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The logical (or logic) formalism is increasingly used to model regulatory and signaling

networks. Complementing these applications, several groups contributed various

methods and tools to support the definition and analysis of logical models. After an

introduction to the logical modeling framework and to several of its variants, we review

here a number of recent methodological advances to ease the analysis of large and

intricate networks. In particular, we survey approaches to determine model attractors

and their reachability properties, to assess the dynamical impact of variations of external

signals, and to consistently reduce large models. To illustrate these developments, we

further consider several published logical models for two important biological processes,

namely the differentiation of T helper cells and the control of mammalian cell cycle.

Keywords: regulatory and signaling networks, logical modeling, discrete dynamics, attractors, reachability

analysis, simulation, T cells activation and differentiation, cell cycle control

1. INTRODUCTION

As computational modeling is increasingly recognized as a necessary and valuable approach to
understand dynamical features of complex biological processes, the logical framework has proved
to be particularly successful to model and analyze regulatory and signaling networks (Samaga and
Klamt, 2013; Albert and Thakar, 2014; Le Novère, 2015; Naldi et al., 2015). Back in 1961, following
the discovery of specific gene regulation mechanisms and the delineation of the first regulatory
circuits in bacteria (Jacob andMonod, 1961; Monod and Jacob, 1961), several researchers proposed
to use Boolean algebra to model cellular circuits. Mitoyosi Sugita was the first to present an
explicit modeling of bacterial genetic circuits with symbolic logic, applying the methods and
tools of mathematics and electronics, and coining the term molecular automaton (Sugita, 1963).
Soon after, Stuart Kauffman engaged in a thorough analysis of the dynamical properties of
generic Boolean network models, using a synchronous update and focusing on asymptotical
properties (Kauffman, 1969; Glass and Kauffman, 1973). In parallel, René Thomas rather addressed
the modeling of specific regulatory circuits, in particular the network controlling lysis-lysogeny
decision in bacteriophage lambda, using an asynchronous update, and progressively refining the
logical formalism with the introduction of multi-valued variables, the explicit consideration of
threshold values, the definition of logical parameters, etc. (Thomas, 1973; Thomas et al., 1976;
Thomas, 1978). By and large, the studies of Kauffman and Thomas converged in showing that
alternative stable states (or more generally alternative attractors) can be associated with different
cell types, and that logical state transitions can be associated with gene expression changes over
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time. While Kauffman emphasized how connectivity and specific
kinds of logical functions have an impact on the asymptotic
network behavior, Thomas focused more specifically on the
dynamical roles of simple, positive vs. negative regulatory
circuits embedded in more complex networks. Altogether, these
contributions laid the foundation for a wealth of studies
demonstrating the versatility and power of logical modeling in
molecular biology and beyond (see e.g., Thomas and D’Ari, 1990;
Kauffman, 1993).

Briefly, in a logical model, each component is associated with
a discrete variable, which is a logical (often Boolean i.e., binary)
abstraction of its level of activity (or concentration). A logical
function defines the next value of this variable, depending on
the current levels of the regulators of that component. Such a
model defines a discrete dynamical system where the state of
the network (the component levels) evolves stepwise. Besides
scalability (logical models with few hundreds components have
been simulated), the appeal of this framework relies on its
qualitative nature, as kinetic parameters and other precise
knowledge about the molecular mechanisms at stake are not
required. Despite this coarse grained abstraction, the resulting
behaviors presumably capture the most salient properties of
the modeled systems (Samaga and Klamt, 2013; Albert and
Thakar, 2014; Le Novère, 2015). As a matter of fact, the
logical framework proved useful in a wide range of biological
applications: cell differentiation in developmental processes (for
instance, drosophila development as in González et al., 2008;
Sánchez et al., 2008; Fauré et al., 2014), haematopoiesis (Bonzanni
et al., 2013), T lymphocyte activation and differentiation (see
Section 5.1), cell cycle control (see Section 5.2) and more
generally cell fate decisions such as proliferation, growth arrest,
apoptosis, senescence, etc. (see e.g., Schlatter et al., 2009; Grieco
et al., 2013; Mombach et al., 2014; Cohen et al., 2015).

Alternative modeling frameworks explicitly refer to sets of
reaction rules (denoting molecular consumption and production
processes) tomodel and analyze cellular networks (see LeNovère,
2015 for further details and references). In this respect, a logical
model can be considered as an abstraction focusing on signed
interactions denoting positive or negative influences between
network components (defining the regulatory graph, which is
completed by logical rules specifying the compositional effects of
these influences). The logical framework is thus primarily used
for signaling and gene regulation modeling.

For a general overview of the logical modeling of biological
networks, we refer to existing reviews (Samaga and Klamt, 2013;
Albert and Thakar, 2014; Le Novère, 2015; Naldi et al., 2015).
Here, we emphasize the versatility of the logical formalism, as
well as the relevance of a range of methods and tools. We
first present formal definitions of (multi-valued) models and
their associated dynamics, depending on a variety of updating
schemes. As attractors and their reachability are of utmost
interest when analyzing models of biological networks (see e.g.,
Huang et al., 2009), we particularly focus on approaches to
determine model attractors and their reachability properties, as
well as on the impact of variations of external signals on model
behaviors. To demonstrate the relevance of the logical modeling
and of the associated methodological advances, we survey several

published logical models dealing with two important biological
processes: (i) the activation and differentiation of T cells, and (ii)
the control of cell proliferation.

The regulatory network controlling mammalian T helper (Th)
lymphocyte activation and differentiation is of particular interest
from the modeling point of view. First, this system has been
largely studied experimentally, leading to the identification of
many of the key molecular components involved. Furthermore,
Th cell activation and differentiation are controlled by complex
and intertwined intracellular signaling pathways and regulatory
circuits, which ultimately enable the differentiation of Th cells
into multiple functional subtypes, depending on the signals
present in their microenvironment.

Also challenging and well studied are the networks controlling
the initiation of cell division and the progression of cells along
the main phases of mitotic cell cycles. Initially investigated
in model organisms such as budding and fission yeasts, these
networks have been deciphered in various other species, up to
mammals. Models have been built to assess the implementation
of the various cell cycle check points and the achievement of
coordinated and robust oscillations in the activities of molecular
components. Moreover, as defects of the cell cycle engine are
one of the bases of cancer, many studies currently focus on
mammalian cell cycle control networks.

In Section 2, we formally introduce the basics of the logical
formalism and its main variants. The core of this paper
demonstrates the assets of the framework with advancedmethods
and tools to analyze behavioral properties (Section 3), as well as
to support data integration into models (Section 4). Finally, we
illustrate these assets on T cell signaling and cell cycle control
networks (Section 5).

2. FUNDAMENTALS OF THE LOGICAL
FORMALISM

We formally introduce the logical framework, defining models
and their dynamics. Most common variants are presented, in
particular regarding updating schemes and their impacts on
dynamical properties. A selection of computational tools is then
briefly presented.

2.1. Model Definition
The basic concepts presented in this section are illustrated in
Figure 1. A logical model (G,K) of a regulatory network is
defined by:

• A set of n regulatory components G = {g1, g2, . . . gn}, each gi
being associated with an integer variable, which takes its values
in {0, . . .maxi}, defining a discrete mapping of the range of
the component functional levels (of activity or concentration).
The (finite) state space S is defined as the cartesian product
5i=1,...n{0, . . .maxi} and a model state is thus a vector g =

(g1, . . . gn).
• For each gi, a discrete functionKi defines its values, depending

on the model states: Ki : S → {0, . . .maxi}. The transition
function K : S → S with K(g) = (K1(g), . . .Kn(g)) thus
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FIGURE 1 | Illustration of the basics of the logical formalism—Model definition. (A) The regulatory graph defines the topology of the regulatory structure,

where nodes denote regulatory components and edges represent regulatory effects (activations are denoted by green edges, whereas inhibitions are represented in

red). (B,C) The evolution of the variables associated with the regulatory components is defined by the logical functions, which are written in the form of logical formulas

or, alternatively, in the form of truth tables. “∧,” “∨,” and “!” stand for the logical operators AND, OR and NOT, respectively. Note that the regulatory graph in (A) can be

recovered from the logical functions defined in (B,C), but the reverse is not true (see main text). (D) Hypergraph as an alternative definition of the Boolean model of

(A–C) (merged arrows denote AND operator). (E) Example motivating the introduction of a multi-valued variable; here G1 activates G2 and G3 at different thresholds

and activates G4 when it is at level 1, but inhibits it at level 2 (see also Supplementary Figure S1).

defines the model behavior, but also the underlying regulatory
graph (see below).

