- Supplementary information for the manuscript "Chemical exposure-response relationship
 between air pollutants and reactive oxygen species in the human respiratory tract"
- 3

4 Pascale S. J. Lakey¹, Thomas Berkemeier¹, Haijie Tong¹, Andrea M. Arangio¹, Kurt Lucas¹, Ulrich

5 Pöschl^{1,*} and Manabu Shiraiwa^{1,2*}

6 ¹ Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1,

7 55128 Mainz, Germany

⁸ ² Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA

9 * m.shiraiwa@uci.edu; u.poschl@mpic.de

10

11 S1. Kinetic model.

12 KM-SUB-ELF is based on the kinetic multi-layer model for aerosol surface and bulk chemistry (KM-SUB)¹. The model treats the following processes explicitly: gas-phase diffusion, 13 14 adsorption and desorption from the surface, bulk diffusion as well as chemical reactions at the surface 15 and in the bulk. The ELF is split into different layers: a sorption layer, a surfactant layer, a near 16 surface bulk layer and a number of bulk layers. In this study 20 bulk layers were used which allowed 17 the concentration gradients within the ELF to be resolved. Laminar flow through the nasal cavity and respiratory tract is expected at resting breathing flow rates². The temporal evolution and concentration 18 19 profile of the various reactants and products can be simulated by solving a set of ordinary differential 20 equations, which describe mass balance of each species by mass transport fluxes and rates of chemical 21 production and loss. A general schematic of the KM-SUB-ELF model is shown in Supplementary 22 Figure 1.

23 Supplementary Table 1 summarizes the reactions treated in KM-SUB-ELF. These reactions include O₃ and OH reacting with antioxidants and with a surfactant lipid, 1-palmitoyl-2-oleoyl-sn-24 glycerol (POG) and a surfactant protein (SP-B₁₋₂₅). POG is representative of the major unsaturated 25 anionic lipids in lung surfactants and contains one double bond that can react with ozone, whereas SP-26 27 B₁₋₂₅ is a protein containing 25 amino acids and is representative of proteins found in lung surfactants. 28 KM-SUB-ELF includes reactions involving three types of quinones, which were found to be the most 29 important in ROS production³: phenanthrenequinone (PQN), 1,4-naphthoguinone (1,4-NQN) and 1,2-30 naphthoquinone (1,2-NQN). KM-SUB-ELF also includes Fenton chemistry of iron ions, Fenton-like 31 chemistry involving copper ions, and HO_x chemistry, leading to both H₂O₂ production and destruction. 32 For the majority of reactions rate coefficients are known and have been published in the literature. For unknown and controversial reaction rate coefficients, the experimental data of formation of $H_2O_2^3$ and 33

OH⁴ in the presence of quinones, iron and copper ions was fitted by KM-SUB-ELF using the Monte
 Carlo genetic algorithm as detailed below.

Iron and copper were the two transition metal ions included within KM-SUB-ELF. It has been 36 37 demonstrated experimentally that other transition metals including Mn, Co, V, Ni, Zn, Cd, Cr do not produce H₂O₂ within surrogate lung fluid³. Measurements have also shown that there is no production 38 of OH radicals in surrogate lung fluid from any of these metals with the exception of Cu and Fe⁴. Rate 39 40 constants of Fenton-like reactions do exist for manganese, however, these suggest that the formation of O_2^- (which is the first step of the mechanism) is significantly faster for Fe^{2+} (and hence Cu^{2+}) than 41 for Mn²⁺⁵. Reactions which interconvert ROS are also significantly faster for Cu and Fe than for Mn⁶. 42 43 Finally, there is also evidence that total concentrations and water-soluble concentrations of iron and 44 copper within PM2.5 tend to be higher than the concentrations of other water-soluble metal ions such as Mn, Ni, Br, Sr, Pb, As, Ti, Se⁷⁻¹¹. 45

46 Note that this study intended to determine a baseline for the primary chemical production of 47 exogenous ROS. From this baseline, air pollutants can cause secondary production or destruction of endogenous ROS via biological interactions and responses of the human immune system, including 48 the activation of macrophages, mitochondria and enzymes like NADPH-oxidase and glutathione 49 peroxidase or infections and microbial growth induced by biological and nutrient-rich particles^{12,13}. 50 Activity of enzymes is highly dependent upon exposure to oxidants (e.g. ozone) as well as the pH of 51 the ELF and is significantly reduced in smokers and people suffering from lung diseases such as 52 chronic obstructive pulmonary diseases¹⁴⁻¹⁶. 53

Supplementary Table 2 summarizes the kinetic parameters including the surface 54 55 accommodation coefficient, desorption lifetime, Henry's law coefficient, bulk diffusion coefficient, 56 effective molecular cross-section of the gas phase species, mean thermal velocity of the gas phase 57 species and the gas phase diffusion coefficients of O₃ and OH. The concentrations of antioxidants 58 within three different regions of the respiratory tract (the alveoli, the bronchi and the nasal cavity) are 59 known and are summarized within Supplementary Table 3¹⁷. Albumin-SH has been suggested as an antioxidant but has not been included in the model¹⁸, because it has been demonstrated that it would be 60 of minimal importance compared to GSH^{18,19} and there is no evidence of oxidative modification of 61 albumin by ozone in the presence of other antioxidants²⁰. The average thickness of the ELF and the 62 diameter of the respiratory tract are also listed. The concentration of the surface lipid was set to $2.2 \times$ 63 10^{21} cm⁻³ representing a monolayer of the lipid with a thickness of 7.8 × 10^{-8} cm equivalent to the 64 effective diameter of the lipid. These values were based on a 60 Å/ lipid surface density²¹. Finally, the 65 surface concentration of reactive sites in surfactant protein was set to 8.8×10^{20} cm⁻³ considering that 66 one surfactant protein molecule contains four reaction sites (the amino acids $2 \times$ cysteine, tryptophan, 67 methionine)²². 68

The chemistry of iron and copper with hydrogen peroxide has been extensively studied and
 can be summarized by the Fenton and ROS reactions shown by Reactions 22 – 48 in Supplementary

71 Table 1. However, there are large uncertainties in many of these rate coefficients and also in the 72 mechanism. For example, it has been suggested that the reaction of Fe(II) with hydrogen peroxide 73 could lead to the formation of Fe(III) (R26) and/or Fe(IV) (R30) and measurements have suggested that Fe(IV) formation may be more than 1000 times faster at the air-liquid interface than in the bulk²³. 74 To account for these large uncertainties, the available experimental data sets were reproduced by KM-75 SUB-ELF. Charrier et al.³ measured the H₂O₂ production with different iron and copper concentrations 76 in a surrogate ELF solution. Charrier and Anastasio⁴ reported the measured para-hydroxybenzoic acid 77 78 (p-HBA) formed after 24 hours from the reaction of benzoate with OH radicals in surrogate lung fluid 79 as a function of either iron or copper concentration. Surrogate ELF has been widely used and accepted 80 as a suitable surrogate for real ELF, as it contains very similar concentrations of antioxidants and has the same pH of $7.4^{3,4,24-27}$. We varied the most uncertain kinetic rate constants within their boundaries 81 suggested in the literature. These include oxidation of quinones, Cu(I) and Fe(II) by oxygen species O₂ 82 83 and O_2 / HO₂ (R17, 18, 24, 25, 41, 42, 49), reduction of Cu(II) with O_2 / HO₂ (R47 and 48) direct 84 reactions of Cu(I) and Fe(II) with hydrogen peroxide (R26, 30, 43, 44 and 46), the reduction of 85 quinones, Cu(II), Fe(III) and Fe(IV) with ascorbate (R16, 22, 23 and 40) and the reaction of ascorbate 86 with O_2 (R51).

87 To find a common kinetic parameter set describing all available experimental data, the 88 optimization of these rate coefficients was performed by global optimization, which is a genetic algorithm (GA, Matlab Global Optimization Toolbox, Mathworks® software), seeded with results 89 from a uniformly-sampled Monte-Carlo (MC) search for faster convergence (MCGA method)^{28,29}. In 90 91 the MC search, kinetic parameters were varied randomly within their individual bounds. Each data set 92 is fed into the model and the correlation between model output and experimental results is evaluated in 93 a least-squares fashion. In the GA step, a so-called population of parameter sets is optimized by 94 processes resembling recombination and mutation in evolutionary biology. To ensure diversity within 95 the pool of parameter sets and to counteract the sampling bias from shallow local minima, an equal 96 amount of random parameter sets was added to the starting population. The data sets and the fitting 97 obtained with KM-SUB-ELF are shown in Supplementary Fig. 1. Supplementary Figure 11 shows 98 fitted parameters with uncertainty in the box-whisker diagrams based on multiple optimization.

