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Abstract

Non-invasive electrical stimulation of the human cortex by means of transcranial direct current stimulation (tDCS) has been
instrumental in a number of important discoveries in the field of human cortical function and has become a well-established
method for evaluating brain function in healthy human participants. Recently, transcranial alternating current stimulation
(tACS) has been introduced to directly modulate the ongoing rhythmic brain activity by the application of oscillatory
currents on the human scalp. Until now the efficiency of tACS in modulating rhythmic brain activity has been indicated only
by inference from perceptual and behavioural consequences of electrical stimulation. No direct electrophysiological
evidence of tACS has been reported. We delivered tACS over the occipital cortex of 10 healthy participants to entrain the
neuronal oscillatory activity in their individual alpha frequency range and compared results with those from a separate
group of participants receiving sham stimulation. The tACS but not the sham stimulation elevated the endogenous alpha
power in parieto-central electrodes of the electroencephalogram. Additionally, in a network of spiking neurons, we
simulated how tACS can be affected even after the end of stimulation. The results show that spike-timing-dependent
plasticity (STDP) selectively modulates synapses depending on the resonance frequencies of the neural circuits that they
belong to. Thus, tACS influences STDP which in turn results in aftereffects upon neural activity. The present findings are
the first direct electrophysiological evidence of an interaction of tACS and ongoing oscillatory activity in the human cortex.
The data demonstrate the ability of tACS to specifically modulate oscillatory brain activity and show its potential both at
fostering knowledge on the functional significance of brain oscillations and for therapeutic application.
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Introduction

The brain’s ability to generate and sense temporal information

is a prerequisite for perception, action, and cognition [1]. This

temporal information is embedded in oscillations that exist at

many different time scales [2]. In the healthy awake human at rest

with eyes closed (‘‘relaxed wakefulness’’), the most prominent

component in the EEG is the 8 to 12 Hz alpha rhythm, known

since the pioneering work of Berger [3]. The occipital alpha

rhythm has been linked to cognition [4] and working memory [5]

and is the main target of training-induced alterations by operant

conditioning in the context of biofeedback [6]. Alpha power

increases from early childhood to adulthood and decreases beyond

the age of 50-60 years, a decline that has been related to age

related neurological disorders and not to age per se. Furthermore,

children with poorer education, reading/writing disabilities,

spelling disabilities, and neurological disorders show significantly

less alpha power [7], and neural modulation of alpha power is

strongly affected in patients with Alzheimer’s disease [8].

The causal nature of a close relationship between EEG alpha

oscillations and human behavior has been pointed out by

demonstrating that artificially enhanced alpha power by repetitive

trancranial magnetic stimulation (rTMS) [9,10] or neurofeedback

training [11,12] can improve cognitive task performance.

Furthermore, endogenous occipital alpha power preceding a

visual stimulus determines the perceptual fate of the stimulus [13–

15]. Thus, ongoing oscillatory alpha activity even in the absence of

stimulus input or motor output can be seen as an index of internal

states of the brain and has predictive power for subsequent sensory

experience or cognitive processing [16,17]. Accordingly, it would

be desirable to modulate human alpha activity in cases of cognitive

disabilities that arise from pathologically low or high brain

oscillations in this frequency range.

Transcranial electrical stimulation of the human cortex has

proven to be a useful method in neuroscience [18,19]. Transcra-

nially applied direct current stimulation (tDCS) causes polarization

and depolarization of the neuronal areas under the anode and

cathode, respectively – thus modulating excitability of the cortex

[20–24]. The application of trancranial alternating current stimu-

lation (tACS) is potentially capable of interacting with rhythmic

neuronal activity and has perceptual [25] and behavioural [26]

consequences. By application of tACS over the occipital cortex,

Kanai and colleagues were able to induce phosphene perception in

a frequency dependent manner [25] (but see [27] for a

controversial discussion). In the same vein, Pogosyan and co-

workers related tACS over the motor cortex to stimulation-specific
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alterations in voluntary movement [26]. These effects strongly

indicated an interaction of tACS and frequency specific underlying

endogenous oscillations.