While a Boolean discretization is generally enough (i.e., maxi =
1 for all i), a regulatory component may operate at different
levels on distinct targets, or yet, depending on its level, may have
different effects on a given target. In such cases, it is necessary to
consider a multi-valued variable whose maximal value is greater
than 1 (see Figure 1E). Note that the discrete functions Ki are
referred to as logical functions, even in the case of multi-valued
variables. This denomination originates in Thomas and Snoussi’s
seminal work defining their generalized kinetic logic (Thomas and
D’Ari, 1990).

The regulatory graph, denoted (G,R), is often available
early on. It encompasses nodes denoting model components
(regulatory components, elements of G), along with signed,
directed edges, denoting regulatory activations or inhibitions
(elements of R). The logical rules precisely encode these
interactions. In other words, (G,R) can be deduced from K.
Note, however, that several sets of logical rules can be compliant
with a regulatory graph, which therefore defines a family of
logical models.

There is a functional interaction from gj to gi (denoted
(gj, gi) ∈ R) if and only if there exists a pair of neighboring states
that only differ on the value of gj and for which the function Ki

takes a different value, thus indicating that a variation of gj has
an effect on the value of its target gi. More formally, assuming for
simplicity that gj is a Boolean variable, (gj, gi) ∈ R if and only
if there exist two states g = (g1, . . . gj−1, 1, gj+1, . . . gn) and g =

(g1, . . . gj−1, 0, gj+1, . . . gn) such that Ki(g) 6= Ki(g). Moreover,
if Ki(g) < Ki(g), this interaction is an activation (because when
gj = 0 as in state g, the function Ki defines a lower value for gi
than when gj = 1 as in state g), otherwise it is an inhibition.

Specific classes of Boolean regulatory functions have been
considered in the literature. The simplest specifies that a
component is activated (its associated variable tends to 1) in the
presence of at least one of its activators and in the absence of all
of its inhibitors (e.g., Mendoza and Xenarios, 2006). Threshold
networks constitute another popular class of Boolean models,
in which the regulatory function is defined by comparing the
(possibly weighted) sum of positive and negative regulatory
contributions with a specific threshold (Li et al., 2004; Bornholdt,
2008). Finally, relying on the fact that any Boolean function
can be written in a disjunctive normal form (a disjunction
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of conjunctive clauses, thus using exclusively the operators
AND, OR and NOT), an alternative, refined representation
uses hypergraphs (Klamt et al., 2009; Samaga and Klamt, 2013,
Figure 1D).

2.2. Model Dynamics
A logical model defines a discrete dynamics over its state space
S . Given a state g, the transition functionK specifies the possible
changes of the model variables: if K(g) 6= g, there is at least one
variable gi called to update toward the target value Ki(g). Note
that multi-valued variables are modified stepwise, i.e., if Ki(g)
differs from the current value of gi by a value greater than 1, the
next value of gi is increased (or decreased) by 1. If K(g) = g then
g is a stable state, in which each component value is maintained
constant. Input components, which typically embody external
signals, have no regulators and hence no associated logical rules.
They are generally considered as being constant (their values
representing a fixed environmental condition). However, how the
model evolves upon input variations is of particular interest and
is discussed in Section 3.2.

Model dynamics are conveniently represented in terms of
State Transition Graphs (STG), where nodes denote states, while
directed edges represent state transitions (Figure 2). Since the
number of states is finite, model simulations always end up in
a stable state or in a (potentially branched) cyclic trajectory.
Stable states (devoid of transitions to other states) often represent
cell differentiated states (cf. Section 5.1) or other kind of
relevant, perduring situations. In contrast, cyclic trajectories
may denote a biologically relevant periodic behavior, as in the
case of cell cycle (cf. Section 5.2) or circadian rhythms. The
mathematical counterparts of such asymptotic behaviors are
called attractors, which are defined in the context of the logical
formalism as terminal Strongly Connected Components (SCC) of
the STG, i.e., maximal sets of mutually reachable states, with
no transitions leaving the set. The set of states from which
trajectories (exclusively) lead to an attractor is called its (strict)
basin of attraction. Basins of attraction are particularly relevant
since they define the reachable attractor(s) depending on the
chosen initial state(s).

Dynamical properties of interest predominantly relate to the
existence and reachability of the attractors. These are properties
hard to assess in large models because the size of the state space
(and thus of the STG) grows exponentially with the number
of regulatory components. Section 3 presents several recent
methods to identify attractors and to check their reachability
properties.

If at state g, several variables are called to change their values
(because their current values differ from the values returned by
the corresponding logical functions), one has to specify how these
changes should be performed. The two most common schemes
are the synchronous and asynchronous updates. According to the
first, all the variable updates are performed synchronously (i.e.,
simultaneously). Hence, the resulting deterministic dynamics
defines, at each time step t (or iteration), the successor state of
g(t):

g(t + 1) =
(
gi(t)+ sign

(
Ki(g(t))− gi(t)

))
i=1,...n

, (1)

where sign(p) equals to 1 if p > 0, −1 if p < 0, and 0
otherwise. According to Equation (1), a successor state is defined
by increasing or decreasing by 1 all the variables whose current
values differ from the values specified by their logical functions.
Note that if all the variables are Boolean, this equation can
be written simply as g(t + 1) = K(g(t)). Given a state g,
the synchronous update yields exactly one transition toward a
successor state, which can be g itself, if all the variables are stable
in g, i.e., Ki(g) = gi, for all gi ∈ G.

In contrast, with the asynchronous update, each variable
is modified independently, yielding as many transitions (and
successor states) as the number of updated variables (and hence
potentially non-deterministic dynamics). At state g(t), for all gi ∈
G such that Ki(g(t)) 6= gi(t), an asynchronous successor g(t + 1)
of g(t) is defined as follows:

gi(t + 1) = gi(t)+ sign
(
Ki

(
g(t)

)
− gi(t)

)
,

gj(t + 1) = gj(t) for all j 6= i.
(2)

Note that, according to this definition, a stable state has
no successor. However, for any updating scheme, one may
alternatively consider that a stable state is its own successor (with
a self-loop transition).

In the context of asynchronous dynamics, priority classes,
deterministic and stochastic schemes have been proposed,
taking into account additional knowledge to penalize or
discard unrealistic trajectories. Indeed, update classes can be
defined, grounded on the nature of the processes involved, e.g.,
different time scales associated with transcriptional and post-
translational processes (Chaves et al., 2005). At each time step
(or iteration), the selection of updated variables is directed by
their associated priority classes (Fauré et al., 2006), absolute ranks
or probabilities (e.g., Albert and Thakar, 2014 and references
therein). Generalizing the logical framework with a probabilistic
interpretation, a finite Markov chain can be derived from the
dynamics of a logical model. Considering the asynchronous
update, Stoll et al. (2012) defined continuous or discrete time
Markov processes by associating stochastic rates with the updates
of the model components, and relied on a Gillespie algorithm to
simulate the time evolution of component levels. This allows to
get a more quantitative view of the model behavior (cf. Section
5.2). In Cell Collective, synchronous simulations also result in
a Markov chain when the input components are associated
with a probability (see Section 3.2 and Todd and Helikar,
2012).