The rate-limiting step for hydrogen peroxide production is found to be the reaction with molecular oxygen with transition metal ions (R24 and 41). For the hydrogen peroxide production by quinones, the radical chain is initiated by oxidation of the antioxidant ascorbate (R13, 16 and 19). Ascorbate also reacts with the oxidized forms of both transition metals (R 22, 23 and 40) and a large portion of hydrogen peroxide production by copper can be attributed to this reaction channel. All reactions involving superoxide and quinone radicals (R17 and 18) were found to be fast, and rate coefficients approach the diffusion limit of ~1×10⁻¹¹ cm³ s⁻¹²⁹ (Supplementary Fig. 11).

The main driving force of the production of OH radicals is the direct reactions of hydrogen peroxide with the reduced forms of the trace metals Cu(I) and Fe(II) (R43 and 26). As discussed

108 above, direct oxidation of Fe(II) to Fe(IV) without production of hydroxyl radicals (R30) is fast in the simulations with a rate of 9.5 $\times 10^{-18}$ cm³ s⁻¹, which is in line with Enami et al.²³. Regeneration of the 109 reduced forms of trace metals in the model is mainly accomplished by direct reaction with ascorbate 110 111 (R22, 23 and 40). Continuous production and destruction of hydrogen peroxide led to a steady-state equilibrium and hence constant production of OH radicals until all of the ascorbate was depleted. It 112 can be seen from the experimental data ⁴ that the cumulative OH production after 1 day became 113 independent of trace metal concentrations above a certain trace metal concentration (~ $3 - 4 \mu mol L^{-1}$) 114 115 (Supplementary Fig. 2).

116

117 S2. ROS concentrations and OH, H₂O₂ and ROS production rates

To convert ambient concentrations (ng m⁻³) of transition metal ions, quinones and SOA into
 ELF concentrations, the following equation was used:

ELF concentration

$= \frac{Ambient\ concentration \times Breathing\ rate \times PM\ deposition\ rate \times Fractional\ solubility \times Accumulation\ time}{MW \times Total\ ELF\ volume} \quad (E1)$

where MW is the molecular weight of the species, the breathing rate was assumed to be $1.5 \text{ m}^3 \text{ h}^{-1} \text{ }^{30,31}$. 120 the PM deposition rate was assumed to be 45% 32 and the total ELF volume was set to 20 ml^{33,34}. The 121 fractional solubilities of iron and copper were assumed to be 0.1 and 0.4, respectively³⁵⁻³⁷. Total water-122 soluble fractions of iron and copper can range from $\sim 5 - 25$ % and $\sim 20 - 60$ %, respectively, in a wide 123 range of different environments including urban, rural and remote locations^{7,35-43}, which are 124 125 represented in Figure 2C by the error bars on each point. Here we assume that species in the 126 particulate matter that undergo reactions are immediately available in solution upon deposition. The 127 temporal evolution of the solvation of different species might also have an influence and should be 128 investigated in future work.

Inhaled particles can be deposited in the respiratory tract and accumulate over several hours 129 before being removed by the immune system and metabolic activity^{45,46} and we therefore set the 130 131 accumulation time to 2 hours in this study. It should also be noted that there is a background concentration of iron within the ELF of a healthy person, but these iron ions are treated as unreactive 132 as they are associated with ferritin and therefore unavailable for Fenton reactions^{45,47}. For conversion 133 of typical ambient concentrations into PM2.5 concentrations, it was estimated that 0.13 - 6% of iron, 134 0.008 - 0.3% of copper, 0.001 - 0.015% of quinones and 12 - 60 % of SOA by weight were present 135 within PM2.5 (Fig. 2A & Supplementary Fig. 5). These values are based upon the measurements 136 shown in Supplementary Tables 4 – 6. For guinones the concentration ratio of [PQN]: [1,2-NQN]: 137 138 [1,4-NQN] was assumed to be 2: 1: 1.

SOA particles have been shown to contain substantial amounts of ROS, mostly $H_2O_2^{48-51}$. To calculate the ROS concentrations formed in the ELF by SOA, a H_2O_2 formation rate of $1.5 \times 10^9 \text{ s}^{-1}$ per microgram of SOA was included in the KM-SUB-ELF model. This value was based on a 0.06 % mass yield of H_2O_2 from terpene SOA at pH 7.5⁴⁸. SOA contains high concentrations of organic

hydroperoxides⁵² and recent experiments have shown that SOA can form substantial amounts of OH 143 radicals upon interactions with water and iron ions due to their decomposition⁵³. The molar OH yield 144 by SOA was reported to be 0.15% - 1.5% with the highest for β -pinene SOA followed by α -pinene, 145 146 isoprene, and limonene, whereas naphthalene SOA were found to form negligible OH. We hence 147 assume a 1% molar yield of OH production rate for SOA. It should be noted that these experiments were performed with fresh SOA but some measurements have shown that organic peroxides within 148 SOA would decay on the timescale of about 6 - 20 hours^{49,54}; thus, aged SOA might generate lower 149 ROS concentrations. ROS production rates from SOA are equivalent to the sum of the H₂O₂ and OH 150 production rates. Note that the definition of ROS used in our study includes OH, O₂, HO₂, O₃, and 151 H₂O₂ in accordance with most biomedical research articles on aerosol lung interactions and health 152 effects⁵⁵⁻⁵⁷. However, the broader definition includes organic species such as organic 153 (hydro)peroxides^{50,55,58}. Whilst the decomposition of organic hydroperoxides is included within the 154 model, the formation of organic radicals was not included and would be in addition to calculated 155 production rates and concentrations. ROS production rates for iron, copper and quinones were 156 assumed to be equal to O_2^- production rates, as O_2^- is a precursor of all of the other ROS species. 157

ROS concentrations, shown in Figure 2C, were non-additive due to the coupling of Fe and Cu 158 and their ability to destroy and produce ROS. For example, at a PM2.5 concentration of 400 μ g m⁻³ the 159 calculated ROS concentration with iron, copper, SOA and guinones separately and adding these 160 161 together was up to 3.5 times as high as running the model with all of these PM2.5 components. Due to ROS concentrations being non-additive, an increase of PM2.5 leads to a non-linear increase in ROS 162 163 concentration due to ROS destruction by Fenton-like reactions for high PM2.5 concentrations in 164 Figure 2C. Nevertheless, ROS concentrations are expected also to be above a critical level in a heavily polluted biomass burning plume in Indonesia. Production rates of ROS, OH and H₂O₂, shown in 165 166 Figure 2A and Supplementary Figure 5, were additive, within 35 %, 12 % and 15 %, respectively.

Chelating ligands were not specifically considered within the model, as water molecules are 167 mostly acting as ligands in diluted aqueous solutions. Lakey et al.⁵⁹ recently demonstrated that several 168 different organics which should act as ligands towards transition metal ions (malonic acid, citric acid, 169 1,2-diaminoethane, and tartronic acid) did not alter the reactivity of Cu^{2+} with HO₂/O₂⁻ which leads to 170 H_2O_2 formation. However, upon addition of oxalic acid a decrease in reactivity of Cu^{2+} with HO_2/O_2^{-} 171 172 was observed, although this only occurred when oxalate was at very high concentrations (10:1 molar ratio of oxalate: copper). Some chelating ligands are also known to increase the rate of H₂O₂ 173 decomposition due to reaction with Fe²⁺. Addition of halide, sulfate, selenite, trimetaphosphate and 174 tripolyphosphate increased the rate of decomposition of H_2O_2 by Fe²⁺ by a factor of $2 - 3^{60}$. The fulvic 175 acid complex, and the oxalate complex have both been shown to increase the rate of H_2O_2 176 decomposition by Fe²⁺ and may also alter the products to form Fe(IV), whereas phosphate ligands can 177 suppress the rate of the reaction⁶⁰. We found that the ROS concentrations may decrease by ~ 25 % on 178 average if the rate of hydrogen peroxide destruction by Fe^{2+} is increased by a factor of two, for 179

example if ligands increased the reactivity of the iron. However, there remains uncertainty as to the level of complexing of transition metal ions within the ELF. It should also be noted that there is some variability in the antioxidant concentrations within the ELF; for example, Rahman et al.⁴⁴ reported an ascorbate concentration, which is 2.5 times higher than the concentration reported by Mudway and Kelly¹⁰³ as shown in Table S3. By using the antioxidant concentrations reported by Rahman et al.⁴⁴, an average increase of ~20% would be predicted for the ROS concentrations shown in Fig. 2C due to faster reactions between antioxidants and redox-active components.