The aim of the present study was to provide direct

electrophysiological evidence for the interaction of tACS and

endogenous oscillatory neural activity. We applied tACS over the

occipital cortex at the individual alpha frequency of 10 healthy

participants, as well as a sham stimulation in a separate sample of

10 participants, and measured the alpha power from 3 parieto-

central midline electrodes (Figure 1a). We hypothesized that tACS

would interact with the ongoing neuronal activity and entrain the

individual alpha oscillations.

Materials and Methods

Participants
Twenty healthy subjects (10 female) with a mean age of

25.8564.5 years, and free of medication, participated in the study

after having given written informed consent. Participants were

divided in an alternating odd-even fashion into two groups, one

experimental (EG) and one control group (CG). Groups did not

statistically differ in age (EG: 27.364.8 years; CG: 24.463.9 years;

non-directional independent t-statistic: t18 = 1.48, P = 0.16), gender

(EG: 4 female; CG: 6 female, x2
1 = 0.8 (n = 20), P = 0.37), or

individual alpha frequency (IAF) in their endogenous EEG (EG:

10.4160.87 Hz, CG: 10.2260.80 Hz; non-directional indepen-

dent t-statistic: t18 = 0.51, P = 0.62) . We applied a single blind

study. Until the end of the experiment, the participants were not

aware whether they received tACS or sham stimulation. The

experimental protocol was approved by the local ethics committee.

EEG
The experiment was performed in an electrically shielded,

sound-attenuated, and dimly lit cabin (IAC, Niederkruchten,

Germany). For visual stimulation, a TFT monitor was placed

outside the cabin behind an electrically shielded window. All

devices inside the cabin were battery-operated to avoid line

frequency interference.

The electroencephalogram (EEG) was measured from the 3

scalp locations CPz, Pz, and POz, according to the 10–20 System,

and amplified using a BrainAmp amplifier (Brain Products,

Munich, Germany). An electrode placed on the nose served as

reference. Activity was recorded using sintered Ag/AgCl elec-

trodes mounted in an elastic cap (Easycap, Falk Minow, Munich,

Germany). Electrode impedances were kept below 5 kV;. EEG

data were acquired at a sampling rate of 500 Hz and were filtered

Figure 1. Stimulation details and results. A: Location of stimulation and EEG electrodes: The tACS electrodes were placed bilaterally over the
occipital cortex (PO9, PO10, international 10/10 system); EEG is measured from parieto-occipital midline electrodes CPz, Pz, and POz. B: Timeline of
experimental events: The experiment started with the determination of the individual alpha frequency during a 1-minute period in which the
participants were in a relaxed state with eyes closed followed by an evaluation of an individual phosphene threshold. Subsequently, the participants
performed a simple detection task for 16 minutes. During this period, EEG recording was stopped after 3 minutes (Pre-measure) and a 10 minute
stimulation (either tACS or Sham) was given, followed by a further 3 minute EEG recording (Post-measure). C: Group averaged EEG activity: Average
FFT power spectra for the 3 minute intervals preceding (pre, dotted line) and following (post, solid line) the stimulation condition separately for the
tACS-group (left) and the Sham-group (right). D: mean individual alpha amplitude for tACS and sham group: There is an increase in individual alpha
power from pre- to post-stimulus measurement in the subjects that received tACS (solid line), but not for the subjects that received sham-stimulation
(dotted line). No tACS related alpha modulation can be observed in the upper and lower frequency band. Data are normalized to the pre-stimulation
alpha power. Asterisks indicate statistical significance. Data are the means 6s.e.m.
doi:10.1371/journal.pone.0013766.g001
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on-line with a band-pass filter of 0.016–200 Hz with an infinite

impulse response (IIR) filter with an attenuation of 12 dB/octave.