When following a unique trajectory (defined by a synchronous
update or selecting specific transitions among multiple
asynchronous, concurrent trajectories), a natural alternative to
the STG consists in displaying the evolution of the individual
variables over time (see Figure 2C). To provide a different
view of the model behavior, it has been also proposed to
consider the mean values g̃i of a model variable gi over a
sliding window of (user-defined) length w (Helikar and Rogers,
2009):

∀gi ∈ G,∀t ≥ 0, g̃i(t) =

∑
0≤k<min(w,t) gi(t − k)

min(w, t)
. (3)
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FIGURE 2 | Illustration of the basics of the logical formalism—Model dynamics. (A) The asynchronous State Transition Graph (STG) of the model defined in

Figure 1 (A–C), with the input G4 maintained constant and concurrent transitions from states in which several variables are called to update their values. The yellow

state 1101 (i.e., x1 = x2 = x4 = 1 and x3 = 0) is a stable state, the set of states in blue corresponds to a cyclic attractor. (B) The synchronous STG in which variables

are simultaneously updated; the stable state is conserved, whereas a new terminal cycle appears (in pink). (C) Synchronous dynamics starting from the state 1000

and maintaining the input constant to 0 (activity levels are given in %, from 0 to 100%). For a sliding window of length w = 1 (see Equation 3), the curves conform the

terminal cycle of (B) (in blue), the four variables oscillate between 0 and 1, with a period of 6; for w = 4, the mean values oscillate between 0.25 and 0.75; for w = 6,

the mean values are constant to 0.5. (D) Illustration of the effect of different input variations (G4 value). When G4 is active with a probability 0.25, oscillations of the

remaining components are altered (only G3 values are displayed, for legibility). The plot on the right shows the effect of varying the probability of G4 activity (from 0 to

1) on the mean values of the remaining components in the long term (i.e., in the attractor).

It is worth recalling that different updating schemes lead to
different dynamics, thus impacting related properties (e.g., see
Albert and Thakar, 2014). Briefly, compared to the synchronous
scheme, asynchronous dynamics are more realistic in accounting
for delays between updating orders and their executions. While

stable states are the same for both the synchronous and
asynchronous schemes, a striking example of how the resulting
dynamics can differ is that of isolated regulatory circuits,
for which the synchronous scheme leads to the appearance
of additional cyclic attractors (Remy et al., 2003). Not only
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cyclical attractors may be different, but reachability properties are
also modified. The asynchronous scheme generates concurrent
trajectories, some of which are potentially unfeasible in regard
to well-grounded choices between concurrent events. Hence,
refined asynchronous schemes have been considered, such as
priorities, fixed ranks or probabilities, which may also affect
attractors and their reachability properties. Indeed, as some
trajectories are preempted, transient oscillatory behaviors may be
turned into cyclic attractors.

By way of conclusion, beyond the model definition as
presented in Section 2.1, modelers need to specify an updating
scheme and make this choice explicit when presenting their
results. Moreover, model robustness could be assessed by probing
different updating schemes and their impacts on attractors and
their reachability properties.

2.3. A Selection of Computational Tools
Here, we focus on the software tools used to generate
results reported in the remaining sections. The web page
http://colomoto.org/software/ provides a more comprehensive
overview of available networkmodeling tools based on the logical
framework.

GINsim (http://ginsim.org) supports the definition of multi-
valued logical models, under the synchronous, asynchronous and
priority updating schemes. Besides the explicit construction of
STG (for reasonable sizes, i.e., in the order of a few million
states), GINsim provides a number of methods to analyze model
properties and supports model exports into various formats, in
particular for model checking (see Section 3.1) (Chaouiya et al.,
2012; Bérenguier et al., 2013).

Cell Collective (http://cellcollective.org) is a web-based
software with a user friendly interface for model construction,
simulation and analyses in a collaborative fashion. Its model
repository provides a way for users to directly use and/or expand
any of the 50 or so available models. Cell Collective supports
Booleanmodels, considers synchronous updates, stochastic input
simulations, and semi-continuous dose-response (input-output)
analyses as shown in Section 5.2 (Helikar et al., 2012, 2013b).

CellNetOptimizer (CellNOpt, http://www.cellnopt.org)
permits to define models of signaling networks as Boolean
synchronous models. It further supports constrained fuzzy
logic (Morris et al., 2011) and systems of differential
equations (Wittmann et al., 2009). CellNOpt specificity
is that, starting from a Prior Knowledge Network (i.e., a
candidate topology of the signaling network under study),
it creates a model by fitting its behavior to high-throughput
biochemical data (MacNamara et al., 2012; Terfve et al.,
2012).

MaBoSS (http://maboss.curie.fr) is a command-line tool
simulating continuous/discrete time Markov processes induced
by Boolean models (Stoll et al., 2012). Stochastic rates are
associated with model component updates and a Gillespie
algorithm is used to simulate the time evolution of component
levels. Time evolutions of probabilities are estimated and global
and semi-global characterizations of the whole system dynamics
are further provided.

3. MODEL ANALYSIS

In this section we focus on a selection of methods to assess
dynamical properties of logical models. Usage and relevance of
thesemethods are illustrated in Section 5.We refer toMorris et al.
(2010), Samaga and Klamt (2013), Albert and Thakar (2014), and
Naldi et al. (2015) for further overviews.

3.1. Identifying the Attractors and
Analyzing Their Reachability
As previously mentioned, properties of interest relate to
attractors and their reachability properties. In small models (up
to a dozen components), such properties can be easily recovered
directly by constructing and analyzing the State Transition Graph
(STG). However, for larger models, a variety of approaches based
on different algorithmic techniques and efficient data structures
have been proposed to handle the combinatorial explosion of the
number of states.

Stable states, which do not depend on updating schemes, are
relatively easy to identify because they correspond to the fixed
points of the transition function. The algorithm implemented in
GINsim relies on (multi-valued) decision diagrams to represent
the (Boolean) stability function of each component gi (which is
true iff Ki(g) = gi). Proper manipulations of this data structure
enable the identification of all the stable states of a logical model
of up to about hundred components (Naldi et al., 2007).

Identification of complex attractors is harder. Those are
composed of several states and depend on the selected
updating scheme (cf. Figure 2). In a synchronous dynamics, they
correspond to terminal, elementary cycles (i.e., closed dynamical
cycles in which each state has a unique successor), whose states
are fixed points of the pth iterate of K, for a cycle of length p
(note that p is not known in advance). Hence, most existing
methods sample or explorethe whole STG. Binary Decision
Diagrams proved effective to perform such an exploration (Garg
et al., 2008). Avoiding exploration of the state space, methods to
identify stable subspaces (i.e., regions of the space space in which
the model dynamics is trapped and thus contain attractors) have
been recently proposed (Zañudo and Albert, 2013; Klarner et al.,
2015).

Hierarchical Transition Graphs (HTG) have been defined as
STG compactions revealing crucial properties of the dynamics
(Bérenguier et al., 2013). Briefly, a HTG gathers (i) states
that belong to the same SCC, and (ii) states that define
trivial SCCs (i.e., if reached once, they cannot be revisited)
and from which the same set of attractors and SCCs can be
reached (cf. Supplementary Figure S1). Hence a HTG provides
an informative view of the dynamics in terms of attractors and
their basins of attraction.

To quantify attractor reachability, Mendes et al. (2014)
presented Avatar, a Monte Carlo simulation algorithm adapted
to speed up exit from transient cycles and to identify complex
attractors if those are not known beforehand. Avatar allows to
estimate the probability of reaching an attractor from an initial
state or from any initial state (i.e., sampling the state space) under
the assumption of equiprobability of concurrent transitions. In
turn, MaBoSS, mentioned in Section 2.3, provides an estimation
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of state probabilities over time (cf. Section 5.2), along with further
characterizations of the whole dynamics.

