
InterMine: a flexible data warehouse system

Supplementary materials

Contents

1 Introduction 2

2 About InterMine 2

3 Data import and integration 3
3.1 The data model . 3
3.2 Data import . 3
3.3 Extending the data model . 5
3.4 Data integration and quality checking . 5
3.5 Data types . 6

4 System architecture 6
4.1 Object/Relational mapping . 6
4.2 Query Optimisation . 6

5 Web application 8
5.1 Features . 8
5.2 User authentication and workspace . 9
5.3 Query capabilities . 12
5.4 Embedding external tools . 12

6 Web services 12

7 Pros and cons - why use InterMine 14
7.1 Comparison to existing systems . 15

1

1 Introduction

This document provides further details of how InterMine is implemented internally, as well as infor-
mation on data types contained in different InterMine instances, statistics such as size and build time,
and highlights of major features. It is intended as a more detailed guide to the system to anyone wish-
ing to set up an InterMine database, as well as providing some background information to interested
users. We also provide a discussion of the advantages and disadvantages of the InterMine system,
in order to help potential users decide whether InterMine is a suitable application for their intended
use.

2 About InterMine

InterMine is a data warehouse system suitable for any size of database (including very large ones),
designed specifically to enable the integration of datasets of varying size, quality and complexity. It
comes with features such as optimised query facilities, a web application with analysis and visuali-
sation tools, and web services with libraries available in five languages. InterMine is an open source
software project and is freely available under the LGPL license. More information about the project
and links to the source code can be found on the project website at http://www.intermine.org, with a
guide to setting up an InterMine database provided at http://www.intermine.org/wiki/GettingStarted.

Build time RAM (build
machine)

Number of
objects

Database
size without
precom-
putes

Database
size with
precom-
putes

FlyMine 14 hours 96 GB 29,276,415 75 GB 167 GB
metabolicMine 48 hours 96 GB 264,729,080 484 GB 1994 GB
modMine 3 days 24 GB 130,000,000 325 GB 750 GB

Table 1: Load statistics of different InterMine powered databases. The build time includes
creating and storing objects, post-processing and making backups.

InterMine is the system behind a number of data mining warehouses, including:

• FlyMine for Drosophila data (http://www.flymine.org/)

• modMine as a data repository for the modENCODE project (http://intermine.modencode.org/)

• YeastMine for budding yeast data (http://yeastmine.yeastgenome.org/)

• RatMine for rat data (http://ratmine.mcw.edu

• metabolicMine for human metabolic diseases (http://www.metabolicmine.org/)

To give an idea of the performance of the InterMine system, an overview of statistics about a sample
of currently active Mines maintained by the InterMine group is shown in Table 1. Depending on
the machine and data types, around 100,000/objects per minute is currently a typical average load
rate.

2

http://www.gnu.org/licenses/lgpl.html
http://www.intermine.org
http://www.intermine.org/wiki/GettingStarted
http://www.flymine.org/
http://intermine.modencode.org/
http://yeastmine.yeastgenome.org/
http://ratmine.mcw.edu
http://www.metabolicmine.org/

3 Data import and integration

3.1 The data model

InterMine is data-model agnostic and can operate on any data model but we provide a core data model
specifically for handling biological data based on the Sequence Ontology (Eilbeck et al., 2005). We
use an SO-based core model for a number of reasons. Firstly, SO is already used by a number
of Model Organism Databases (MODs) based on the Generic Model Organism Database (GMOD)
framework, including FlyBase, WormBase, SGD, RGD and MGI, among others. Using an SO-based
core model facilitates easy integration of data from these MODs, as well as facilitating interoper-
ability. Furthermore, it is an established sequence ontology, with its core set generally undergoing
relatively minor changes (mainly additions of new terms). The InterMine data model is extensible
and customisable by editing an XML file, so when changes to SO do happen (Mungall et al., 2011),
the data model can easily be modified to take them into account. Most recent SO changes have not
affected the data model used by InterMine, but in case of major changes, we provide users with update
scripts for switching to the updated ontology, while keeping the data intact.

The core biological model has been expanded for individual InterMine instances in order to include,
for example, species-specific features or particular types of data that are of interest to the users and
are not covered by the SO (e.g. interaction data, or publications details). The ease of doing this,
with the rest of the system being automatically updated, is one of the advantages of using InterMine.
In these cases, it is the responsibility of the individual databases to ensure correct model migration
between versions, if the added elements of their core model change.