A fiber-optic cable transferred the digitized EEG to a computer

outside the recording cabin. After data storage, an additional finite

impulse response (FIR) high-pass filter with a cut-off frequency of

0.5 Hz (60 dB attenuation of direct current (DC) signals) was

applied off-line in order to reduce slow shifts in the baseline.

Electrical stimulation
In the experimental group, trancranial electrical stimulation was

applied via two sponge electrodes (567 cm) (Neuroconn, Ilmenau,

Germany) attached to the head underneath an EEG Recording

Cap (EASYCAP, Herrsching, Germany) and placed bilaterally at

parieto-occipital locations (PO9 and PO10). The impedance was

kept below 10 kV. We applied oscillating currents at the IAF of

each participant using a battery-operated stimulator system

(Eldith, Neuroconn, Ilmenau, Germany).

Generally, the dominant frequency in the scalp EEG of human

adults is in the alpha frequency range (8–12 Hz) and can be

detected as prominent peak in the frequency spectrum. The alpha

frequency varies to a large extent as a function of age, neurological

disease, memory performance, brain volume and task demands

[28], as well as the genetic make up [29]. Therefore, we used the

individual EEG alpha frequency, rather then a fixed frequency

range, to determine the stimulation frequency and to measure the

tACS-induced cortical modulation. In the control group, sham

stimulation was applied. All parameters were the same as in the

experimental group except that the stimulator remained off during

the stimulation period. All participants underwent a tACS-

measure prior to the stimulation experiment to determine the

thresholds for phosphenes (visual flashes) and skin sensations

induced by tACS. The subsequent tACS stimulation in the

experimental group was set below these thresholds. This excludes

the possibility that participants were able to determine whether

they were in the sham or in the stimulation group. A debriefing

after the experiment was carried out in order to find out whether

stimulation was felt by the participants.

Design
The procedure is illustrated in Figure 1b. After application of

EEG and tACS electrodes, the experiments started with the

evaluation of the individual alpha peak frequency. For this purpose

the participants were asked to relax and close their eyes while the

spontaneous EEG was recorded for 1 minute. Subsequently, the

EEG signal was analysed (Vision Analyzer, Brain Products

GmbH, München). To this end, the raw EEG was split into 1

second segments. For each segment, a fast Fourier transformation

(FFT) was performed and the resulting 60 spectra were averaged.

The prominent alpha peak was visually detected and its frequency

used for the following procedure.

In the next step, we defined the tACS-induced thresholds for

skin sensation and phosphene perception for each participant. We

avoided phosphenes to rule out potential retinal contributions to

the effects of cortical modulation [30,31]. For that purpose, we

applied tACS stimulation at the individual alpha frequency for 1

second at a time and increased the amplitude stepwise by 250 mA

starting with 1000 mA and reaching a maximum of 3000 mA.

Participants were asked to keep their eyes open and indicate the

presence of a sensation. For the remaining experiment, stimulation

intensity (11206489 mA) was kept 250 mA below the lower

threshold for either phosphenes or skin sensations. In two

participants, the initial stimulation intensity of 1000 mA induced

skin sensations. In these cases, the intensity was decreased stepwise

by 100 mA until no sensation was elicited. The resulting

stimulation intensity (800 mA and 900 mA respectively) was

100 mA below the individual threshold.

Following these pre-measurements, participants performed a

visual change detection task for 16 minutes. Participants were

instructed to observe a centered cross (diameter 6 deg) on the

screen and to indicate a 45u rotation of the cross by pressing a

button with the index finger of the dominant hand. The cross

rotated after a variable interval ranging in duration from 35 to 45

seconds and remained rotated for 200 ms. Then it rotated back.

The task was used to assure a constant level of vigilance.

During the first 3 minutes of the task, the EEG was recorded

(pre-stimulation measure). During the subsequent 10 minutes,

participants received either tACS or sham stimulation, again

followed by 3 minutes of EEG recording (post-stimulation measure).