Model checking was proposed in the early 1980s to verify a
(set of) specification(s) against very largemodels of hardware and
software systems. Since then, methodologies have been improved
as well as their ranges of applicability. Notably, in the mid 2000s,
model checking started to be applied in Systems Biology, mainly
to verify qualitative systems dynamics (e.g., Chabrier and Fages,
2003; Batt et al., 2005; Arellano et al., 2011; Abou-Jaoudé et al.,
2015), but also for hybrid systems considering continuous time
or continuous state variables (e.g., Hinton et al., 2006; Clarke
et al., 2008; see also Brim et al., 2013 for an overview). A model
checker verifies whether a model of a system satisfies a set of
properties, answering true/false for each property. The dynamics
is represented as a specific transition system and properties are
specified by temporal logic formulas. Different temporal logics
exist, each with specific operators to explicitly reason about time
or about precedence relationships between states. The temporal
logics mostly used relate to the latter: the Linear Time Logic
(LTL), in which time is considered linear, and the Computation
Tree Logic (CTL) in which alternative time lines are considered
(Clarke et al., 1999).

In the asynchronous dynamics of a logical model, a state may
have multiple successors and hence lead to alternative paths,
which makes CTL particularly useful. To check reachability
properties, as illustrated in Section 5.2, we use CTL temporal
operators, with the following syntax and semantics (see Clarke
et al., 1999 for a complete reference of CTL operators):

• EF(8), there is at least one path leading to a state satisfying the
property 8;

• E[9U8], there is at least one path satisfying 9 until it reaches
a state satisfying 8.

In the verification of software/hardware systems, a property is
true if and only if it is true for every state in the set of initial
states. However, when verifying biological systems, one is often
interested in the existence of a reachability path from at least one
of the initial states. The solution lies in the specification of the
negated property (i.e., absence of reachability), which forces the
model checker to answer false if there is at least one reachability
path (used in Section 5.2).

A popular model checker is NuSMV (Cimatti et al., 2002).
GINsim provides an export into a NuSMV description with
the model rules, updating scheme and a (set of) initial
state(s), together with other optional parameters. In a NuSMV
description, the (set of) initial state(s) is specified using the
keyword INIT, and the (set of) properties is specified using the
keyword SPEC (cf. Section 5).

3.2. Assessing Model Behaviors upon Input
Variations
Recall that input components have no associated regulatory
function and are thus generally kept constant throughout
simulation. This means that there are no transitions between
states of the STG differing on values of input components (see
Figure 2). However, these disconnected STG sub-graphs can be

connected by adding bi-directional transitions, which account for
unconstrained variations of the input components. Using model
checking tools, it is then possible to check properties for which
inputs freely vary along a simulation. In order to account for a
distinct semantics of inputs and internal (regulated) components,
the Action Restricted Computation Tree Logic (ARCTL) is used
(Lomuscio et al., 2007; Monteiro and Chaouiya, 2012). ARCTL
extends CTL, imposing an additional path restriction on a subset
of inputs while letting the remaining inputs to freely vary.
This temporal logic was implemented in NuSMV-ARCTL, which
extends NUSMV. In Section 5.1, we take advantage of a subset
of ARCTL operators with the following syntax and semantics
(see Lomuscio et al., 2007 for a complete description of ARCTL
operators):

• EAF(α)(8), there is at least one path leading to a state
satisfying8, and the input restriction α must be satisfied along
this path;

• AAG(α)(8), all the states of all paths must satisfy 8, and the
input restriction α must be satisfied along these paths.

Other approaches have been developed to simulate Boolean
models under stochastic and continuous environments (Helikar
and Rogers, 2009; Helikar et al., 2012). Considering a
synchronous update, a model input can be allocated a probability
to be in its active state at each simulation step (see Figure 2D).
This probability may represent finer levels of external signals.
Furthermore, once a Boolean network has reached an attractor,
the average active/inactive states of each component over the
entire attractor can be calculated providing a characterization
of the component activity level in this attractor (Todd and
Helikar, 2012). Varying continuously the probabilities of input
states (from 0 to 1), input-output dose-response (titration)
curves can be generated, similar to those traditionally produced
in experimental studies, for example to study the effects of
different concentrations of a drug (Madrahimov et al., 2013) or
of different concentrations of receptor ligands as in Figure 6

(Helikar et al., 2013a). Currently, this approach is supported
by the Cell Collective (cf. Section 2.3), and by the stand-alone
command-line simulation engine, ChemChains (Helikar and
Rogers, 2009).

3.3. Model Reduction
A natural solution to lessen the combinatorial explosion issue
is to reduce the size of the model. Any reduction potentially
alters the properties of a model by modifying its dynamics.
However, when the reduction impacts on the dynamics are
well mastered, the analysis of a reduced model can be used
to deduce interesting properties of the original model. This is
the case of the reduction method that removes components
while properly modifying the logical functions of their targets,
which thus become directly affected by the regulators of the
removed components (Naldi et al., 2011, 2012; Saadatpour et al.,
2013). As a consequence, a self-regulated component cannot be
removed, firstly because this definition is not applicable, but
also because regulatory circuits are known to drive important
dynamical properties and thus should not be concealed (Thieffry,
2007). The key point about this reduction is that it does not
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generate novel trajectories and thus reachability properties that
are verified in the reduced model are also true in the original
model. Furthermore, Naldi et al. (2011) demonstrated that all the
stable states and elementary cyclic attractors of the asynchronous
dynamics are preserved. Because transitions of the original
STG may be discarded (removing a component amounts to
consider that its evolution is faster than that of the concurrent
components), more complex attractors may be split in two
or more complex attractors, while transient SCC may become
terminal. However, Saadatpour et al. (2013) showed that, for
constant input values, all the attractors are preserved when
reducing input and pseudo-input components (i.e., components
that are only regulated by inputs or by pseudo-inputs), as well
as mediator components (which are characterized by a unique
regulator and a unique target). Furthermore, both attractors and
reachability properties are preserved when reducing output and
pseudo-output components (i.e., components with no target, or
whose targets are only outputs or pseudo-outputs, see Naldi et al.,
2012).

3.4. Perturbation Analyses
In the logical framework, it is straightforward to define
perturbations. Perturbations affecting model components often
merely amount to force the corresponding variables to take
specific values. For example, to specify a knock-out, it suffices
to set the variable to 0, whereas for an ectopic expression the
variable is set to its maximal value. Stimulation of a signaling
pathway at the receptor level can be simulated by setting the
variable describing the receptor to 1, and blockage with a drug of
a protein by setting it to 0. By modifying the regulatory functions,
subtler perturbations can be defined as, for example mutations in
a promoter region, turning a component insensitive to a given
regulator (cf. Section 5.2).

4. MODEL AND DATA INTEGRATION

4.1. Integration of Experimental Data
Because logical models provide a flexible framework to encode
different biological events, with various granularities, they
are particularly well suited to examine experimental data.
Perturbations (genetic alterations, treatment with drugs or
ligands, etc.), can be easily encoded in the model (cf. Section
3.4), and simulation results can then be mapped to the
measured values of specific biological components upon these
perturbations.

Different types of experimental data have been integrated
within logical models. Genetic data are commonly used to
define models and simulations (e.g., mutations or knockdown
conditions), for various model organisms, from microbes
(Thieffry and Thomas, 1995), to cancer (Remy et al., 2015),
and many others. The data type used as readout depends
on the system under study. In the case of gene regulatory
networks, gene expression data are typically used, while for signal
transduction, protein phosphorylation data are normally used. It
is also possible to include non-molecular data, such as phenotypic
measurements like growth, which is useful e.g., to connect the

effect of a drug on a signaling pathway with its effect on cellular
growth (Kirouac et al., 2013; Flobak et al., 2015).

