3, 60).

It is noteworthy that the effects of CTLA-4 on motility may
not operate equally in all T-cells. The reverse-stop effects appear
limited to conventional T-cells (Tconvs) (9). It does not operate
as efficiently in regulatory T-cells (9), or in anergic T-cells (5).
Further, in certain antigen-presentation systems, the blockade
of CD80/CD86 itself was as effective as CTLA-4 blockade in
promoting the dissociation of T-cells from DCs and increased
motility (65). While blockade of CD80/86 will also affect the
induction of activation signals from CD28, and indirectly act to
terminate T-cell-APC binding, it is also possible that the steric
blockade of CTLA-4 with CD80/86 might release T-cells in a
manner seen with reverse-stop signaling. Lastly, we also observed
that T-cells fromCtla-4−/− mice are unable to arrest when ligated
with anti-CD3 (50). The reason for this is unclear butmay involve
the heightened activation status of T-cells in an inflamed immune
environment. It provides a potential explanation for the massive
infiltration of all organs of the Ctla-4−/− mice with T-cells.
Conversely, the expression of CTLA-4 on conventional T-cells
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FIGURE 2 | CTLA-4 regulates T-cell motility. (A) Reverse-stop signal model of CTLA-4 (and PD-1). CTLA-4 induces T-cell motility and limits T-cell binding to DCs

during antigen-presentation (1, 2). Agonistic CTLA-4 ligation could directly activate the motility of T-cells and thereby interfere with the dwell times of cells with DCs

presenting antigenic peptide. PD-1 can function in a similar way (5). (B) CTLA-4 modulates response to chemokines. Chemokine gradients attract T-cells to the site of

injury and inflammation. CTLA-4 can alter motility by up-regulating key chemokine receptors CCR5 and CCR7 and the sensitivity toward the chemokines CCL4

(MIP-1β), CXCL12 (SDF1α) and CCL19, but not CXCL9 (MIG) (3). The scheme was drawn using pictures from Servier Medical Art.

prevents aberrantly activated T-cells from infiltrating and fatally
damaging non-lymphoid tissues (60).

In a second pathway of regulation, CTLA-4 can alter motility
by up-regulating key chemokine receptors CCR5 and CCR7
and increasing their sensitivity to chemokines CCL4 (MIP-
1β), CXCL12 (SDF1α) and CCL19, but not CXCL9 (MIG) (3)
(Figure 1, middle; Figure 2B). We have proposed a model for
chemotaxis that integrates CD28 and CTLA-4 signals via the
G protein-coupled receptor kinase GRK that its phosphorylation
of chemokine receptors for de-sensitization and degradation
(4). Whereas, CD28 induces GRK to phosphorylate the CCR5
receptor, CTLA-4 engagement inactivates GRK2, leading to
delaying or preventing phosphorylation of CCR5, and thereby
halts desensitization. In addition, CTLA-4-enhanced specific
migration might be partly the consequence of integrin-supported
chemotaxis (66, 67), but is alsomediated by TCR-mediated PI3K-
Akt phosphorylation which synergizes with CD28-mediated
migration (4). Antigen-attracted T-cells competent for CTLA-4
move specifically to sites of inflammation and easily home to
lymph nodes in vitro and in vivo whereas CTLA-4 incompetent
T-cells migrate much less (3, 60). Others have shown that T-cells
poorly exit an IFN-treated peritoneal cavity, when before antigen
recognition by T-cells anti-CTLA-4 antibodies and anti-hamster
antibodies were applied (24). T-cells under this treatment did not
move and therefore it is unclear whether the antibody-treatment
blocked or crosslinked CTLA-4 and to which degree CTLA-4
operated in trans or without CD28 ligation (4).

Anti-CTLA-4 interference with the interaction between T-
cells and DCs (1) laid a precedent for the follow-on finding that
PD-1 blockade has similar effects in disrupting T-cell bindings to
other cells (5, 68). Antibodies to PD-1 also limit contact times of
anergic T-cells (5) andCD8T-cells (68). In the latter study, PD-L1

was found to localize to the central supramolecular activation
cluster, to decrease antiviral CD8 T-cell motility, and promote
stable immunological synapse formation. Antibodies to PD-1-
PD-L1 restored CD8 T-cell motility in the presence of high viral
loads (68).

In this model, anti-PD-1 blockade has shared and distinct
properties relative to CTLA-4 blockade. PD-L1 ligation of PD-1
appears to enforce adhesion that is released by anti-PD-1
blockade. PD-1 associated SHP-2 does not appear to negatively
regulate adhesion. It is likely that CTLA-4 binding to CD80/86
might also promote adhesion and it blockade might release the
T-cell from binding to another cell. However, in addition to
this event, anti-CTLA-4 also promotes motility (1, 69). CTLA-4
expressing T-cells simply failed to undergo motility arrest in
vivo in the presence of antigen, without the need for antibody
blockade (1, 50). Antibody blockade of receptor binding to ligand
and the induction of motility are therefore likely to cooperate
in disrupting T-cell binding to other cells. In the presence of
blocking antibody, the natural expression of CTLA-4 might limit
contact of T-cells, while the additional blockade with anti-CTLA-
4 ensures the complete release of the weakly adhesive T-cells. In
both instances, anti-CTLA-4 and PD-1 limit T-cell binding to
DCs during antigen presentation, thereby reducing the efficacy of
TCR signaling and raising the threshold needed for the activation
of T-cells. This is further complicated by the observation that
T-cells from CTLA-4 deficient mice fail to stop in response to
anti-CD3 ligation (50). It is unclear whether this feature is due
to chronic stimulation that might over-ride the stop signal over
time. Overall, the current data indicates that CTLA-4 and PD-1
alters the interaction of T-cells with other cells, including antigen-
presenting cells, and consequently, alters the overall motility and
migration of T-cells. The exact nature of the regulatory effect
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FIGURE 3 | Model where blockade of CTLA-4 and PD-1 enhances migration into tumors and within tumors for more effective tumor rejection. Preventing CTLA-4

engagement, i.e., using anti-CTLA-4-antibodies in vivo modulates the entry and migration of T-cells within tumors for more effective tumor elimination. Anti-CTLA-4

and anti-PD-1 effects on antibodies may also modulate T-cell movement within the tumor mass. (1) (5, 43), (2) (28–30, 74), (3) (49), (4) (35, 45), (5) (3, 4, 32), (6)