Data analysis
Data analysis was performed using MATLAB 7 (The Math-

Works Inc, Natick, MA, USA). For each of the two data sets from

each participant (Pre, Post) the raw EEG was split into segments of

1 second duration. All segments that contained a visual stimulation

change (rotating cross), or a motor response were excluded from

further analysis. The first 150 remaining segments of each data set

were used. The mean value of each segment was subtracted before

further processing in order to avoid DC distortion of the FFT

spectra at 0 Hz. Subsequently, absolute spectra were computed via

a fast Fourier transform (FFT) for each segment. The resulting 150

spectra were averaged. In order to evaluate tACS-induced cortical

modulation, the mean spectral amplitude within the frequency

range of the individual alpha frequency (IAF) 62 Hz was

calculated (alpha band) and entered into a repeated-measures

analysis of variance (ANOVA) with the between subject factor

Group (tACS-group/Sham-group) and the within subject factor

Measurement (Pre/Post). Subsequently, post-hoc t-statistics were

performed. Additionally, we also analysed surrounding frequency

bands of IAF -5 Hz to IAF -3 Hz (lower band) and IAF +3 Hz

to IAF +5 Hz (upper band). For illustration IAF data were

subsequently normalized to the alpha power of the pre-stimulation

measurement.

Results

The debriefing after the experiment revealed that stimulation

was not felt by any of the participants. Analysis of FFT power

spectra demonstrated an elevation of the individual alpha power

specifically related to tACS (cf. Figure 1c). A mixed ANOVA with

the between subject factor Group (tACS-group/Sham-group) and

the within subject factor Measurement (Pre/Post) revealed a

significant Group x Measurement interaction (F1,18 = 8.21, P = 0.01).

The individual alpha power increased from pre- to post-

stimulation measurement in the subjects that received tACS, but

not in the subjects that received sham stimulation (cf. Figure 1d).

Post-hoc t-tests showed a significant difference between pre- and

post-stimulation measurements in the tACS-Group (t 9 = 22.74,

P = 0.023), but not in the Sham-Group (t 9 = 0.9, P = 0.39). From

pre- to post-stimulation, the averaged individual alpha power was

elevated by 14% in the tACS group.

A t-test for independent samples showed a significant difference

between the post-measurements of the tACS- and the Sham-

Group (t 18 = 1.99, P = 0.03, one-tailed).

No significant interaction was found in the lower (F1,18 = 0.43,

P = 0.5), or in the upper frequency band (F1,18 = 0.01, P = 0.9),

demonstrating that the entrainment of the endogenous neural

oscillations was restricted to the specific tACS frequency.

TACS Enhances Alpha EEG
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Discussion

The human brain is a complex dynamic system generating a

multitude of oscillatory waves [32]. These neural oscillations are

ubiquitous in cortical systems and play an essential role in human

cognition [33]. Depending on the specific frequency band, neural

oscillations can be linked to a variety of neural processes,

including input selection, plasticity, binding, and consolidation

[32], as well as cognitive functions including salience detection,

emotional regulation, attention and memory [34]. Also the speed

of cognitive functions seems to be influence by alpha oscillations

[28].

As demonstrated in the present study, endogenous alpha band

oscillations can be entrainment of by means of non-invasive tACS.

Such entrainment of alpha oscillations might be used to specifically

modulate the internal brain state, and hence modulate subsequent

perceptual or cognitive performance. Applications of tACS may

even be used in therapy in the future. So far, only tDCS has been

applied as a potential therapeutic tool for treatment of several

neurological and psychiatric disorders [35–43], and particularly

for the treatment of memory deficits in stroke patients [44],

patients with Parkinson’s disease [45], and patients suffering from

Alzheimer’s disease [36,46]. Given the fact that certain dysfunc-

tions of cognitive processes can result from altered or disrupted

neuronal oscillations (see e.g. [47] for a review), the potential

therapeutic applications of tACS span a wide range of diseases.