The integration of experiments and model can occur at
different levels: (i) a priori in the building phase, to define or
refine themodel, (ii) a posteriori, to fit a generic model and obtain
a model specific to certain conditions, and (iii) to (in)validate
a model by challenging it to predict experimental data under
specific conditions.

Model fitting to data allows to refine a given model structure
relying on dedicated experiments. Because general network
information is often not cell or context specific, such refinements
lead to models that describe more accurately specific cellular
situations. Such model adjustment can be done manually, by
iteratively changing the model and testing how well the resulting
model matches experimental data. For high-throughput data sets,
this process has been automatized by casting it as an optimization
problem (Saez-Rodriguez et al., 2009). This methodology can be
applied in multiple biological contexts and to different types of
data. In the case of signaling, as stated above, proteomic data are
particularly adequate and can be obtained with antibody based
platforms, such as protein arrays or luminex (Saez-Rodriguez
et al., 2009), or using mass spectrometry (Terfve et al., 2015).
Gene expression data can also be used (Crespo et al., 2013; Keller
et al., 2016).

In addition to using experimental data for logical model
construction, various types of data available in many databases
can be exploited, in turn, to interpret simulation experiments
and further validate the models and associated predictions.
The advantage of dynamical models is that they can generate
hypotheses about any targeted component, or about the system
as a whole. For example, Puniya et al. (2016) interrogated a
comprehensive signal transduction network model under all
possible knock-in and knock-out perturbations, resulting in the
identification and ranking of the most and least influential model
components. These components were further mapped on various
databases, resulting in the prediction of a new combinatorial drug
target in a cancer setting.

In practical terms, standardized names and proper
annotations using controlled vocabularies are essential for
a correct integration of models and data. This issue is discussed
in the next section.

4.2. Exchange Formats and Model
Documentation
As the popularity of logical modeling increases, standardization
issues have to be tackled. To this intent, the informal consortium
CoLoMoTo (http://www.colomoto.org) gathers researchers
developing logical models, methods and tools (Naldi et al.,
2015). The definition of a common file format was identified as
a primary requirement to allow model exchange and software
interoperability. Model encoding in a standard format facilitates
model reuse for extension or composition. In the context of
SBML Level 3 (Systems Biology Markup Language Hucka et al.,
2003), the SBML Qual (for qualitative) package has been defined
to store logical models (Chaouiya et al., 2013, 2015). This format
is currently supported by a number of software tools, including
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GINsim, Cell Collective, CellNOpt, the tools mentioned in this
paper. Hence, models stored in the SBML qual format can be
exchanged between these tools. Thanks to the LogicalModel
library, GINsim also provides an export of Boolean models to
MaBOSS, in addition to several other formats (Chaouiya et al.,
2013).

To allow reproducibility of in silico experiments, simulation
settings must be specified along with the model itself. These
settings include the initial condition(s) and a precise description
of the updating scheme. Model perturbations may be also
considered as specific simulation settings. For example, the
software GINsim allows to store all this information in the
form of a set of parameter settings (or simulation scenarios).
Cell Collective stores simulation settings in a database. The
Simulation Experiment Description Markup Language (SED-
ML) has been defined as a standard format for encoding
simulation experiments (Waltemath et al., 2011). One objective
of CoLoMoTo is to promote the use of such a format, possibly by
extending it to support specificities of logical modeling.

Proper documentation and annotation are crucial for reuse
and expansion of computational models by the community.
Often, published models lack information (evidence and/or clear
assumptions) documenting model components, interactions
and rules. Several efforts already exist to address this issue.
The Minimum Information Requested In the Annotation
of biochemical Models (MIRIAM) (Le Novère et al., 2005)
was developed to standardize the type of information (e.g.,
connections to controlled vocabularies as well as to various
databases) that should be included as model metadata. While
MIRIAM (and other standards) provides minimal guidelines
to ensure model reproducibility, additional efforts are needed
to increase the overall quality (breadth and detail) of model
documentation. For instance, modelers and curators can provide
detailed and exhaustive evidences supporting model components
and interactions when available, or assumptions in the case of
unavailable experimental observations. This is facilitated in Cell
Collective, which provides a Knowledge Base for each model.

Finally, BioModels database (Chelliah et al., 2015) and other
model repositories such as those of GINsim and Cell Collective
are also essential to ensure that models are available to the
community for reproducibility of the results as well as for model
reuse.

5. LOGICAL MODELING AND ANALYSES
OF TWO DISTINCTIVE APPLICATIONS

5.1. Application 1: T Cell Signaling
T lymphocytes play a central role in the adaptive immune
response in mammals. Cytotoxic CD8+ T cells kill cells infected
by viruses or malignant cells, whereas CD4+ T helper (Th)
cells orchestrate the function of a large diversity of effector
immune cells (including B cells, macrophages, granulocytes,
and NK cells) (Murphy et al., 2012). Activation of T cells and
their subsequent differentiation into effector or regulatory cells
result from the integration of a large panel of signals from
their microenvironment. Initially in a naïve state, T cells are

activated by three main types of signals: (i) T cell receptor (TCR)
activation, through the specific recognition of foreign antigens
presented by antigen presenting cells (APCs), (ii) co-inhibitory
and co-stimulatory signals, and (iii) cytokines. The integration of
these multiple signals initiates a plethora of signaling cascades,
regulating complex and intertwined networks, which ultimately
control T cell activation, proliferation and differentiation into
effector or regulatory cells expressing specific markers.

For example, Th1 subtype is characterized by the production
of interferon gamma (IFN-γ ), leading to the clearance of
intracellular pathogens, whereas Th2 cells secrete the cytokines
interleukin-4 (IL-4), IL-5 and IL-13, involved in the elimination
of helminths. Recently, additional Th subsets (e.g., Th17, Treg,
Tfh, Th9, Th22) have been characterized. Furthermore, recent
experimental evidences emphasize the diversity and plasticity of
T cells, challenging the classical picture of irreversible branching
differentiation (Nakayamada et al., 2012).

In order to decipher the mechanisms underlying T
lymphocyte activation and differentiation, various logical
models have been proposed, each addressing specific aspects
(cf. Table 1). Hereafter, we discuss a sample of these modeling
efforts to emphasize specific aspects of modeling and analysis,
as well as insights into the regulation of T cell activation and
differentiation.

Relying on the initial identification of Th1 and Th2
dichotomy, Mendoza (2006) proposed a logical model of the
differentiation network accounting for some aspects of Th
commitment toward these two cell types. The author could
capture Th1 and Th2 cellular types in terms of stables states
of the model, and got further insights into the intracellular
circuits involved in the delineation of the corresponding basins
of attractions. Naldi et al. (2010) extended Mendoza’s model
to cover additional signaling pathways and Th subsets (Th17,
Treg), using GINsim for model construction and analysis. As the
model was too large for a direct analysis of its dynamics, the
authors applied a reduction method (cf. Section 3.3), which led
to a model encompassing 34 components, amenable to analysis
through systematic simulations. Following the identification
of all the stable states, these were grouped according to
relevant phenotypic Th markers, abstracting away input values.
The model accounts for the canonical Th1, Th2, Th17, and
Treg subtypes, as well as for additional hybrid Th subtypes
coexpressing combinations of canonical Th markers. Finally,
the authors assessed the stability of the identified Th subtypes,
under specific polarizing environmental conditions (defined by
model input values), by iterating rounds of simulation of the
reduced model dynamics. Interestingly, this reachability analysis
emphasized the plasticity of the Th subtypes upon environmental
changes, with some cell types predicted to be highly labile (Th17,
Treg) whereas other are shown to be more robust (Th1, Th2).