3.2 Data import

InterMine instances are built from various data sources; for example, UniProtKB, gene interactions,
and GO (gene ontology) annotations each have their own data format. To facilitate the integration of
different data sources, data parsers written in Java are provided. The use of data represented by a par-
ticular standard facilitates the incorporation of future data into the database. For example, interaction
data can be represented by the PSI-MI standard and by supporting this standard in InterMine we can
easily accommodate future data published in this format. The details of the data integration modules
that InterMine comes equipped with are shown in Table 2. Parsers have been developed in response
to demand from the InterMine user community, and we will continue to respond to such demands in
the future.

Table 2: Data converters used as part of InterMine.

Source Data Data types loaded
arrayexpress-atlas Loads ArrayExpress .json files retrieved from EBI web

service.
genes, expressionItem

biogrid Loads genetic and protein interaction data from Bi-
oGRID. These data include both high-throughput stud-
ies and conventional focused studies and have been cu-
rated from the literature.

genes, proteins, interactions

biopax Loads data from files in BioPAX level 2 format pathways, proteins, genes
chado-db Loads data from a Chado database. Any Chado features, eg. chro-

mosome location, genes, pro-
teins.

ensemb-corel Load Ensembl data from a downloaded MySQL
database or access via script using their API

chromosomes, genes, tran-
scripts, exons, protein se-
quences, CDSs

ensembl-compara Load Ensembl compara data from public BioMart homologues

3

Table 2 – continued from previous page
Source Data Data types loaded
ensembl-snp Load SNP data from a downloaded Ensembl MySQL

database
SNPs, chromosomes

entrez-organism All other sources refer to organisms only by their NCBI
taxonomy id. This source will select the taxonIds
loaded into the Organism class, fetch details via the En-
trez web service and fill in the organism names in the
database.

updates fields for organism cre-
ated by other sources

fasta Load features and their sequences. Will create a feature
for each entry in a FASTA file and set the sequence, the
class of the feature to create is set for the whole file.

feature, sequence

gff Loads features from files in GFF3 format. features
go-annotation Load gene association files that link GO terms to genes

or proteins.
genes, Gene Ontology terms

go Load the Gene Ontology term ids, names and defini-
tions, and the relationships between terms.

Gene Ontology terms

intact Load interactions data from IntAct. genes, interactions
intermine-items-xml-
file

Use this source to load Items XML conforming to the
data model directly into the production database.

any

intermine-items-large-
xml-file

Use this source to load Items XML conforming to the
data model into the production database, this uses an
intermediate database to allow it to cope with very large
files that would otherwise cause memory problems.

any

interpro Loads InterPro protein domains
kegg-orthologues Loads homologues from KEGG homologues, genes
kegg-pathway Loads pathways from KEGG pathways, genes
miranda miRBase Targets from the Sanger Institute MiRNATargets, MRNAs, genes
pdb Data from PDB proteins, protein structures
protein-atlas Read Human Protein Atlas expression data. genes, tissues
psi-mi-ontology Loads the file psi-mi.obo file. ontology terms
pubmed data from pubmed publications
reactome Loads pathways from Reactome pathways, genes
so This source loads no data but adds a class in the data

model for terms in the sequence ontology (SO). SO
terms represent biological features such as gene, exon,
3’ UTR.

sequence features

treefam Loads homologue data from TreeFam genes, homologues
uniprot Loads protein information from UniProtKB XML files. protein sequences, lengths

and molecular weights, links
between proteins and genes,
features located on proteins,
UniProt keywords, references
and comments. This source can
optionally load InterPro protein
domains and GO terms

uniprot-fasta Loads sequences for proteins loaded in UniProt source sequences
uniprot-keywords Load definitions of UniProtKB keywords. updates uniprot keyword defini-

tions
update-publications All publications are referred to by PubMed id by other

sources. This source should be included at the end
of the build. It will query all PubMed ids from the
database, fetch details from the Entrez web service and
fill in Publication objects.

updates publications loaded by
other sources

4

3.3 Extending the data model

Each source can add classes and fields to extend the data model if required, and each source defines
how its own data should be integrated. Construction of an InterMine data warehouse (for example,
FlyMine) means configuring which sources should be included and specifying the particular organ-
isms or data files to include. During build time, all the model-based components of the system in-
cluding the database, the Java classes and the web application are automatically derived from the data
model. This allows simple and error-free upgrading of the user interface and API as the data model
is adjusted and new types of data are added. This system reduces the development time required
to update instances of InterMine, and the fact that the data model is extensible makes it possible to
incorporate new data types. It also makes it possible to construct comparable data warehouses for
different organisms and datasets, creating the potential for developing, for example, cross-species in-
teroperability. Data can also be loaded from an InterMine XML format, allowing the parsing code to
be written in a language other than Java.