Principally, tACS could be applied to patients in analogy to the

well established protocols used with tDCS and is therefore easy

and save to operate.

Especially for alpha oscillations, recent evidence for a functional

role of stable alpha oscillations in memory has been reported.

Here, aberrant temporo-parietal alpha activity in early stage

Alzheimer’s Disease (AD) has been observed, suggesting that

amplitude modulation of neuronal oscillation may be important

for memory and strongly affected by AD [11]. The possibility to

specifically up-regulate neural oscillations could thus be used to

systematically alter cognitive and memory performance and

therefore to potentially reduce age- and disease-related perfor-

mance deterioration. However, the possible therapeutic applica-

tion of tACS need not be limited to alpha activity. Analogous

aberrant neural oscillations have been observed in major

depressive disorders for the theta band [48], in epilepsy for the

beta band [49,50], and in schizophrenia for the gamma band [51].

Besides its great potential as a tool for therapeutic application,

the ability to specifically modulate individual frequency compo-

nents of endogenous neural oscillations will provide a powerful

new method of investigating the functional significance of several

oscillatory bands in human cognition. The current findings

provide the first evidence for a direct modulation of endogenous

neural oscillations by transcranial alternating current stimulation

of the human cortex. Until now, the modulatory effect of tACS on

endogenous neural oscillations has been indicated only by

inference from its perceptual [2], and behavioural [3] conse-

quences. However, two former studies did report electrophysio-

logical consequences of transcranially applied electric stimulation

in humans [52,53]. These authors used tACS at low frequencies

combined with tDCS, i.e. added the alternating current onto a

direct current (also called anodal trancranial slow oscillation

stimulation, tSOS) to improve memory consolidation. However,

the polarizing and depolarizing effects of tDCS on the underlying

neural tissue [26] in these investigations cannot be disentangled

from the specific oscillatory driving of tACS. Therefore, the

present study is the first to characterize the ‘pure’ entraining effect

of tACS on brain rhythmicity.

1tACS that lead to the observed effect of a tACS induced

increases in the individuals’ EEG alpha amplitude. The first

question addresses the issue why tACS works at all, since tDCS at

1mA intensity probably operates below the threshold of cortical

neurons, i.e. the stimulation does not directly result in action

potentials. Francis et al. (2003) have demonstrated that weak

electric fields need to exceed intensities of about 150 mV/mm in

order to result in action potentials in hippocampal slices of the rat

[54]. Miranda et al. (2006) used inverse modelling to show that

1mA of tDCs leads to about 110 mV/mm of electric fields in

cortex, thus probably staying below the threshold for action

potentials [55].(Note, however, that already tDCS intensities of

2mA can exceed this threshold.) Even if 1mA of stimulation

intensity must be considered sub-threshold, the increased mem-

brane potential of the neurons makes it more likely that the

stimulated neurons fire when receiving input from other neurons.

The same mechanism must be assumed for tACS which forces the

membrane potential to oscillate away from its resting potential

towards slightly more depolarized and slightly more hyperpolar-

ized states. During phases of depolarization, tACS can then

increase the likeliness of a neuron to fire in response to other

neurons. This mechanism has been called stochastic resonance

[56] and it seems plausible to assume that this is the cause for

observed behavioral effects like phosphenes [2,57]. The second

question concerns how tACS results in changes of neural activity

that persist even after stimulation has been turned off. Both, tDCS

and repetitive trancranial magnetic stimulation (TMS) also lead to

aftereffects of up to one hour duration or longer [58,59]. For

tACS, we believe that this effect originates from synaptic plasticity.