Extending this model, Abou-Jaoudé et al. (2015) proposed a
multi-valued model accounting for novel canonical Th subtypes,
namely Th9, Th22, Tfh, with the integration of additional
transcription factors (e.g., PU.1, Bcl6) and cytokine pathways
involved in Th cell commitment. Following the approach of
Naldi et al. (2010) and considering a reduced version of the
model (cf. Figure 3), all the stable states were identified and
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TABLE 1 | Selected logical models of T cell signal transduction and gene regulation.

Publication Characteristics (nb components) Dynamics Availability

Mendoza, 2006 Multilevel model; CD4+ T cell differentiation

regulatory network (17)

Stable state analysis, perturbation

analysis, circuit analysis

GINsim

Saez-Rodriguez et al., 2007 Boolean model; T cell receptor signal

transduction network (94)

Stable state analysis, input and

perturbation analysis

Cell Collective

Zhang et al., 2008; Saadatpour

et al., 2011

Boolean model; T cell survival signal

transduction network (60)

Asynchronous update, perturbation

analysis, model reduction, attractor

identification

GINsim

Cell Collective

Naldi et al., 2010 Multilevel model; CD4+ T cell differentiation

regulatory network (65)

Asynchronous update, model reduction,

circuit analysis, Th cell plasticity

GINsim

Martínez-Sosa and Mendoza,

2013

Boolean model; CD4+ and CD8+ T cells

regulatory network (50)

Synchronous update, attractor analysis,

perturbation analysis

Cell Collective

Miskov-Zivanov et al., 2013 Multilevel model; TCR signaling pathways (38) Random asynchronous update,

introduction of delays, duration of input

stimuli modeled as a number of updating

rounds

Cell Collective

Conroy et al., 2014 Boolean model; TCR and integrin signaling

network and T cell differentiation regulatory

network (188)

Synchronous update, stochastic inputs,

perturbation effects on downstream

components

Cell Collective

Oyeyemi et al., 2015 Boolean model; HIV-T cell interaction

network (137)

Stable state analysis, perturbation analysis Cell Collective

Abou-Jaoudé et al., 2015 Multilevel model; CD4+ T cell differentiation

regulatory network (101)

Asynchronous update, model reduction,

stable state analysis, model checking, Th

cell plasticity

GINsim

Martinez-Sanchez et al., 2015 Boolean model; CD4+ T cell differentiation

regulatory network (85)

Model reduction, attractor analysis,

perturbation analysis, Th cell plasticity

Cell Collective

BioModels DB (non-curated branch)

grouped according to phenotypic markers, thereby defining
expression patterns associated with each canonical Th subtype.
This analysis allowed to capture the novel canonical subtypes and
predicted hybrid subtypes in terms of stable states. Noteworthy,
the interpretation of the input dependency of the stability of these
states is hindered by the gigantic number of input configurations
(221 value combinations of the 21 binary inputs). To cope with
this combinatorial explosion, one can further cluster these stable
states according to relevant input signatures.

Abou-Jaoudé et al. (2015) used model checking to efficiently
analyze Th cell plasticity under relevant polarizing conditions.
More precisely, using NuSMV-ARCTL (cf. Section 3.2),
reachability properties between the canonical Th subtypes
were systematically analyzed, considering relevant cytokinic
environmental conditions. The following generic ARCTL
property was specified to verify the existence of a reachability
path from a canonical Th pattern c1 toward a (stable) canonical
Th pattern c2 under an input condition e (the & operator denotes
the conjunction):

INIT c1;SPEC EAF(e)(c2&AAG(e)(c2)).

Results were synthetically represented in the form of
a reprogramming graph, which reproduces various
polarizing events experimentally observed and uncovers
many reprogramming scenarios between Th subtypes (see
Figure 4). In particular, several strategies allowing Th1 vs. Th2
interconversions could be identified, in accordance with recent
experimental observations challenging Th1-Th2 dichotomy
(Antebi et al., 2013).

Other scenarios where a Th subtype can follow distinct
fates under the same environmental conditions were also
unraveled by this analysis. To get comprehensive insights into
the alternative trajectories underlying different cell decisions,
a HTG representation of the dynamics can be used. Figure 5
provides an example of such a representation starting from Th22
cells and immersing them into a Treg polarizing environmental
condition. We see here that three stable states can be reached,
one corresponding to a Th17 cell type, and two corresponding
to Treg cell types. The cell decision between these phenotypes
mainly depends on the concurrent activation of Rorgt (themaster
regulator of Th17 cells) and Foxp3 (the master regulator of Treg
cells). Further insight into the reachability of the three attractors
can be extracted by performing a reachability analysis with the
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FIGURE 4 | Reprogramming graph considering the canonical Th subtypes (generated with the model checker NuSMV-ARCTL; adapted from

Abou-Jaoudé et al., 2015). Ellipses gather all subtypes that, under the same environmental condition, differentiate toward a particular stable subtype (defined in

Table 3 in Abou-Jaoudé et al., 2015). Dashed arrows connect ellipses to a (set of) differentiated state(s) and are labeled with the corresponding environmental

conditions. Solid arrows denote specific reachability conditions between pairs of subtypes, under a particular environmental condition. Colors of arrows and ellipses

indicate the environmental conditions of the corresponding subtype color. For example: from Th2, Th22, Th9, Th0, Treg, and Th17 subtypes (gathered in the pink

ellipse), a “proTfh” condition leads to reprogramming into both Tfh (pink node) and Th1 subtypes; while from Th22, a “proTreg” condition leads to reprogramming into

both Th17 and Treg subtypes.

Avatar algorithm, quantifying the reachability probability of each
attractor (Mendes et al., 2014). A thousand Avatar simulations
were enough to observe a stabilization of the reachability
probabilities of the three stable states. These indicated a higher
probability to reach the Treg stable states (0.642) than the Th17
state (0.358), suggesting that a Treg environment would favor
Th22 cells reprogramming toward a Treg rather than a Th17
phenotype (Figure 5).

Othermodeling works have focused on the signaling pathways
underlying T cell activation, survival and proliferation. Saez-
Rodriguez et al. (2007) established a Boolean model of T cell
activation following the engagement of TCR and co-stimulatory
receptor CD4 and CD28, using CellNetAnalyzer for model
definition and analysis. Here, an analysis based on steady-state
approximation was used. The reasoning being that in signal
transduction several different time scales operate; a first wave of
activation occurs upon stimulation with ligands and drugs, which
often takes only a few minutes, and this is followed by feedback
processes, which are typically slower. This approximation is
clearly not accurate, but it permits the consideration of large
networks in a simple and efficient manner. The model was
able to recapitulate a large number of published data in both
wild-type and knock-out conditions, as well as to predict
unexpected signaling patterns after specific stimulation of the
co-receptor CD28 and knock-out of the kinase Fyn, which were
subsequently experimentally validated (Saez-Rodriguez et al.,
2007).

Finally, several logical models were proposed to analyze T
cell signaling networks in pathogenic situations, in particular
in the context of T cell leukemia, a disease characterized
by an abnormal proliferation of T cells (Zhang et al., 2008;
Saadatpour et al., 2011; Conroy et al., 2014). Specifically,
Conroy et al. (2014) developed a logical model to better
understand the role of caveolin-1 (Cav1; an important regulator
of endocytosis) in T-cell leukemia. Figure 6 illustrates input-
output simulations and analyses demonstrating the ability of
the model to correctly reproduce previously described and
documented relationships between different components of the
modeled network. Besides, the model allowed to identify the
protein products most affected by CAV1+/+, CAV1+/−, and
CAV1−/− under immunocompetent and immunocompromised
conditions. Simulation results suggested that CAV1 expression
regulates Ras-related C3 botulinum toxin substrate 1 (RAC1),
B-cell lymphoma/leukemia 10 (BCL10), GATA-binding protein
3 (GATA3), CD26, and CD28. In addition to validating
these predictions in Cav1 knock-out mice, model results were
further successfully validated against gene expression signatures
obtained from the Gene Expression Omnibus (GEO) database.