In Figure 2D, the effect of removing 50 % of the water soluble fractions of individual or multiple redox-active components upon ROS concentrations within the ELF was investigated. At high PM2.5 concentrations (\geq ~100 µg m⁻³) the removal of iron will increase ROS concentrations, because iron destroys H₂O₂ by the Fenton reactions (R26, R30) as also observed experimentally in Supplementary Fig. 2A. This is why ROS concentrations saturate or decrease as PM2.5 concentrations increase in Fig. 2C. At lower PM2.5 concentrations, iron contributes more to H₂O₂ production (R24, R25) rather than destruction, and thus the removal of iron decreases ROS concentrations.

194 Supplementary Figure 4A shows the production rates of OH and H₂O₂ calculated as a function of ambient concentrations of iron, copper, and quinones. With increasing pollutant concentrations, 195 H_2O_2 production rates increase by multiple orders of magnitude from ~10⁻³ pmol L⁻¹ s⁻¹ under clean 196 conditions up to $\sim 10^2$ pmol L⁻¹ s⁻¹ at highly polluted conditions. The production rates of OH radicals 197 are several orders of magnitude lower but show an even steeper increase with pollutant concentrations 198 (from $\sim 10^{-9}$ pmol L⁻¹ s⁻¹ up to ~ 10 pmol L⁻¹ s⁻¹), in particular with iron and copper ions catalyzing both 199 the formation of H₂O₂ and the conversion of H₂O₂ into OH by Fenton-like reactions. At very high iron 200 201 and copper concentrations, OH production rates are thus almost as high as H₂O₂ production rates.

As a function of PM2.5 concentration, Supplementary Figure 5 shows H₂O₂ and OH 202 203 production rate corridors, the range of OH production rates induced by SOA, Fe, Cu, and quinones 204 contained in PM2.5, respectively. The corridors are based on a compilation of the measured components accounting for a certain percentage of the PM2.5 mass in different cities (see 205 206 Supplementary Tables 4-7). Overall, the H₂O₂ production rate is dominated by Cu and Fe, whereas 207 OH production rate is led by SOA and iron followed by Cu and quinones, mainly reflecting the abundance of each species. Note that recent studies have shown that humic-like substances (HULIS) 208 emitted from biomass burning contain high amounts of quinones that may contribute substantially to 209 ROS production⁶¹⁻⁶⁴. 210

211

212 S3. Reactions of oxidants with surfactants and antioxidants

Figure S6 illustrates the temporal evolution of antioxidants, surfactants, and two oxidants of ozone and OH radicals, when ELF in the nasal cavity and the bronchi are exposed to 100 ppb O_3 and 5×10^6 cm⁻³ OH. The oxidant concentration was kept constant over time, assuming negligible loss of oxidants within the nasal cavity and bronchi over the time period of a single breath of a few seconds.

Fig. S6A shows degradation of total antioxidants by reactions with ozone and OH. Due to the high 217 218 abundance of antioxidants, antioxidants are depleted only slightly by $\sim 11\%$ in the nasal cavity. In the 219 bronchi the initial antioxidant concentration is higher due to the higher concentration of glutathione. Fig. S6B represents the depletion of surfactants (proteins + lipids) in the different regions of 220 respiratory tract. After 1 hour \sim 70 % of surfactants were degraded mainly due to reaction with O₃. It 221 should be noted that changing the antioxidant concentrations to those reported by Rahman et al.⁴⁴ (as 222 discussed above) had little impact upon the results shown in Fig.S6C and S6D. Inhaled O₃ still rapidly 223 224 saturates the ELF in all regions of the respiratory tract and inhaled OH is still rapidly scavenged by the 225 surfactants and antioxidants near the surface of the ELF.

Some studies have measured much larger rate coefficients by 2 - 4 orders of magnitude for 226 227 Reactions 1-4 (although this could be attributed to reactant concentrations as in early studies extremely high O3 concentrations were used, and the method by which the O3 contacted the fluid as discussed in 228 ⁶⁵). To investigate the effect of these larger rate coefficients upon the temporal evolution of O₃ within 229 the ELF, $k_1 - k_4$ were increased to $\sim 10^{-15}$ - 10^{-14} cm³ s⁻¹ ^{66,67}. In the nasal cavity, the O₃ concentration 230 next to the cells and tissues became significantly smaller than the saturation concentration. In the 231 alveoli and bronchi, O₃ was again saturated without any significant concentration gradients despite 232 233 these higher rate coefficients.

Using the derived uptake coefficients ($\gamma_{O3} = 2 \times 10^{-5}$ and $\gamma_{OH} = 0.96$ in all regions of the 234 respiratory tract) and the surface area of the nasal cavity, bronchi and alveoli (Supplementary Table 235 236 3), the number of molecules of O_3 and OH removed in the different regions of the respiratory tract can be estimated. At 100 ppb O_3 and 5×10^6 cm⁻³ OH and assuming that 1 breath of air consists of 2 L, after 237 238 1 second O_3 concentrations would decrease by ~0.6% and ~20% in the nasal cavity and bronchi, 239 respectively, whereas OH would decrease by 2% and more than 100% in the nasal cavity and bronchi, 240 respectively. Thus, substantial amounts of O_3 and OH would pass through the nasal cavity and the majority of the loss would occur in the bronchi and alveoli region. This is consistent with estimated 241 chemical half-lives ($t_{1/2}$, the time at which the concentration reached half of the initial concentration) 242 243 of gas-phase O_3 and OH being on the order of ~10 s in the nasal cavity, ~1 s in bronchi, and ~10 ms in alveoli. Note that turbulent flow within the nasal cavity can occur within a person who is exercising 244 245 and in this case most of OH radicals would be expected to be lost within the nasal cavity. For ambient 246 OH radicals, $t_{1/2}$ is the longest in the nasal cavity, reflecting that OH loss is mainly limited by gas-247 phase diffusion.

248

249 **S4. pH effects on the products**

The mean ELF pH of a healthy person has been measured to be ~ 7.4. However, people with diseases such as asthma or acid reflux can experience a decrease in ELF pH down to ~4. The ELF can also be acidified in children or by the inhalation of acidic particles^{68,69}. Therefore, it is important to quantify the reactions occurring and the products formed within the ELF at different ELF pH. The 254 rates of reaction between ozone and the antioxidants are highly dependent upon the pH of the ELF. Enami et al. measured pH dependence of rate coefficients for ozone with ascorbate to be k(pH7)/255 $k(pH3) = 2.73^{70}$, the pH dependence for ozone with uric acid was $k(pH7)/k(pH4) = 380^{71}$, for ozone 256 reacting with glutathione the dependence was $k(pH9.2)/k(pH3.5) = 58^{73}$ and finally the dependence 257 for ozone reacting with α -tocopherol was $k(pH9.3)/k(pH0) = 380^{72}$. At lower pH, the ratio of products 258 259 changes with a greater ratio of harmful ozonide, peroxide and epoxide products formed from 260 Reactions 1, 2 and 4. Ozonides are strong oxidizers which can cause significant oxidative damage in vivo⁷⁴. In the presence of iron (II), ozonides may also form cytotoxic carbon-centred radicals⁷⁵. Uric 261 acid epoxide (UA-O) could be enzymatically converted to inflammatory 1,2-diols in vivo⁷⁶. 262

The pH dependence of the rate coefficients was incorporated into KM-SUB-ELF by assuming that the pH dependence was fully due to the non-protonated antioxidant reacting at a faster rate than the protonated antioxidant. The pKa of the four different antioxidants is known (pKa(Asc) = 4.1, pKa(UA)= 5.4, pKa(GSH) = 8.8 and pKa(α -toc) = 13) and the ratio of the protonated to deprotonated antioxidant could be calculated. Therefore, simultaneous equations can be solved considering the concentration of antioxidant in both the protonated and unprotonated form at two different pHs as well as the change in the rate of reaction between these pHs. The resulting equations are shown below:

$$k_{1}(pH) = 0.8625 \times 10^{(pKa(Asc) - pH)} / (10^{(pKa(Asc) - pH)} + 1) + 2.7324 \times (1 - 10^{(pKa(Asc) - pH)} / (10^{(pKa(Asc) - pH)} + 1)) / 2.7314 \times k_{1}(pH = 7.4)$$
(E1)

$$k_{2} (pH) = -14.48 \times 10^{(pKa(UA) - pH)} / (10^{(pKa(UA) - pH)} + 1) + 389.91 \times (1 - 10^{(pKa(UA) - pH)} / (10^{(pKa(UA) - pH)} + 1)) / 385.91 \times k_{2} (pH = 7.4)$$
(E2)

$$k_{3}(\text{pH}) = 0.9996 \times 10^{(\text{pKa}(\text{GSH}) - \text{pH})} / (10^{(\text{pKa}(\text{GSH}) - \text{pH})} + 1) + 80.692 \times (1 - 10^{(\text{pKa}(\text{GSH}) - \text{pH})} / (10^{(\text{pKa}(\text{GSH}) - \text{pH})} + 1)) / 4.051 \times k_{3}(\text{pH} = 7.4)$$
(E3)

$$k_4 (pH) = (10^{(pKa(\alpha-Toc) - pH)} / (10^{(pKa(\alpha-Toc) - pH)} + 1) + 1.9 \times 10^6 \times (1 - 10^{(pKa(\alpha-Toc) - pH)} / (10^{(pKa(\alpha-Toc) - pH)} + 1)) / 5.772 \times k_4 (pH = 7.4)$$
(E4)