3.4 Data integration and quality checking

One of the difficulties of data integration comes from the need for complicated cross-referencing of
identifiers from different data sources. The information from different databases needs to be correctly
interlinked, and the system also needs to be capable of dealing with changing biological knowledge -
for example, incorporating information on new gene models into the database, while still keeping the
older datasets usable. InterMine tackles this using an identifier resolution system. In brief, when a
data file is loaded, the identifier is checked against an ”ID resolver” - a map connecting the identifier
to a collection of synonyms and cross-references. The ID resolver is created using information from
the relevant model organism databases.

The process of data integration also relies on user-specified data priorities. In the case of conflicts
of values from different sources, the value coming from a higher priority source is considered to be
the accurate one. There are no default priorities set - developers setting up an InterMine instance
are required to set these for themselves, based on which data sources are considered to be more reli-
able for a given data type. For example, because of its extensive manual curation, FlyBase (Gelbart
et al., 1997) is considered to be the authoritative source of gene information for Drosophila in Fly-
Mine (Lyne et al., 2007), while UniProt (UniProt Consortium et al., 2008) is considered to be the
authoritative source of protein information, so the priorities are set accordingly.

The build system allows for the integration of data sets of varying size and complexity. It can be
configured to make regular data backups, saving time and effort by having restore points for the
database. Post-processing tasks can manipulate the data and add extra information after all data has
been imported - for example, gene or chromosome lengths can be calculated. Further to this, a set
of both manual and automated data quality checks also exist. Data download scripts check for new
updates and data parsers include a number of data validation and integration checks. Quality checks
are also run post-build. Consistency checks such as looking at the number of database objects created
and checking for duplicate identifiers and empty fields help highlight data issues. The standard post-
build quality check protocol runs scripts that execute a collection of both simple and complex queries,
which confirm that the data have been integrated correctly and flag any inconsistencies. The scripts
also compare the new database build to the previous build (if available), and indicate the percent
change between the two. This improves database quality by highlighting any problems that have been
introduced during the new database build.

5

3.5 Data types

A large number of data types have been integrated into the various InterMine instances. These data
types range from basic genome annotation and protein information to experiment data such as gene
expression and ChIP-seq results. An overview of the types of data included in different InterMine
instances is shown in Figure 1.

As described, there are a number of quality checks looking at consistency and technically accurate
data integration - e.g. highlighting and resolving missing, duplicate or inconsistent fields. However,
InterMine does not automatically check for contradictory facts - differences in findings between the
different datasets. InterMine is not a curation tool, and it is up to the database developers working
with individual InterMine instances to decide what datasets to include, and how to prioritise them in
terms of reliability. This means that, while data integration will be performed correctly, it is up to the
developers to choose data in an informed manner, and up to the users to interpret the data depending
on its source. All integrated data is displayed, and in the case of contradictory facts, the database
users can decide for themselves which source to believe. This means InterMine can be used as a tool
for highlighting inconsistencies between different datasets.

4 System architecture

The InterMine system is based around the ObjectStore - a custom object/relational mapping system
implemented in Java which has been optimised to support read-only performance. The read-only
performance gives speed benefits as extensive indexing can be performed during the database build.
The ObjectStore can be accessed from the web application and through web services, and executes
queries in a PostgreSQL relational database. Here we give the details of the ObjectStore and explain
the process of query optimisation.

4.1 Object/Relational mapping

The ObjectStore is designed for quick load times and high query performance in a read-only database.
Although written in Java, the ObjectStore does not share Java’s restricted type semantics and can
model any directed acyclic graph of types, such as those represented by multiple inheritance. Tech-
niques that are designed to manage the presence of such objects include the de-normalisation of tables
and a separation between object storage and field value storage to minimise table reads when query-
ing.