5.2. Application 2: Cell Cycle Control
Tightly controlled by a sophisticated regulatory network
involving transcriptional regulations and protein modifications,
cell proliferation involves successive phases governing genome
replication (S phase) and cell division (mitosis or M phase),
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FIGURE 5 | Hierarchical Transition Graph (HTG) generated with GINsim considering an asynchronous simulation of the model shown in Figure 3

(Abou-Jaoudé et al., 2015). The bottom nodes correspond to the stable states, which are reachable starting from the initial conditions corresponding to the set of

states characterizing Th22 cell type, under a Treg polarizing environment (upper node). The states reachable from the initial conditions, except the stable states, are

grouped together into irreversible transient components (in green), the symbol ♯ precedes the number of states composing these nodes. The HTG encompasses 10

nodes (in contrast with the 2528 states of the corresponding STG). The labels associated with the arcs highlight the crucial transitions involved in the choice between

the attractors (see Supplementary Figure S1). Each stable state is annotated with the probability in red of being reached from Th22 subtype under the Treg polarizing

condition, considering 1000 simulations (computed with the software Avatar). The components are ordered as follows: first the external input cytokines IL1B, IFNG,

IL2, IL4, IL6, IL10, IL12, IL15, IL21, IL23, IL27, TGFB, IL36, IL33, IL18, IL25, IFNB, IFNA, IL1A, IL29, followed by the component representing the Antigen Presenting

Cells, then the transcription factors TBET, GATA3, RORGT, FOXP3, BCL6, followed by the secreted cytokines IFNG, IL4, IL2, IL10, IL21, IL6, followed by the

transcription factors STAT3 and PU1, then the secreted cytokine TGFB, followed by a node denoting the proliferation of Th cells and finally the secreted cytokine IL25.

FIGURE 6 | Examples of dose-response analyses in a signal transduction and gene regulatory model in Cell Collective (adapted from Conroy et al.,

2014). (A) Stimulation of filamentous actin polymerization in response to varying levels of cellular interaction with extracellular matrix (ECM). (B) Stimulation of the

mitogen-activated protein kinase (MAPK) pathway in response to Cav1 activation. (C) Activation of the MAPK pathway in response to stimulation by

antigen-presenting cells (APC).

separated by regulated irreversible transitions (checkpoints).
The main components and regulatory interactions controlling
cell cycle were initially identified in simplified model systems,
including fission and budding yeasts, as well as early Xenopus
zygotic mitoses. The underlying core networks have been
modeled using differential equations, leading to novel insights
into their organization and dynamical properties (see Ferrell

et al., 2011; Tyson and Novák, 2015 for recent reviews). However,
extension and analysis of such differential models become really
difficult as the number of experimentally identified components
and interactions increases. This led several groups to consider
Boolean or more sophisticated logical formalisms to build
comprehensive models of cell cycle control networks (Table 2).
Cell cycle networks present particular difficulties from the point
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TABLE 2 | Selected logical models of cell cycle networks in different organisms.

Publication Organism Characteristics (nb components) Dynamics Availability

Li et al., 2004 Budding Yeast Boolean model; Threshold logical

functions (11)

Synchronous update, G1 stable state

attracting most trajectories

GINsim (adapted model)

Fauré et al., 2006 Mammals Boolean model; Regulatory graph and

standard logical functions (10)

Synchronous, asynchronous and mixed

updating scheme; cyclic attractor plus

quiescent stable state

GINsim

Cell Collective

Davidich and Bornholdt,

2008

Fission Yeast Boolean model; Threshold logical

functions (10)

Synchronous update, G1 stable state

attracting most trajectories

GINsim (adapted model)

Irons, 2009 Budding Yeast Boolean model; Regulatory graph with 4

phenomenological nodes and standard

logical functions (18)

Synchronous and temporized updating

schemes, single cyclic attractor

GINsim

Cell Collective

Fauré et al., 2009 Budding Yeast Multilevel model; Regulatory graph and

standard logical functions (32)

Priority classes, single cyclic attractor GINsim

Sahin et al., 2009 Human Boolean model; Regulatory graph and

standard logical functions (20)

Asynchronous update, 3 stable states,

transient oscillations

GINsim

Cell Collective

Todd and Helikar, 2012 Budding Yeast Boolean model; based on Irons (2009)’s

model (20)

Analysis over variation of inputs, which are

allocated probaiblities to be active

Cell Collective

Flobak et al., 2015 Human Boolean model; Regulatory graph and

standard logical functions, no input (77)

Asynchronous update on a reduced

model, a single stable state denoting cell

proliferation

GINsim

of view of logical modeling. On the one hand, cell cycling
behavior tentatively corresponds to a cyclic attractor, or at least to
some multiple state pathway in the STG (rather than to a logical
stable state as for the Th subtypes mentioned above), which
are hard to compute. On the other hand, of most importance
is the precise succession of component switches along the
cell cycle, ensuring the proper temporal articulation of the
molecular processes required for successful genome replication
and repartition, along with timely and balanced cell division.

The studies listed in Table 2 rely on different modeling
assumptions (e.g., using generic or specific rules, and considering
specific updating schemes). By and large, relying on qualitative
information, the authors were able to capture the succession
of key events involved in cell cycle. Moreover, several studies
recapitulate the effect of various kinds of perturbations (losses-
or gains-of-function, see e.g., Fauré et al., 2006; Fauré et al.,
2009; Irons, 2009). Fauré and Thieffry (2009) published a
comparative review of cell cycle logical models (predating
2009). An interesting observation was the conservation of
a functional negative regulatory circuit at the core of the
cell cycle engine, involving cyclin B and Cdc20 (or their
orthologs in other species), as well as of several coupled positive
regulatory circuits. Here, we restrict ourselves to a few studies
in order to emphasize specific aspects of logical modeling
analyses.

Based on the differential model proposed by Novák and Tyson
(2004) and Fauré et al. (2006) defined a Boolean model for
the core network driving the entry of mammalian cells into
cell cycle. This model accounts for the existence of a quiescent

stable state (in the absence of growth factors, represented by the
shutoff of cyclin D, the input component), as well as for a cyclic
attractor characterized by the periodic activities of the cyclins
A, B and E, which drive the cell cycle through key transitions
by enabling the phosphorylation of a number of substrates by
their catalytic partners, the cyclin-dependent kinases (CDKs).
This model further includes the three main inhibitors of the cell
cycle: the retinoblastoma protein Rb, the CDK inhibitor p27/Kip1
and the proteasome complex represented by its two co-activators
Cdh1 and Cdc20. Finally, this model accounts for the role of the
E2 ubiquitin conjugating enzyme UbcH10, which participates in
Cdh1 dependent degradation of cyclin A. This extension of the
original differential model explains how the auto-ubiquitination
of UbcH10 probably prevents cyclin A from degradation by the
APC in G1 phase. Complex formation and protein sequestration
were modeled in terms of logical rules associated with the
target proteins, which enabled the author to keep the number
of components considered to the low end (ten components).
Although very simplified, this model broadly reproduced the
sequence of molecular events along the normal cell cycle, for both
synchronous and asynchronous updating schemes. The authors
further considered a list of documented perturbations to validate
their model. Although the simulations of various perturbations
were shown to match experimental observations, it was not
the case for some documented perturbations, including for a
knock-out of cyclin E.