(65, 69), (7) (10, 31, 32), (8) (25, 26, 37, 38). The scheme was drawn using pictures from Servier Medical Art.

may vary depending on the nature of the T-cell, whether CTLA-4
ligation occurs, as well as, the inflammatory conditions in the
lymphoid microenvironment.

CTLA-4 AND PD-1 BLOCKADE IN TUMOR
MODELS

A prediction from this work has been that CTLA-4 plays a
similar role for T-cell entry and movement in tumors. Many
tumors express neo-antigens that can be recognized by resident
and peripheral T-cells. This aspect might contribute to the
synergy seen between anti-CTLA-4 check-point blockade and
other modalities of immune intervention (34, 70–73) (Figure 3).
As mentioned, CTLA-4 limits dwell times with DCs and potential
other tissues (1, 2) and the in vitro and in vivo migration of T-
cells is enhanced by CTLA-4 (3, 4). In the presence of antibody
blockade, T-cells accumulate in the blood and remain circulating
in the body (3). Due to angiogenesis, the enhanced presence of
circulating T-cells in the blood may provide an advantage in
facilitating tumor access (75). In particular, as vessels at the tumor
side are highly branched, irregular, and show a discontinued
blood flow (75).

Furthermore, the tumor generates a local immune privileged
microenvironment where access by T-cells is limited since
integrin-mediated extravasation from blood stream is
made difficult as ligands are downregulated at the barrier
(75). Some tumors may even grow in immune privileged
sides such as the central nervous system. Of note, immune
privilege is an active process involving induction of inhibitory
mechanisms such as the instructed upregulation of CTLA-
4 on T-cells, which can accumulate at the border of the
privileged side (76, 77). In addition, T-cells in the tumor
microenvironment express CTLA-4 so that blockade releases
this localization which enables them to even enter immune
privileged microenvironments (32). Therefore, under CTLA-4
blockade using specific antibodies, tumors can be reached by
migrating T-cells. However, enhanced motility and migration
may also explain immune-related adverse events reported under
therapy.

As mentioned, anti-CTLA-4 in tumor models has shown to
increase T-cell movement in the tumor (61, 69). In murine
breast cancer models, CTLA4 blockade using specific antibodies
increased the motility of tumor infiltrating lymphocytes (TILs)
in the tumor cavity in vivo (69). The expression of NKG2D
then offset this effect by enhancing TILs arrest. In some manner,
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this combination of anti-CTLA-4 effects on motility combined

with stabilization as mediated by NKG2D enhanced tumor
eradication. In general, anti-CTLA-4 check-point blockade has
been associated with greater tumor entry, although the exact
mechanism for this increase in tumor entry has yet to be
determined (51). Similarly, in allo-graft models, anti-CTLA-4
blockade increased motility of CD4 effector and Treg cells, it
may decrease the motility of CD8 effector T-cells (10). The
explanation for these different effects is unclear but may relate
to kinetics of CTLA-4 expression on subpopulations and thus,
whether it is expressed under anti-CTLA-4 treatment at the cell
surface of T-cell helpers and/or CD8 T-cell attackers (47, 74, 78).
As CTLA-4 has a much higher affinity to CD80 and CD86
than CD28, the outcome will also be influenced by CD80/86
expression and subsequent ligation in the TDLN and tumor sites
(65, 69).

CTLA-4 and PD-1 may have similar effects on T-cell reactivity
against tumors; however, the differences in their mode of action
may also suggest differences. For example, the more restricted
ability of anti-PD-1 to block PD-1 binding to PD-L1 may suggest
a more restricted role for T-cells already localized in tumors.
Indeed, anti-PD-1 therapy has been reported to have fairly minor
effects in promoting an increase in numbers of TILs in tumors
such as melanoma. It predominate function on CD8 T-cells
may also lead to a restricted effect on this subset. This may
operate in conjunction with the effects of anti-PD-1 in restoring

functionality to exhausted T-cells (79). By contrast, the combined
effects of blockade and direct enhanced motility may be expected
to lead to an increase in the migration of T-cells into and within

tumors. At the same time, its effect on CD4 and CD8 T-cells
might imply a more generalized role on these two major subsets
within the T-cell population. Taken together, under CTLA-4
blockade, immune surveillance may be enhanced to sites where
T-cells have restricted for tumor entry such as in peri-tumor sites
where T-cells can be paralyzed. The synergy of combinational
therapy such as CTLA-4 and PD-1 blockade could be due to
enhanced motility and a reversal of T-cell exhaustion on different
T-cells and in different microenvironments.

CONCLUSION

Although CTLA-4 impinges on many features of T-cell biology,
its effect on tissue and tumor infiltration will be the subject
of exciting future work. Antibodies to CTLA-4 may act to
facilitate tumor entry and alter the movement in tumors,
rates of egress. Further studies will elicit and exploit this
feature to facilitate tumor entry for more effective tumor
eradication.
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