A data model is defined at the object level by an XML file. Java objects, the relational database
schema and all model-specific parts of the web application are generated automatically, reducing the
maintenance overhead when data model changes are required. Data are loaded as Java objects or as
XML conforming to the specified model. Integration of data from multiple sources is configured to
define how equivalent objects from different sources should be merged. As different data sources
may provide different fields, multiple ’keys’ can be defined for a particular type. For example, ’Gene’
objects may be merged according to an ’identifier’ field or a ’symbol’ field. As described above
(Section 3.4), a priority configuration system is used to resolve conflicts between data sources.

4.2 Query Optimisation

Before final execution, SQL queries are passed to the QueryOptimiser (a Java program developed to
enhance InterMine performance), which is able to re-write any SQL query to make use of precom-
puted tables (analogous to materialised views). The whole query or parts of it may be replaced by

6

Figure 1: Data types present in different instances of InterMine

7

one or more precomputed tables; estimates of execution time from the PostgreSQL database are used
to decide which query will be fastest.

Precomputed tables can be created while the database system is running in production so performance
can be adapted to match actual usage. Within the web application, users with the appropriate permis-
sions, super-users (typically developers), can immediately precompute any new template queries to
ensure they run quickly. This approach separates the definition of the data model from performance
optimisation, making it possible to tailor the performance of an InterMine warehouse for types of
queries not known at design time. A particular benefit of using this system is that the queries can be
optimised without the need to de-normalise the data schema. Additionally a cache is used to speed
up the performance by using information from previously run queries.

5 Web application

5.1 Features

InterMine comes with a web application that includes flexible query capabilities and a number of anal-
ysis and visualisation features. The workflow of the web application is shown in Figure 2. Searches
can be run using template queries (saved searches for performing common tasks) or custom written
ones made using the QueryBuilder. Query results can be exported, analysed as lists or the report
pages of individual objects from the results table query results can be explored. Lists created from
query results can in turn be used for running further queries.

Figure 2: Web application workflow structure

Keyword search (Figure 3) enables users to search across the database, quickly finding, for example,

8

genes or experiment datasets of interest. Logic operations are available, and faceted filtering can be
used to narrow down the selection to the data of interest.

Figure 3: Keyword search for the word ’diabetes’ retrieves a range of results associated with
the disease, including genes, proteins and pathways. The faceted filtering on the
left allows the user to further narrow down the results set.

The search results are linked to report pages (Figure 4), which display a rich collection of information.
The data presented on the report page is hyperlinked both to the corresponding database objects and
to external websites, and can be explored and queried further. For example, someone starting from a
gene search can click on a pathway that the gene is involved in, save a list of all the genes associated
with that pathway, and use that for further searches.

List analysis pages contain analysis ’widgets’ (Figure 5) - tools showing summary graphs or statistics,
such as the statistically enriched GO terms and publications for a given list of genes. Information
about things such as known interactions and pathways are also displayed. The list analysis pages
are a very popular feature of InterMine because they provide a useful summary of information from
a range of integrated data. Because all data objects have report pages and all query results can be
converted to lists, this enables a natural exploration of different aspects of, for example, gene lists of
interest, by browsing through related pathways and processes. This is helpful both for an exploratory
analysis, where the aim is to expand the connections from a particular topic of interest, and for a
funneling workflow, where the aim is to reduce a large starting list to a small number of promising
candidates.

5.2 User authentication and workspace

Logging in is not required for using InterMine - for users who are not logged in, details of lists are
saved for the duration of the session using cookies. However, logging into an InterMine instance

9

Figure 4: The InterMine report pages show a collated view of the information about a given
object. Here we show a small number of features of a gene report page, show-
ing information on gene expression (A), gene ontology (B), known diseases (C),
interactions (D), and associated publications (E).

10

Figure 5: The widgets included as part of a list analysis page perform a number of analy-
ses. Shown here are the FlyMine widgets for exploring chromosome distribution,
gene expression patterns (including both adult data from FlyAtlas and embryo
data from BDGP), mRNA subcellular localisation, interactions, and also for the
enrichment of Gene Ontology terms, protein domains, and publications. A list
analysis results page that includes these is automatically generated every time the
user creates a new list, facilitating rapid exploration and serendipitous discovery.

11

does have advantages as it saves the lists and queries permanently under a given username in a user’s
private ’MyMine’ workspace. One way of logging in is by registering as a user of a given InterMine
instance. It is also possible to log in by authenticating with OpenID providers such as myId or Yahoo.
A user’s lists are only saved in the single InterMine instance that they were created in - e.g. logging
into YeastMine with OpenID will not automatically transfer their gene lists from RatMine. Lists can,
however, be exported from one InterMine instance to another. User input descriptions (where applied)
are also saved alongside the lists.