The following equations were incorporated into the model to describe the ascorbate products (DHA, AOZ, THR) ratios ⁷⁰, and the uric acid epoxide, peroxide and ozonide products (UA-O, UA- O_2 , UA- O_3) ⁷¹ as a function of pH (Supplementary Fig. 9).

$$[DHA] = (-0.5786 \times 10^{(pKa(Asc) - pH)} / (10^{(pKa(Asc) - pH)} + 1) + 0.8414) \times Asc \text{ products}$$
(E5)
$$[AOZ] = (0.1038 \times 10^{(pKa(Asc) - pH)} / (10^{(pKa(Asc) - pH)} + 1) + 0.0086) \times Asc \text{ products}$$
(E6)

$$[THR] = (0.4748 \times 10^{(pKa(Asc) - pH)} / (10^{(pKa(Asc) - pH)} + 1) + 0.15) \times Asc \text{ products}$$
(E7)

$$[UA-O] = (-0.0687 \times 10^{(pKa(UA) - pH)} / (10^{(pKa(UA) - pH)} + 1) + 0.9054) \times UA \text{ products}$$
(E8)

$$[UA-O2] = (0.0051 \times 10^{(pKa(UA) - pH)} / (10^{(pKa(UA) - pH)} + 1) + 0.0322) \times UA \text{ products}$$
(E9)

$$[UA-O3] = (0.0636 \times 10^{(pKa(UA) - pH)} / (10^{(pKa(UA) - pH)} + 1) + 0.0614) \times UA \text{ products}$$
(E10)

Supplementary Figure 10 shows the expected production of the ascorbate and uric acid ozonation products after 1 hour as a function of pH and the temporal evolution of these products as a function of time and at an ELF pH of 7.4 and 4. Ascorbate ozonide (AOZ) increased from 3.7×10^{13} cm⁻³ to 1.8×10^{14} cm⁻³ from pH 7.4 to pH 4 after 1 hour. Increased oxidative stress of lung cells and tissues in people suffering from pulmonary diseases could be due to such increase formation of AOZ. In contrast, UA-O, UA-O₂ and UA-O₃ are several orders of magnitude smaller at pH 4 compared to pH 7.4.

It should also be noted that Enami et al.⁷² previously showed that the presence of α -tocopherol 280 281 can lead to a decrease in the concentrations of secondary oxidants, such as AOZ and THR. However, 282 the rate coefficients for these reactions remain uncertain and we have therefore not included them 283 within the model. There is also the potential that some of the other secondary oxidants would further react with other antioxidants, although this remains unclear and should be the subject of further 284 investigation. Enami et al.⁷⁷ have also previously reported that at low pH the products of the GSH + 285 OH reaction would be sulfenic GSOH⁻, sulfinic GSO₂⁻, and sulfonic GSO₃⁻ acids rather than GSSG. 286 GSSG is relatively inert and acts a signaling molecule but GSH-sulfenic acid is highly reactive toward 287 oxidants such as ozone⁷⁷. This may have implications for people with an acidic ELF, such as people 288 289 suffering from asthma.

290 Lipid ozonation products are a mixture of aldehydes and hydroxyhydroperoxides, which are much more soluble than the initial lipids that may diffuse through the ELF to the lung epithelium²². 291 These oxidation products may react with lipases in the lung epithelium releasing endogenous 292 mediators of inflammation^{22,78}. Bulk concentrations of lipid ozonation products are estimated to be up 293 to $\sim 1.5 \times 10^{19}$ cm⁻³ (24 mmol L⁻¹) within the alveoli ELF and up to $\sim 7.5 \times 10^{16}$ cm⁻³ (0.1 mmol L⁻¹) 294 within the nasal cavity ELF after one hour exposure of 100 ppb O₃. Note that there are currently no 295 296 studies of O_3 reactions with surface lipids and proteins over a range of pHs and therefore a change in 297 rate constant and products is currently unknown, which could be important as ozone lipid oxidation 298 products have been shown to be harmful^{22,78}.

Regarding pH effects on ROS generation by PM2.5, it is known that pH would affect the solubilities of Cu and Fe and also the rate constants of the Fenton and Fenton-like reactions. For example, the rate of reaction R26 will increase by about one order of magnitude between pH 6 and pH 7^{79} . However, we do not attempt to investigate the effect of pH upon ROS concentrations by PM2.5 inhalation in this study due to a lack of experimental data for H₂O₂ and OH generation in lung fluid as a function of pH; this aspect should be subject to future experimental and modeling studies.

306 SI References.

- Shiraiwa, M., Pfrang, C. & Pöschl, U. Kinetic multi-layer model of aerosol surface and bulk
 chemistry (KM-SUB): the influence of interfacial transport and bulk diffusion on the
 oxidation of oleic acid by ozone. *Atmos. Chem. Phys.* 10, 3673-3691, (2010).
- Keyhani, K., Scherer, P. W. & Mozell, M. M. Numerical simulation of airflow in the human
 nasal cavity. *J. Biomech. Eng.* 117, 429-441, (1995).
- 312 3 Charrier, J. G., McFall, A. S., Richards-Henderson, N. K. & Anastasio, C. Hydrogen Peroxide
 313 Formation in a Surrogate Lung Fluid by Transition Metals and Quinones Present in Particulate
 314 Matter. *Environ. Sci. Technol.* 48, 7010-7017, (2014).
- Charrier, J. G. & Anastasio, C. Impacts of antioxidants on hydroxyl radical production from
 individual and mixed transition metals in a surrogate lung fluid. *Atmos. Environ.* 45, 75557562, (2011).
- Morgan, J. J. Kinetics of reaction between O₂ and Mn (II) species in aqueous solutions.
 Geochim. Cosmochim. Ac. 69, 35-48, (2005).
- 3206Deguillaume, L. *et al.* Transition metals in atmospheric liquid phases: Sources, reactivity, and321sensitive parameters. *Chem. Rev.* 105, 3388-3431, (2005).
- Fang, T., Guo, H., Verma, V., Peltier, R. E. & Weber, R. J. PM2.5 water-soluble elements in
 the southeastern United States: automated analytical method development, spatiotemporal
 distributions, source apportionment, and implications for heath studies. *Atmos. Chem. Phys.*15, 11667-11682, (2015).
- Harrison, R. M. & Yin, J. Chemical speciation of PM2.5 particles at urban background and
 rural sites in the UK atmosphere. *J. Environ. Monitor.* 12, 1404-1414, (2010).
- Squizzato, S. *et al.* The PM2.5 chemical composition in an industrial zone included in a large
 urban settlement: main sources and local background. *Env. Sci. Pro. Imp.* 16, 1913-1922,
 (2014).
- Xiao, Y.-H. *et al.* Characteristics and Sources of Metals in TSP and PM2.5 in an Urban Forest
 Park at Guangzhou. *Atmosphere* 5, 775-787, (2014).
- Contini, D., Cesari, D., Donateo, A., Chirizzi, D. & Belosi, F. Characterization of PM10 and
 PM2.5 and Their Metals Content in Different Typologies of Sites in South-Eastern Italy.
 Atmosphere 5, 435-453, (2014).
- Borcherding, J. *et al.* Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce
 biofilm formation, and inhibit antimicrobial peptide function. *Environ. Sci. Nano* 1, 123-132,
 (2014).
- 339 13 Stohs, S. & Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. *Free Radical Bio.*340 *Med.* 18, 321-336, (1995).
- 34114Pannala, V., Bazil, J., Camara, A. & Dash, R. A mechanistic mathematical model for the
catalytic action of glutathione peroxidase. *Free Radical Res.* 48, 487-502, (2014).
- Bentley, A. R., Emrani, P. & Cassano, P. A. Genetic variation and gene expression in
 antioxidant-related enzymes and risk of chronic obstructive pulmonary disease: a systematic
 review. *Thorax* 63, 956-961, (2008).
- Avissar, N. E., Reed, C. K., Cox, C., Frampton, M. W. & Finkelstein, J. N. Ozone, but not
 nitrogen dioxide, exposure decreases glutathione peroxidases in epithelial lining fluid of
 human lung. *Am. J. Respir. Crit. Care Med.* 162, 1342-1347, (2000).
- van der Vliet, A. *et al.* Determination of low-molecular-mass antioxidant concentrations in
 human respiratory tract lining fluids. *Am. J. Physiol.- Lung C.* 276, L289-L296, (1999).
- 18 Cross, C. E., van der Vliet, A., Louie, S., Thiele, J. J. & Halliwell, B. Oxidative stress and
 antioxidants at biosurfaces: Plants, skin, and respiratory tract surfaces. *Environ. Health Perspect.* 106, 1241-1251, (1998).
- Cross, C. E., van der Vliet, A., O'Neill, C. A., Louie, S. & Halliwell, B. Oxidants,
 antioxidants, and respiratory tract lining fluids. *Environ. Health Perspect.* 102, 185, (1994).
 Mudway, I. S. & Kelly, F. J. Modeling the interactions of ozone with pulmonary epithelial
- 357 lining fluid antioxidants. *Toxicol. Appl. Pharm.* **148**, 91-100, (1998).
- 358 21 Kim, H. I. *et al.* Interfacial Reactions of Ozone with Surfactant Protein B in a Model Lung
 359 Surfactant System. *J. Am. Chem. Soc.* 132, 2254-2263, (2010).