Traynard et al. (2015) revisited this model to solve the
remaining discrepancies in the light of recent data (see Figure 7).
As hinted already in the seminal study by Fauré et al. (2006),
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FIGURE 7 | Regulatory graph of the mammalian cell cycle model

(Traynard et al., 2015). The input node, CycD accounts for the positive

signal, as Cyclin D is activated by growth factors. All components are Boolean,

except Rb and p27 (see Text). Interactions requiring the higher threshold (value

2) or having different effect depending on the threshold value (1/2) are labeled

accordingly.

the authors considered the use of a ternary variable for the cell
cycle inhibitor Rb, which can be phosphorylated at multiple
sites, associated with different activities. Similarly, they associated
a ternary variable with p27 to account for its significant but
incomplete degradation in the presence of CycD and in the
absence of CycA and CycE. They further included the F-box
protein Skp2 in the model. Skp2 promotes the degradation of
phosphorylated p27 and thereby enables its degradation. Skp2
degradation is promoted by Rb binding to Cdh1. Skp2 thus
links the two cell cycle repressors Rb and p27, and provides
an additional mechanism by which Rb can arrest the cell cycle.
In order to assess the benefits of each modification, model
checking was used to verify the existence (or the absence) of
specific trajectories characteristic of the cell cycle dynamics. More
specifically, a generic CTL temporal logical formula (see Section
3.1) was used to verify the existence of a trajectory complying
with a sequence S1, S2, S3, ..., Sn−1, Sn, each denoting a set of
states defined by constraints on some of the model components:

INIT S1; SPEC !E[(S1)U (S2 &E[(S2)U

(S3 & ...E[(Sn−1)U (Sn)])])].

Here, the negation (denoted by the operator !) is used to
obtain a counter-example, from the model checker, whenever
the property is false, containing the desired trajectory complying
with a sequence S1, S2, S3, ..., Sn−1, Sn. As a result, the authors
obtained a generic multi-valued logical model of the mammalian
cell cycle that qualitatively matches the most salient dynamical
properties of the normal cell cycle, in particular at the G1/S
transition, as well as the phenotypes of many mutants (Traynard
et al., 2015).

More quantitative characterizations of asymptotic behaviors
can be provided by stochastic simulations using MaBoSS (see
Section 2.3). As MaBoSS is restricted to Boolean models, the
ternary node Rb was split into two Boolean nodes Rb1 and Rb2,
associated with the first and second Rb thresholds, respectively
(and similarly for p27). The stochastic trajectories computed
for this model reflect the kinetics of the cell cycle progression
driven by the input cyclin D (see Figure 8). Transient oscillations
can be observed as the trajectories all start in G0 (with Rb1,
Rb2, p27, and Cdh1 the only active nodes) and progressively
desynchronize. It is particularly interesting to compare the
trajectories obtained for wild type (WT) vs. perturbed conditions.
The trajectories obtained for five perturbations illustrate the
role of Rb and of the pathway Rb-Skp2-p27 in the model
(Figure 8). Two perturbations were considered for Rb: the full
loss-of-function (Rb KO), and a partial loss-of-function, where
Rb loses its ability to repress E2F, but conserves its repressing
activity on Skp2 (Rb R661W). The resulting stochastic trajectories
highlight the role of Rb in the sequential activation of cyclin
E and cyclin A, ensured by the repressing activity of the two
underphosphorylated forms of Rb on E2F: in the WT case, the
activation of cyclin A is clearly delayed relatively to the activation
of cyclin E. In contrast, in the absence of the repressing effect of
Rb on E2F, cyclin E and cyclin A are activated at the same time.
The lack of significant difference between the trajectories of Rb
R661W and Rb KO suggests that the repression of Skp2 by Rb
has no major impact on the cell cycle. However, this interaction
is necessary to ensure the quiescent state in the absence of
cyclin D. Skp2 loss-of-function (Skp2 KO) arrests the cell cycle
(Figure 8), presumably due to the stabilization of p27. Indeed, the
oscillations are restored in the double mutant Skp2 KO p27 KO.

In an independent study focusing on Yeast cell cycle control,
Todd and Helikar (2012) built on the model of Irons (2009)
and showed that cell phenotypes can be modeled as ergodic
sets irreducible sets of states of the corresponding Markov
chain; i.e., set of states that cannot be left once reached), by
defining probabilities for the input components to be active
and modeling these signals as continuous variables. In this
work, the cell cycle was analyzed as a sequence of models,
each accounting for a specific phase of the cycle, which allowed
to characterize the (continuous) dynamics of all regulatory
components along each phase, and more closely compare them
to various experimental observations. Modeling extracellular
signals as continuous variables (i.e., cell size) resulted in the
finding that the yeast cell cycle network is stable under different
patterns of cell growth. That is, as long as the checkpoints are
appropriately activated (i.e., the environment is stable enough
for the successful completion of the current phase), the modeled
cell progresses through the cycle, independently of its size.
Furthermore, the continuous dynamics of themodel components
were found consistent with various experimental studies.

6. DISCUSSION

After introducing the logical modeling framework and a range
of methodological advances to analyze dynamical properties of
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FIGURE 8 | Stochastic trajectories simulated with MaBoSS for each component of the model of Figure 7, with equal rates for all transitions. From top

left to bottom right: simulations without perturbation (wild-type); with a perturbation corresponding to the partial mutation RbR661W annihilating the repressing activity

of Rb on E2F; Rb loss-of-function; Skp2 loss-of-function; p27 loss-of-function; combination of Skp2 and p27 loss-of-functions (Traynard et al., 2015). Rb_b1 and

Rb_b2 are the two Boolean variables used to represent the levels of Rb (0,1, and 2). Similarly, p27_b1 and p27_b2 account for the levels of p27.

these discrete models, we have presented a number of assets
of this approach through two important case studies. Here, we
discuss further issues and complementary approaches.

Besides the consideration of probabilistic input values, we
have focused on non-stochastic models (recall that asynchronous
dynamics is non-deterministic but not random). However,
several methods have been proposed to include noise in
Boolean models. For example, accounting for uncertainty in
the regulatory functions, Shmulevich et al. (2002) associate
each component with a set of regulatory functions, one being
randomly selected at each step of the simulation. Another option
consists in randomly taking the complements of the regulatory
function outcomes (Alvarez-Buylla et al., 2008). In Garg et al.
(2009), the authors consider potential failures of the regulatory
functions. For all these stochastic variants, the synchronous
scheme was adopted.

It is worth mentioning that several continuous transpositions
of logical models have been proposed, for example considering
fuzzy logic (Aldridge et al., 2009; Morris et al., 2011),
or transforming Boolean models into ordinary differential
equations (Mendoza and Xenarios, 2006; Wittmann et al., 2009).
The reverse transformation has been formally addressed for the

specific class of piecewise affine differential models (Batt et al.,
2008; Chaves et al., 2010).

As shown in Section 3 with the usage of model checking,
logical models are amenable to sophisticated formal methods.
Initially developed for software and hardware systems,
these techniques are indeed well adapted for logical model
identification (e.g., constraint programming, see Corblin et al.,
2010 and Answer Set Programming, see Videla et al., 2015)
and for model analysis (e.g., satisfiability problem (SAT) for the
identification of the attractors of Boolean models, see Dubrova
and Teslenko, 2011).

Although progress has beenmade with the definition of SBML
qual, the SBML Level 3 Qualitative Models Package (Chaouiya
et al., 2013), further efforts are needed to ensure model exchange,
reuse and extension. A first issue concerns reproducibility of
modeling studies. This can be achieved first by providing model
files, in BioModels database (Chelliah et al., 2015), or in model
repositories such as those provided by Cell Collective or GINsim
(see Section 2.3). Second, modeling assumptions and simulation
settings should be precisely described. For example, we have
underlined that model properties can vary depending on the
adopted updating scheme (Section 2.2). Furthermore, model
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extensions often simply refer to the addition of components,
but it can also consists in refining the model with a stochastic
extension (e.g., with probabilistic input values as in Figure 6).
The different formalism extensions evoked above together with
many others still need to be precisely characterized, managed
within a control vocabulary and supported in a future SBML qual
version. Further integration with core SBML Level 3 concepts will
be needed to support the encoding of hybrid models combining
features of both discrete and continuous formalisms. It is the
purpose of CoLoMoTo (the Consortium for Logical Models and
Tools) to stimulate and coordinate such developments.
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