Synapses are either strengthened or weakened depending on the

exact timing of their input and output activity. When a pre-

synaptically arriving action potential precedes a post-synaptic

potential, the synapse is strengthened – long-term-potentiation

(LTP) of the synapse occurs. If, however, the post-synaptic

potential precedes a pre-synaptic potential, the latter cannot have

been causal for the former and the synapse is weakened – long-

term-depression (LTD) occurs. These mechanisms have been

referred to as spike-timing-dependent plasticity (STDP) [60].

Within a neural network, multiple pathways exist that lead from

one neuron via other neurons back to the same neuron. These

neural circuits can be considered neural oscillators, since it takes a

certain amount of time for spikes to run around these circuits. If

repetitive input reaches such circuits, the strength of their neural

response depends upon the frequency at which they are

stimulated, a phenomenon known as neural resonance [61]. The

resonance frequency of such circuits is reciprocal to the time that

spikes need to run around the circuit. According to the STDP rule,

synapses of those circuits that have a resonance frequency similar

to that of the repetitive input are strengthened during stimulation.

After stimulation, these synaptic changes persist and result in

enhanced neural activity at the resonance frequency of these

circuits. We have tested whether this explanation holds true in a

neural network simulation (for simulation details see ‘Text S1).

The results show that stimulation at a certain input frequency

selectively strengthens those synapses that are incorporated in

neural circuits that have a similar resonance frequency as the

input, and weakens synapses incorporated in neural circuits with

different resonance frequencies (cf. Fig. 2).

While tDCS effects neural tissue via a sustained modulation of

the membrane voltage of neurons, tACS most probably yields its

effect via an up- and down-regulation of certain synapses as

indicated above. This lets us assume that tACS – like repetitive

TMS [59] – should be better suited to modulate those cognitive

functions that are closely related to brain oscillations at specific

TACS Enhances Alpha EEG
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frequencies [62]. TDCS, on the other hand, can up- or down-

regulate the stimulated brain areas irrespective of the frequency at

which neurons in this area oscillate. Thus, tDCS might be more

effective in regulating those brain functions that are clearly related

to certain brain areas rather than certain EEG frequencies, e.g.

syntax processing in Broca’s area [63], face processing in the

fusiform gyrus ([64], or motor processes in the primary motor

cortex – to name but a few. It should be noted, however, that most

probably no cognitive function is related to only one brain are or

EEG oscillations (see, e.g. [65]). Nevertheless, modulating either of

the two into the right direction may very well support a disturbed

function.

In summary, our study revealed that tACS but not sham

stimulation elevates EEG alpha power and thus demonstrates the

feasibility of tACS to modulate specific oscillatory brain activity.

Furthermore, the present findings strongly recommend tACS as a

powerful tool for investigating human brain oscillations and

indicate its feasibility for therapeutic applications.

Figure 2. Network simulation of tACS. A: Spike timing dependent plasticity: synaptic weights are increased if a post-synaptic potential follows a
pre-synaptic spike (long-term potentiation, LTP) and decreased if a post-synaptic potential occurs prior to a pre-synaptic spike (long-term depression,
LTD). B: Schematic illustration of the network: A driving neuron establishes a recurrent loop with each neuron of a hidden layer. The total synaptic
delay, Dt, (i.e., the sum of both delays of the loop) varied between 20 and 160 ms. The driving neuron was stimulated with a spike train of 10 Hz
repetition rate. C: Synaptic weights of the back-projection as a function of the total synaptic delay of the recurrent loops: Grey dots display synaptic
weights at the start of the simulation, black dots represent synaptic weights after the end of simulation. External stimulation of the driving neuron at
10 Hz resulted in increased weights for recurrent loops with a total delay between 60 and 100 ms, and dramatically reduced synaptic weights for
loops with total delays outside this interval. Note, that the highest synaptic weights are observed at 100 ms, i.e., for loops with a resonance frequency
near the stimulation frequency.
doi:10.1371/journal.pone.0013766.g002
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Supporting Information

Text S1 Details on the network simulation.

Found at: doi:10.1371/journal.pone.0013766.s001 (0.04 MB

DOC)
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