22 Pryor, W. A., Squadrito, G. L. & Friedman, M. The Cascade Mechanism to Explain Ozone 360 361 Toxicity - The Role of Lipid Ozonation Products. Free Radical Bio. Med. 19, 935-941, 362 (1995). 363 Enami, S., Sakamoto, Y. & Colussi, A. J. Fenton chemistry at aqueous interfaces. P. Natl. 23 Acad. Sci. U.S.A 111, 623-628, (2014). 364 365 24 Davies, N. M. & Feddah, M. R. A novel method for assessing dissolution of aerosol inhaler 366 products. Int. J. Pharm. 255, 175-187, (2003). 367 Jung, H., Guo, B., Anastasio, C. & Kennedy, I. M. Quantitative measurements of the 25 generation of hydroxyl radicals by soot particles in a surrogate lung fluid. Atmos. Environ. 40, 368 369 1043-1052, (2006). 370 Vidrio, E., Phuah, C. H., Dillner, A. M. & Anastasio, C. Generation of Hydroxyl Radicals 26 from Ambient Fine Particles in a Surrogate Lung Fluid Solution. Environ. Sci. Tech. 43, 922-371 372 927, (2009). 373 27 Moss, O. R. Simulants Of Lung Interstitial Fluid. Health Phys. 36, 447-448, (1979). 374 28 Berkemeier, T. et al. Kinetic regimes and limiting cases of gas uptake and heterogeneous 375 reactions in atmospheric aerosols and clouds: a general classification scheme. Atmos. Chem. 376 Phys. 13, 6663-6686, (2013). 377 29 Arangio, A. M. et al. Multiphase Chemical Kinetics of OH Radical Uptake by Molecular Organic Markers of Biomass Burning Aerosols: Humidity and Temperature Dependence, 378 379 Surface Reaction and Bulk Diffusion. J. Phys. Chem. A 119, 4533–4544, (2015). 380 Spier, C. et al. Activity patterns in elementary and high school students exposed to oxidant 30 381 pollution. J. Expo. Anal. Env. Epid. 2, 277-293, (1991). Agency, U. S. E. P. Exposure Factors Handbook. Vol. EPA/600/R-09/052F (2011). 382 31 383 Sarangapani, R. & Wexler, A. S. The role of dispersion in particle deposition in human 32 384 airways. Toxicol. Sci. 54, 229-236, (2000). 385 33 Rennard, S. et al. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J. Appl. Physiol. 60, 532-538, (1986). 386 Walters, D. V. Lung lining liquid-The hidden depths. Neonatology 81, 2-5, (2002). 387 34 388 35 Connell, D. P., Winter, S. E., Conrad, V. B., Kim, M. & Crist, K. C. The Steubenville 389 Comprehensive Air Monitoring Program (SCAMP): Concentrations and solubilities of PM2.5 390 trace elements and their implications for source apportionment and health research. J. Air 391 Waste Manage. 56, 1750-1766, (2006). 392 Manousakas, M., Papaefthymiou, H., Eleftheriadis, K. & Katsanou, K. Determination of 36 393 water-soluble and insoluble elements in PM2.5 by ICP-MS. Sci. Total Environ. 493, 694-700, 394 (2014).Heal, M. R., Hibbs, L. R., Agius, R. M. & Beverland, L. J. Total and water-soluble trace metal 395 37 396 content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK. Atmos. 397 Environ. 39, 1417-1430, (2005). 398 38 Birmili, W., Allen, A. G., Bary, F. & Harrison, R. M. Trace metal concentrations and water 399 solubility in size-fractionated atmospheric particles and influence of road traffic. Environ. Sci. 400 Tech. 40, 1144-1153, (2006). 401 39 Espinosa, A. J. F., Rodríguez, M. T., de la Rosa, F. J. B. & Sánchez, J. C. J. A chemical 402 speciation of trace metals for fine urban particles. Atmos. Environ. 36, 773-780, (2002). 403 40 Baker, A., Jickells, T., Witt, M. & Linge, K. Trends in the solubility of iron, aluminium, 404 manganese and phosphorus in aerosol collected over the Atlantic Ocean. Mar. Chem. 98, 43-405 58, (2006). 406 41 Buck, C. S., Landing, W. M., Resing, J. A. & Measures, C. I. The solubility and deposition of 407 aerosol Fe and other trace elements in the north atlantic ocean: observations from the A16N 408 CLIVAR/CO 2 repeat hydrography section. Mar. Chem. 120, 57-70, (2010). 409 42 Oakes, M., Weber, R., Lai, B., Russell, A. & Ingall, E. Characterization of iron speciation in 410 urban and rural single particles using XANES spectroscopy and micro X-ray fluorescence 411 measurements: investigating the relationship between speciation and fractional iron solubility. 412 Atmos. Chem. Phys. 12, 745-756, (2012). 413 43 Jiang, S. Y., Yang, F., Chan, K. L. & Ning, Z. Water solubility of metals in coarse PM and 414 PM 2.5 in typical urban environment in Hong Kong. Atmos. Poll. Res. 5, 236-244, (2014).

415	44	Rahman, I., Biswas, S. K. & Kode, A. Oxidant and antioxidant balance in the airways and
416		airway diseases. European journal of pharmacology 533, 222-239, (2006).
417	45	Ghio, A. J., Turi, J. L., Yang, F., Garrick, L. M. & Garrick, M. D. Iron homeostasis in the
418		lung. Biol. Res. 39, 67-77, (2006).
419	46	Ghio, A. J., Richards, J. H., Dittrich, K. L. & Samet, J. M. Metal storage and transport
420		proteins increase after exposure of the rat lung to an air pollution particle. <i>Toxicol. Path.</i> 26,
421		388-394, (1998).
422	47	Ghio, A. J. Disruption of iron homeostasis and lung disease. B. B. A Gen. Subjects 1790,
423		731-739, (2009).
424	48	Wang, Y., Kim, H. & Paulson, S. E. Hydrogen peroxide generation from alpha- and beta-
425		pinene and toluene secondary organic aerosols. Atmos. Environ. 45, 3149-3156, (2011).
426	49	Chen, X., Hopke, P. K. & Carter, W. P. L. Secondary Organic Aerosol from Ozonolysis of
427		Biogenic Volatile Organic Compounds: Chamber Studies of Particle and Reactive Oxygen
428		Species Formation. Environ. Sci. Tech. 45, 276-282, (2011).
429	50	Hopke, P. K. Chapter 1 in Air Pollution and Health Effects. (Springer, 2015).
430	51	Wang, Y., Arellanes, C. & Paulson, S. E. Hydrogen Peroxide Associated with Ambient Fine-
431		Mode, Diesel, and Biodiesel Aerosol Particles in Southern California. Aerosol Sci. Tech. 46,
432		394-402, (2012).
433	52	Docherty, K. S., Wu, W., Lim, Y. B. & Ziemann, P. J. Contributions of organic peroxides to
434		secondary aerosol formed from reactions of monoterpenes with O ₃ . Environ. Sci. Tech. 39,
435		4049-4059, (2005).
436	53	Tong, H. et al. Hydroxyl radicals from secondary organic aerosol decomposition in water.
437		Atmos. Chem. Phys. 16, 1761-1771, (2016).
438	54	Badali, K. M. et al. Formation of hydroxyl radicals from photolysis of secondary organic
439		aerosol material. Atmos. Chem. Phys. 15, 7831-7840, (2015).
440	55	Pöschl, U. & Shiraiwa, M. Multiphase Chemistry at the Atmosphere-Biosphere Interface
441		Influencing Climate and Public Health in the Anthropocene. Chem. Rev. 115, 4440-4475,
442		(2015).
443	56	Winterbourn, C. C. Reconciling the chemistry and biology of reactive oxygen species. Nature
444		Chem. Biol. 4, 278-286, (2008).
445	57	Janssen, N. A. H., VanMansom, D. F. M., VanDerJagt, K., Harssema, H. & Hoek, G. Mass
446		concentration and elemental composition of airborne particulate matter at street and
447		background locations. Atmos. Environ. 31, 1185-1193, (1997).
448	58	Shiraiwa, M. et al. The role of long-lived reactive oxygen intermediates in the reaction of
449		ozone with aerosol particles. Nature Chem. 3, 291-295, (2011).
450	59	Lakey, P. S. J., George, I. J., Baeza-Romero, M. T., Whalley, L. K. & Heard, D. E. Organics
451		substantially reduce HO ₂ uptake onto aerosols containing transition metal ions. J. Phys. Chem.
452		A 120 , 1421–1430, (2015).
453	60	Pignatello, J. J., Oliveros, E. & MacKay, A. Advanced oxidation processes for organic
454		contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Env.
455		<i>Sci. Tech.</i> 36 , 1-84, (2006).
456	61	Lin, P. & Yu, J. Z. Generation of Reactive Oxygen Species Mediated by Humic-like
457		Substances in Atmospheric Aerosols. Environ. Sci. Tech. 45, 10362-10368, (2011).
458	62	Verma, V. et al. Organic Aerosols Associated with the Generation of Reactive Oxygen
459		Species (ROS) by Water-Soluble PM2.5. Environ. Sci. Technol. 49, 4646-4656, (2015).
460	63	Verma, V. et al. Fractionating ambient humic-like substances (HULIS) for their reactive
461		oxygen species activity – Assessing the importance of quinones and atmospheric aging.
462		<i>Atmos. Environ.</i> 120 , 351-359, (2015).
463	64	Dou, J., Lin, P., Kuang, BY. & Yu, J. Z. Reactive Oxygen Species Production Mediated by
464		Humic-like Substances in Atmospheric Aerosols: Enhancement Effects by Pyridine,
465	~ -	Imidazole, and Their Derivatives. Environ. Sci. Technol. 49, 6457-6465, (2015).
466	65	Kermani, S., Ben-Jebria, A. & Ultman, J. S. Kinetics of ozone reaction with uric acid, ascorbic
467		acid, and glutathione at physiologically relevant conditions. Arch. Biochem. Biophys. 451, 8-
468		10, (2000).