Different classes of user have different capabilities: super-users can configure the positioning of
content on report pages and the front page using a web-based tagging system. In addition they can
use the web application to precompute and publish template searches, as well as creating and useful
public lists, e.g. lists of specific manually curated genes.

5.3 Query capabilities

As described, InterMine has been designed to enable the efficient construction and flexible querying
of large databases with complex data integration requirements. Any parts of the data model can
be queried, and InterMine also includes functionality for querying features which overlap specific
genome ranges. Specific distances upstream and downstream of genes can also be represented to
enable querying for genes that are near other features.

Template queries can be created for commonly run searches and there is a sophisticated QueryBuilder
(Figure 6) for constructing advanced custom queries. Because both the templates and custom queries
can be run within the web application using a graphical interface, querying the data does not require
programming knowledge. Queries can also be exported and imported as XML and thus can be shared
between users as well as between InterMine instances. Query results can be saved and exported from
the InterMine web application in a range of common formats, for example as tab-delimited, comma-
delimited, GFF3 or BED files and the users can customise the data fields to export. Data can also be
exported directly into Galaxy.

5.4 Embedding external tools

External display tools such as GBrowse (http://gmod.org/wiki/GBrowse), JBrowse (http://jbrowse.org/)
and Cytoscape Web (http://cytoscapeweb.cytoscape.org/) have been integrated within the web appli-
cation and it is straightforward to add others. In the case of GBrowse, data are not served directly
from the features stored in InterMine, but from a GBrowse-specific database. This database is loaded
as part of the InterMine build process, so ensuring that the same features are stored both in GBrowse
and in the InterMine database.

6 Web services

An InterMine web application presents visitors with both a graphical user interface and access to ma-
chine readable web services. The web services, to be described in more detail in a forthcoming paper,
expose the majority of the functionality underlying an InterMine application through standard HTTP
1.0 method calls (often termed a RESTful web service). This design allows for the greatest variety
of clients to be supported directly, in particular it allows for a rich JavaScript client to access Inter-
Mine functionality from third party web sites. To support bioinformaticians, InterMine has published
libraries to facilitate access to the InterMine API in Java, Perl, Python, Ruby and JavaScript.

12

http://gmod.org/wiki/GBrowse
http://jbrowse.org/
http://cytoscapeweb.cytoscape.org/

Figure 6: The QueryBuilder provides a graphical interface for browsing through the data
model and constructing and editing queries. In this example, the constructed
query is searching for all genes containing the string ”alpha” in Drosophila, and
then also displaying their homologues from the species M. musculus.

13

7 Pros and cons - why use InterMine

With a variety of data solutions available, it can be difficult to choose the most appropriate one for
your specific data management requirements. Here we present an overview of the existing solutions,
the specific strengths of InterMine, and the situations in which it is an appropriate choice of data
platform. There is a lot of overlap between the features available from a number of different data
management solutions - however, it is the specific combination of features available together that
makes them appropriate for particular uses. While a range of database management systems offer,
variously, query flexibility, speed, and the ability to host large quantities of data, an ideal combination
of these is rare, with for example, speed often coming at the price of reduced flexibility.

The useful features of InterMine include:

• Facilities for complex data integration. The data model is flexible and extensible, and a range
of data parsers are provided to facilitate the data loading. Furthermore, the query optimisation
method is constructed around the use of precomputed tables, meaning that the data schema
does not need to be denormalized in order to speed up query time.

• Fast, flexible querying. The sophisticated query optimisation means that users can construct
and perform a wide range of queries across the data model, while retaining good query speed.
The system is also fast enough to deal with large quantities of data - as shown in Table 1, the
modMine database contains 130 million objects, and its size with precomputed tables is 750
GB, with metabolicMine being even larger, containing 260 million objects and almost 2000GB
including precomputed tables.

• Pre-constructed web interface and analysis widgets. The web application is included with the
InterMine package, and is an accessible starting point for first time users. It contains a number
of features focused around list analysis (a common need in biology), as well as report pages,
template queries and a regions search tool. This setup makes it possible to browse and explore
data without any programming knowledge.

• Developed set of APIs and web tools. InterMine can be accessed programmatically, and we
provide client libraries for five commonly used programming languages (Python, Perl, Ruby,
Java, JavaScript). This enables bioinformatician users to access InterMine functionality without
using the web application and to query data from a number of different InterMine instances
using a single script, or as part of an automated workflow.