469	66	Giamalva, D., Church, D. F. & Pryor, W. A. A Comparison of the Rates Of Ozonation of
470		Biological Antioxidants and Oleate and Linoleate Esters. Bio. Chem. Bioph. Res. Co. 133,
471		773-779, (1985).
472	67	Kanofsky, J. R. & Sima, P. D. Reactive Absorption of Ozone by Aqueous Biomolecule
473		Solutions - Implications for the Role of Sulfhydryl Compounds as Targets for Ozone. Arch.
474		Biochem, Biophys. 316 , 52-62, (1995).
475	68	Paget-Brown A Ω et al. Normative data for nH of exhaled breath condensate Chest 129
476	00	125, 125 ,
470	60	Ricciardolo E I M Caston B & Hunt I Acid stress in the nathology of asthma I Allergy
4//	09	Clin Immun 112 610 610 (2004)
4/0	70	Curr. Intmun. 113, 010-019, (2004).
4/9	/0	Enami, S., Horimann, M. R. & Colussi, A. J. Actuaty enhances the formation of a persistent
480		ozonide at aqueous ascorbate/ozone gas interfaces. P. Natl. Acad. Sci. U.S.A 105, 7365-7369,
481	71	(2008).
482	71	Enami, S., Hoffmann, M. R. & Colussi, A. J. Ozonolysis of uric acid at the air/water interface.
483		J. Phys. Chem. B 112, 4153-4156, (2008).
484	72	Enami, S., Hoffmann, M. R. & Colussi, A. J. How Phenol and α-Tocopherol React with
485		Ambient Ozone at Gas/Liquid Interfaces. J. Phys. Chem. A 113, 7002-7010, (2009).
486	73	Enami, S., Hoffmann, M. R. & Colussi, A. J. Ozone Oxidizes Glutathione to a Sulfonic Acid.
487		Chem. Res. Toxicol. 22, 35-40, (2009).
488	74	Tang, Y. et al. Weak base dispiro-1,2,4-trioxolanes: Potent antimalarial ozonides. Bioorg.
489		Med. Chem. Lett. 17, 1260-1265, (2007).
490	75	Mercer, A. E. et al. Evidence for the involvement of carbon-centered radicals in the induction
491		of apoptotic cell death by artemisinin compounds. J. Biol. Chem. 282, 9372-9382, (2007).
492	76	Smith, K. R. et al. Attenuation of tobacco smoke-induced lung inflammation by treatment
493		with a soluble epoxide hydrolase inhibitor <i>P. Natl. Acad. Sci. U.S.A</i> 102 2186-2191 (2005)
494	77	Enami S Hoffmann M R & Colussi A I OH-Radical Specific Addition to Glutathione S-
495	,,	Atom at the Air-Water Interface: Relevance to the Redox Balance of the Lung Enithelial
495 196		Liping Fluid. The Journal of Physical Chamistry Lattars 6, 3935-3943 (2015)
407	79	Salao M.G. Squadrita G.J. & Pryor W.A. Activation of phospholinase A in 1 polmitoul
497	/0	2 alaxyl an Chyara 2 nhamhachaling linggamag containing linid aganatian products. Chem
498		2-oreoyi-sii-Giyeero-3-phosphocholine inposomes containing lipid ozonation products. <i>Chem.</i>
499	70	Res. Toxicol. 1, 458-462, (1994).
500	/9	Batainen, H., Pestovsky, O. & Bakac, A. pH-induced mechanistic changeover from hydroxyl
501	~ ~	radicals to iron(IV) in the Fenton reaction. <i>Chem. Sci.</i> 3, 1594-1599, (2012).
502	80	Pryor, W. A., Giamalva, D. H. & Church, D. F. Kinetics of Ozonation .2. Amino-Acids and
503		Model Compounds in Water and Comparisons to Rates in Nonpolar-Solvents. J. Am. Chem.
504		<i>Soc.</i> 106 , 7094-7100, (1984).
505	81	Adams, G. E., Boag, J. W., Currant, J. & Michael, B. D. Absolute rate constants for the
506		reaction of the hydroxyl radical with organic compounds. (1965).
507	82	Masuda, T., Shinohara, H. & Kondo, M. Reactions of hydroxyl radicals with nucleic-acid
508		bases and the related compounds in gamma irradiated aqueous solution. J. Radiat. Res. 16,
509		153-161, (1975).
510	83	Eriksen, T. E. & Fransson, G. Formation of reducing radicals on radiolysis of glutathione and
511		some related-compounds in aqueous-solution. J. Chem. Soc. Perk. T. 2, 1117-1122, (1988).
512	84	Liphard, M., Bothe, E. & Schultefrohlinde, D. The influence of glutathione on single-strand
513		breakage in single-stranded-DNA irradiated in aqueous-solution in the absence and presence
514		of oxygen Int J Radiat Bio 58 589-602 (1990)
515	85	Navarrete M Rangel C Corchado I C & Espinosa-García I Tranning of the OH Radical
516	05	by a Tocopherol: A Theoretical Study I Phys Cham A 109 A777-A784 (2005)
517	86	Buyton G. V. Greenstock C. I. Helman W. P. & Ross A. B. Critical review of rate
510	80	buxton, G. v., Orcensioek, C. L., mennan, w. I. & Ross, A. D. Childer-review of fact
510		in aqueous solution L Phys Cham Def Data 17 512 996 (1999)
519	07	III aqueous-solution. J. Friys. Chem. Rej. Data 17, 515-660, (1988).
520	8/	nominan, M. Z. & Hayon, E. Puise-radiolysis study of suithydryl compounds in aqueous-
521	0.0	solution. J. Phys. Chem U. S. 11, 990-996, (1973).
522	88	Zano, M. J., Jung, L., Tanielian, C. & Mechin, R. Kinetics of the competitive degradation of
523		deoxyribose and other biomolecules by hydroxyl radicals produced by the Fenton reaction.
524		<i>Free Radical Res.</i> 20 , 345-363, (1994).