• Highly developed and extensible system. InterMine has been in development for 10 years, and
during this time, based on user demand, we have introduced a large number of features. These
range from faceted filtering options and enabling Boolean logic and set operations, to table
sorting and filtering, a range of standardised export options, integration of other tools such as
Cytoscape, and enabling embedding of individual analysis tools as part of external websites.
With funding secured for a further 5 years, we plan to continue adding features to InterMine.
Furthermore, the open source, extensible framework means InterMine is also open to other
developers to build upon.

The above features also come with a set of trade-offs:

• Initial InterMine configuration requires expertise. Although instructions are provided online,
setting up InterMine requires some familiarity with command-line tools. It also has dependen-
cies on other open source packages such as Tomcat and PostgreSQL. Establishing the correct
configuration of software, if none of it has been set up at the start, can be time consuming.

• Data needs to be loaded into new InterMine instances. Data loaders are provided, but may
need to be adapted if data source incompatibilities are found. This is often the case if the data
suppliers change formats.

14

• A new build is required for updates. Having a read-only database provides significant advan-
tages for query performance, and preserves the data in a quality checked, usable form, but
requires a time investment for each new build.

• The data model can be confusing to new database users. The large, flexible data model does
mean that the model can end up being complex, and possibly confusing to new users. We
attempt to bypass this problem by having a range of template searches for common tasks.
Furthermore, the user can modify these template searches using the QueryBuilder, thus helping
them learn the system.

• The analysis tool speed varies. Recently developed tools, such as the regions tool, are not
always suitable for analysis of high throughput data, and deal better with a small number of
regions. This is not the case across the board - most of our tools are highly optimised, and
adept at dealing with large quantities of input data.

Some of the cons are unavoidable trade-offs, such as the build time requirement for a read-only
database. Other ones are issues that we are working to improve, such as setting up a virtual machine
on Amazon with an InterMine instance, giving users the ability to use InterMine without having to
install and configure third party software such as PostgreSQL and TomCat. In general, however, we
think that as a large, established data warehouse system, InterMine has distinct advantages to offer to
potential users.

7.1 Comparison to existing systems

While different data integration solutions have their strengths and weaknesses, an ideal data man-
agement solution has not yet been found for biological sciences. Instead, a number of established
systems exist, and their use is appropriate in different scenarios. While a formal benchmarking re-
view at present does not exist, a basic comparison in a neutral review has been published: Triplet
and Butler (2011) looked at effective strategies for data integration, and in the process compared In-
terMine to four other systems - BioMart, BioXRT, Open Genome Resource (OGeR) and PROFESS.
We show quotations from Triplet and Butler (2011) in Table 3, in order to give an idea of the way
InterMine compares to other available general data warehousing frameworks.

InterMine is a robust, established system suitable for large data warehouses containing complex data,
intended to be maintained as a resource, and used for multiple analyses. Users have access to an
established data warehouse framework with advanced features, and the web application included
means that the resource can easily be released for public use. There is a time investment that goes into
setup and maintenance, so setting up an InterMine instance is less appropriate for users looking for
a quick solution or simple analysis of small scale data. However, InterMine implementation through
virtual instances will go some way to mitigating set-up costs, and this work is in progress.

InterMine doesn’t provide facilities for federation, but otherwise matches the features of the other
available data warehouses (an API with libraries in 5 languages was introduced for InterMine since the
Triplet and Butler (2011) publication). In addition, InterMine has several unique features, including a
range of data parsers, flexible query facilities allowing access to data at a range of levels, and tracking
of data provenance. In general, federation as an approach has the starting advantage that the user can
set up a simpler database and be connected to the data from federation partners without having to
load the data from each one. This is not the case for InterMine - while some interoperability links
exist between different InterMine instances such as the ability to export lists of gene identifiers via
orthologues, in general, data has to be loaded separately into each InterMine instance.