525	89	Stuglik, Z. & Zagorski, Z. P. Pulse-radiolysis of neutral iron(II) solutions - Oxidation of
526		ferrous ions by OH radicals. Radiat. Phys. Chem. 17, 229-233, (1981).
527	90	Lewis, S. et al. Chelate-Modified Fenton Reaction for the Degradation of Trichloroethylene in
528		Aqueous and Two-Phase Systems. Env. Eng. Sci. 26, 849-859, (2009).
529	91	Rush, J. D. & Bielski, B. H. J. Pulse radiolytic studies of the reactions of HO ₂ /O ₂ ⁻ with
530		$Fe(II)/Fe(III)$ ions - The reactivity of HO_2/O_2^- with ferric ions and its implication on the
531		occurence of the Haber-Weiss reaction. J. Phys. Chem U. S. 89, 5062-5066, (1985).
532	92	Hug, S. J. & Leupin, O. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen
533		peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Tech. 37,
534		2734-2742, (2003).
535	93	Christensen, H., Sehested, K. & Corfitzen, H. Reactions of hydroxyl radicals with hydrogen
536		peroxide at ambient and elevated temperatures. J. Phys. Chem U. S. 86, 1588-1590, (1982).
537	94	Sehested, K., Rasmusse.Ol & Fricke, H. Rate constants of OH with HO ₂ , O_2^- and $H_2O_2^+$ from
538		hydrogen peroxide formation in pulse irradiated oxygenated water. J. Phys. Chem U. S. 72,
539		626-&, (1968).
540	95	Koppenol, W. H., Butler, J. & Vanleeuwen, J. W. The Haber-Weiss cycle. <i>Photochem</i> .
541	0.6	<i>Photobiol.</i> 28 , 655-660, (1978).
542	96	Thornton, J. A., Jaegle, L. & McNeill, V. F. Assessing known pathways for HO_2 loss in
543		aqueous atmospheric aerosols: Regional and global impacts on tropospheric oxidants. J.
544	07	Geophys. Res Atmos. 113, (2008).
545	97	Divisek, J. & Kastening, B. Electrochemical generation and reactivity of the superoxide ion in
546	0.0	aqueous solutions. J. Electroanal. Chem. Interface Electrochem. 65, 603-621, (1975).
54/	98	Ulanski, P. & von Sonntag, C. Stability constants and decay of aqua-copper(III) - A study by mulas radialysis with conductometric and antical detection. <i>Eur. J. Junear. Cham.</i> 1211, 1217
540		(2000)
550	00	(2000). Dealtor I. Vitamin C in health and disease Vol 4 (CPC Press 1007)
550	99 100	Packel, L. Vitamin C in neutin and disease. Vol. 4 (CKC Fless, 1997).
552	100	constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (, OH/,
552		O^{-} in squeous solution L Phys. Cham. Ref. Data 17 513 886 (1088)
557	101	Kohen R & Nyska A Ovidation of hiological systems: Ovidative stress nhenomena
555	101	antioxidants redox reactions and methods for their quantification <i>Toxicol Pathol</i> 30 620-
556		650 (2002)
557	102	Sander R Compilation of Henry's law constants (version 4.0) for water as solvent <i>Atmos</i>
558	102	Chem. Phys. 15, 4399-4981, (2015).
559	103	Mudway, I. S. & Kelly, F. J. Ozone and the lung: A sensitive issue. <i>Mol. Aspects Med.</i> 21, 1-
560		48. (2000).
561	104	Ochs, M. et al. The number of alveoli in the human lung. Am. J. Respir. Crit. Care Med. 169,
562		120-124, (2004).
563	105	Franciscus, R. G. & Long, J. C. Variation in human nasal height and breadth. A. J. Phys.
564		Anthropol. 85, 419-427, (1991).
565	106	Arana, A. A., Artaxo, P., Rizzo, L. V. & Bastos, W. Long term measurements of the elemental
566		composition and optical properties of aerosols in Amazonia. Proceedings of the 16th
567		International Conference on Heavy Metals in the Environment 1, 03005, (2013).
568	107	Maenhaut, W., Salma, I., Cafmeyer, J., Annegarn, H. J. & Andreae, M. O. Regional
569		atmospheric aerosol composition and sources in the eastern Transvaal, South Africa, and
570		impact of biomass burning. J. Geophys. Res Atmos. 101, 23631-23650, (1996).
571	108	Artaxo, P., Gerab, F., Yamasoe, M. A. & Martins, J. V. Fine mode aerosol composition at
572		three long - term atmospheric monitoring sites in the Amazon Basin. J. Geophys. Res
573		Atmos. 99, 22857-22868, (1994).
574	109	Pakkanen, T. A. et al. Sources and chemical composition of atmospheric fine and coarse
575		particles in the Helsinki area. Atmos. Environ. 35, 5381-5391, (2001).
576	110	Olson, D. A. et al. Indoor and outdoor concentrations of organic and inorganic molecular
577		markers: Source apportionment of PM2.5 using low-volume samples. Atmos. Environ. 42,
578		1742-1751, (2008).

579	111	Lee, P. K. H., Brook, J. R., Dabek-Zlotorzynska, E. & Mabury, S. A. Identification of the
580		major sources contributing to PM2.5 observed in Toronto. Environ. Sci. Tech. 37, 4831-4840,
581		(2003).
582	112	Upadhyay, N., Clements, A., Fraser, M. & Herckes, P. Chemical Speciation of PM2.5 and
583		PM10 in South Phoenix, AZ. J. Air Waste Manage. 61, 302-310, (2011).
584	113	Hassanvand, M. S. et al. Characterization of PAHs and metals in indoor/outdoor
585		PM10/PM2.5/PM1 in a retirement home and a school dormitory. Sci. Total Environ. 527, 100-
586		110. (2015).
587	114	Hidemori T <i>et al.</i> Characteristics of atmospheric aerosols containing heavy metals measured
588		on Fukue Island Japan Atmos Environ 97 447-455 (2014)
589	115	Han Y -J Kim H -W Cho S -H Kim P -R & Kim W -J Metallic elements in PM2 5 in
590	110	different functional areas of Korea. Concentrations and source identification Atmos Res 153
591		416-428 (2015)
592	116	Maenhaut W <i>et al.</i> Chemical composition and mass closure for fine and coarse aerosols at a
593	110	kerbside in Budapest Hungary in spring 2002 X-Ray Spectrom 34 290-296 (2005)
594	117	Rogula-Kozlowska W <i>et al.</i> PM2.5 in the central part of Upper Silesia Poland.
595	117	concentrations elemental composition and mobility of components <i>Environ Monit Assess</i>
596		185 581-601 (2013)
597	118	Morishita M <i>et al.</i> Identification of ambient PM2.5 sources and analysis of pollution
598	110	episodes in Detroit Michigan using highly time-resolved measurements Atmos Environ 45
599		1627-1637 (2011)
600	119	Chow I C <i>et al.</i> Temporal and spatial variations of PM2.5 and PM10 aerosol in the southern
601	,	California air-quality study Atmos Environ 28 2061-2080 (1994)
602	120	Vecchi R Marcazzan G Valli G Ceriani M & Antoniazzi C The role of atmospheric
603		dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the
604		urban area of Milan (Italy) Atmos Environ 38 4437-4446 (2004)
605	121	Khodeir M <i>et al.</i> Source apportionment and elemental composition of PM2.5 and PM10 in
606	121	Jeddah City Saudi Arabia Atmos Poll Res 3 331-340 (2012)
607	122	Hagler G S W <i>et al.</i> Local and regional anthropogenic influence on PM2 5 elements in
608		Hong Kong. <i>Atmos. Environ.</i> 41 , 5994-6004, (2007).
609	123	Lovola, J., Arbilla, G., Ouiterio, S. L., Escaleira, V. & Minho, A. S. Trace Metals in the Urban
610		Aerosols of Rio de Janeiro City. J. Brazil Chem. Soc. 23, 628-638, (2012).
611	124	Matschullat, J., Maenhaut, W., Zimmermann, F. & Fiebig, J. Aerosol and bulk deposition
612		trends in the 1990's, Eastern Erzgebirge, Central Europe, Atmos. Environ. 34, 3213-3221,
613		(2000).
614	125	Querol, X. <i>et al.</i> PM 10 and PM2.5 source apportionment in the Barcelona Metropolitan area,
615		Catalonia, Spain. Atmos. Environ. 35, 6407-6419, (2001).
616	126	Martinez, M. A., Caballero, P., Carrillo, O., Mendoza, A. & Manuel Mejia, G. Chemical
617		characterization and factor analysis of PM2.5 in two sites of Monterrey, Mexico. J. Air Waste
618		Manage. 62, 817-827, (2012).
619	127	Na, K. & Cocker, D. R., III. Characterization and source identification of trace elements in
620		PM2.5 from Mira Loma, Southern California. Atmos. Res. 93, 793-800, (2009).
621	128	Shaltout, A. A., Boman, J., Al-Malawi, Da. R. & Shehadeh, Z. F. Elemental Composition of
622		PM2.5 Particles Sampled in Industrial and Residential Areas of Taif, Saudi Arabia. Aerosol
623		Air Qual. Res. 13, 1356-1364, (2013).
624	129	Chow, J. C. et al. Descriptive analysis of PM 2.5 and PM 10 at regionally representative
625		locations during SJVAQS/AUSPEX. Atmos. Environ. 30, 2079-2112, (1996).
626	130	Kendall, M., Pala, K., Ucakli, S. & Gucer, S. Airborne particulate matter (PM2.5 and PM10)
627		and associated metals in urban Turkey. Air Qual. Atmos. Health 4, 235-242, (2011).
628	131	Mansha, M., Ghauri, B., Rahman, S. & Amman, A. Characterization and source
629		apportionment of ambient air particulate matter (PM2.5) in Karachi. Sci. Total Environ. 425,
630		176-183, (2012).
631	132	Pant, P. et al. Characterization of ambient PM2.5 at a pollution hotspot in New Delhi, India
632		and inference of sources. Atmos. Environ. 109, 178-189, (2015).
633	133	Tolis, E. I. <i>et al.</i> One-year intensive characterization on PM2.5 nearby port area of