The complexity of bioinformatics data introduces a number of issues for data integration (Goble and
Stevens, 2008), to which, at present, there is no one solution. One of the contributions that will

15

System Advantages Disadvantages
BioMart -Tools for federating a variety of bio-

logical databases
-Queries limited to only two datasets at
once

-Unified web-based user-friendly inter-
face for data mining

-Not possible to edit or create new fil-
ters

-Supports programmatic access (Perl
API, RESTful web services)
-Queries defined as a set of successive
filters

BioXRT -Flexible and extensible database struc-
ture

-All pieces of data are defined as
strings of characters

-Tools for importing spreadsheets -Queries are constrained to string
matching - no advanced data mining
tools

InterMine -Parsers for integrating data from nu-
merous formats

-No tools for classifying or clustering
data

-Web access to integrated data at a
number of levels, from simple brows-
ing to complex queries

-Queries don’t include similarity func-
tions to address annotation errors

-Facilities for adding one’s own data
-User friendly web interface that can be
easily customised
-Data provenance is tracked

OGeR -Genome sequences and annotations
can be automatically downloaded

-No tools for clustering and statistical
analysis

-Features cross-references to external
databases

-No advanced data mining tools be-
yond sequence allignment

PROFESS -Unified text field for mining data from
any integrated database

-Query system is based on a non-
customisable set of filters

-Provides clustering and aggregation
tools for statistical analysis of large
datasets

- Does not support similarity functions
between standard BLAST searches

-Features a user friendly modular web
interface

Table 3: Quotations from a review of strategies for effective data integration by Triplet and
Butler (2011), describing the advantages and disadvantages of different data ware-
house systems.

16

pave the way towards better bioinformatics data management and analysis is the implementation of
community-wide standards, such as exemplified by the development of a range of ontologies includ-
ing Gene Ontology Ashburner et al. (2000). Semantic Web technology utilizes ontologies, and shows
a lot of promise as a solution for data integration on a large scale that is not limited to individual
software systems (Chen et al., 2012; Antezana et al., 2009). This technology may well emerge as a
good solution to the problem of biological data integration, yet at least some of it is still a research
problem in its own right. Since it is built on a set of generic standards (e.g. JSON), InterMine is in
a good position to expand its framework to exploit the wider adoption of biological Semantic Web
principles, or indeed any other emerging data integration solutions. In conclusion, the InterMine sys-
tem presents an established solution for the setting up of extensive resources for integrating large and
complex biological datasets.

References

Antezana, E., Kuiper, M. and Mironov, V. (2009). Biological knowledge management: the emerging
role of the semantic web technologies, Briefings in bioinformatics 10(4): 392–407.

Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis, A., Dolinski, K., Dwight,
S., Eppig, J. et al. (2000). Gene ontology: tool for the unification of biology, Nature genetics
25(1): 25.

Chen, H., Yu, T. and Chen, J. (2012). Semantic web meets integrative biology: a survey, Briefings in
Bioinformatics .

Eilbeck, K., Lewis, S., Mungall, C., Yandell, M., Stein, L., Durbin, R. and Ashburner, M. (2005). The
Sequence Ontology: a tool for the unification of genome annotations, Genome biology 6(5): R44.

Gelbart, W., Crosby, M., Matthews, B., Rindone, W., Chillemi, J., Twombly, S., Emmert, D., Ash-
burner, M., Drysdale, R., Whitfield, E. et al. (1997). FlyBase: a Drosophila database. The FlyBase
consortium., Nucleic Acids Research 25(1): 63.

Goble, C. and Stevens, R. (2008). State of the nation in data integration for bioinformatics, Journal
of biomedical informatics 41(5): 687–693.

Lyne, R., Smith, R., Rutherford, K., Wakeling, M., Varley, A., Guillier, F., Janssens, H., Ji, W.,
Mclaren, P., North, P. et al. (2007). FlyMine: an integrated database for Drosophila and Anopheles
genomics, Genome Biology 8(7): R129.

Mungall, C., Batchelor, C. and Eilbeck, K. (2011). Evolution of the sequence ontology terms and
relationships, Journal of Biomedical Informatics 44(1): 87–93.

Triplet, T. and Butler, G. (2011). Systems biology warehousing: Challenges and strategies to-
ward effective data integration, DBKDA 2011, The Third International Conference on Advances
in Databases, Knowledge, and Data Applications, pp. 34–40.

UniProt Consortium et al. (2008). The universal protein resource (UniProt), Nucleic Acids Res
36(D190-D195): 61–79.

17

	Introduction
	About InterMine
	Data import and integration
	The data model
	Data import
	Extending the data model
	Data integration and quality checking
	Data types

	System architecture
	Object/Relational mapping
	Query Optimisation

	Web application
	Features
	User authentication and workspace
	Query capabilities
	Embedding external tools

	Web services
	Pros and cons - why use InterMine
	Comparison to existing systems