634 Thessaloniki, Greece. *Environ. Sci. Pollut. R.* **22**, 6812-6826, (2015).

635	134	Laura Lopez, M. et al. Elemental concentration and source identification of PM10 and PM2.5
636		by SR-XRF in Cordoba City, Argentina. Atmos. Environ. 45, 5450-5457, (2011).
637	135	Cao, L., Zeng, J., Liu, K., Bao, L. & Li, Y. Characterization and Cytotoxicity of PM<0.2,
638		PM0.2-2.5 and PM2.5-10 around MSWI in Shanghai, China. Int. J. Environ. Res. Pub. Health
639		12, 5076-5089, (2015).
640	136	Yin, L. <i>et al.</i> Chemical compositions of PM2.5 aerosol during haze periods in the
641		mountainous city of Yong'an, China, J. Environ, Sci China 24, 1225-1233, (2012).
642	137	Zhou S <i>et al.</i> Trace metals in atmospheric fine particles in one industrial urban city. Spatial
643	107	variations sources and health implications <i>J Environ Sci - Ching</i> 26 205-213 (2014)
644	138	Wang X Bi X Sheng G & Fu I Chemical composition and sources of PM10 and PM2.5
645	150	aerosols in Guangzhou China Environ Monit Assess 119 425-439 (2006)
646	139	Kulshrestha A Satsangi P G Masih I & Taneia A Metal concentration of PM2.5 and
647	157	PM10 particles and seasonal variations in urban and rural environment of Agra India Sci
648		Total Environ 407 6196-6204 (2009)
640 670	140	Vaday S & Satsangi P G Characterization of narticulate matter and its related metal toxicity
650	140	in an urban location in South West India Environ Manit Assass 185, 7365, 7370 (2013)
651	1/1	Song S at al. Chemical characteristics of size resolved PM2 5 at a roadside environment in
652	141	Boijing China Environ Pollut 161 215 221 (2012)
652	142	Sun V L at al. The sir home particulate pollution in Paijing concentration composition
654	142	distribution and sources. Atmos Empired 39 , 5001, 6004, (2004)
654	142	alsu louion and sources. Almos. Environ. 36 , 5991-6004, (2004).
655	143	See, S. W., Balasuolamanian, K., Klanawali, E., Kalunkeyan, S. & Sueels, D. G.
030		Under the source apportion ment of particulate matter $\geq 2.5 \ \mu\text{m}$ in Sumatra,
03/ (59	1.4.4	Minofessa, during a recent peat life episode. Environ. Sci. Tech. 41, 5488-5494, (2007).
658	144	wingfors, H., Hagglund, L. & Magnusson, K. Characterization of the size-distribution of
659		aerosois and particle-bound content of oxygenated PAHs, PAHs, and n-alkanes in urban
660	1.4.5	environments in Afghanistan. Atmos. Environ. 45, 4360-4369, (2011).
661	145	Valavanidis, A., Fiotakis, K., Vlanogianni, T., Papadimitriou, V. & Pantikaki, V.
662		Determination of selective quinones and quinoid radicals in airborne particulate matter and
663	140	venicular exhaust particles. Environ. Chem. 3, 118-123, (2006).
664	146	Eiguren-Fernandez, A. <i>et al.</i> Atmospheric distribution of gas- and particle-phase quinones in
665	1.45	Southern California. Aerosol Sci. Tech. 42, 854-861, (2008).
666	147	Delgado-Saborit, J. M., Alam, M. S., Pollitt, K. J. G., Stark, C. & Harrison, R. M. Analysis of
667		atmospheric concentrations of quinones and polycyclic aromatic hydrocarbons in vapour and
668	1.10	particulate phases. Atmos. Environ. 77, 974-982, (2013).
669	148	Walgraeve, C. <i>et al.</i> Quantification of PAHs and oxy-PAHs on airborne particulate matter in
670		Chiang Mai, Thailand, using gas chromatography high resolution mass spectrometry. <i>Atmos.</i>
671		Environ. 107, 262-272, (2015).
672	149	Alam, M. S., Delgado-Saborit, J. M., Stark, C. & Harrison, R. M. Investigating PAH relative
673		reactivity using congener profiles, quinone measurements and back trajectories. Atmos. Chem.
674		<i>Phys.</i> 14 , 2467-2477, (2014).
675	150	Cho, A. K. <i>et al.</i> Determination of four quinones in diesel exhaust particles, SRM 1649a, an
676		atmospheric PM2.5. Aerosol Sci. Tech. 38, 68-81, (2004).
677	151	Sousa, E. T., Cardoso, M. P., Silva, L. A. & de Andrade, J. B. Direct determination of
678		quinones in fine atmospheric particulate matter by GC-MS. <i>Microchem. J.</i> 118 , 26-31, (2015).
679	152	Allen, J. O. et al. Measurement of oxygenated polycyclic aromatic hydrocarbons associated
680		with a size-segregated urban aerosol. <i>Environ. Sci. Tech.</i> 31 , 2064-2070, (1997).
681	153	Jimenez, J. L. et al. Evolution of Organic Aerosols in the Atmosphere. Science 326, 1525-
682		1529, (2009).
683	154	Huang, RJ. et al. High secondary aerosol contribution to particulate pollution during haze
684		events in China. Nature 514, 218-222, (2014).
685	155	Pöschl, U. et al. Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the
686		Amazon. Science 329 , 1513-1516, (2010).
607		
00/		
600		

689 Figures

- 691 Supplementary Figure 1: A schematic of the KM-SUB-ELF model. The symbols X_i and Y_i represent
- 692 volatile and non-volatile species, respectively. Green and red arrows denote mass transport and
- 693 chemical reactions, respectively. Adapted from Shiraiwa et al.¹.
- 694

696 **Supplementary Figure 2**: Reactive oxygen species (ROS) concentrations in surrogate epithelial 697 lining fluid. H_2O_2 concentration as a function of time at different concentrations of Fe ions (A) and Cu 698 ions (B). OH radical concentration after 24 hours as a function of Fe ion concentration (C) and Cu ion 699 concentration (D). The symbols are measurement data points (for $H_2O_2^3$ and for OH⁴), and the lines 697 are KM-SUB-ELF model results. In panel (A) the fluid contained 20 nM 1,2-NQN. The error bars 708 represent assumed 20 % errors in the measurement points.

Supplementary Figure 3: Sensitivity studies of the effect of iron and copper solubility upon the
importance of removal of 50 % of different redox-active components of PM2.5 and the results shown
in Figure 2D. The soluble fractions of iron and copper were assumed to be (A) 25 % for Fe and 60 %
for Cu, (B) 5 % for Fe and 20 % for Cu, (C) 5 % for Fe and 60 % for Cu and (D) 25 % for Fe and 20
% for Cu.

Supplementary Figure 4: (A) The OH and H_2O_2 production rates as a function of different concentrations of Fe, Cu or quinones and (B) ROS ($H_2O_2 + OH + O_2 + O_3$) concentrations in the bronchi after 2 hours of exposure to Fe, Cu, quinones or O₃. Note that for all simulations each component was varied with the other concentrations set to zero.

Supplementary Figure 5: Chemical exposure-response relations between air pollutants and ROS in the human respiratory tract. (A) PM2.5 – H_2O_2 production rate corridors (i.e. the range of production rates induced by SOA, Fe, Cu, and quinones contained in PM2.5, respectively). (B) PM2.5 - OH production rate corridors. Different cities are shown by markers (see SI text and Supplementary Tables 4 - 6 for more details).

- 721
- 722
- 723
- 724

Supplementary Figure 6: Fractional change of (A) OH and (B) O₂⁻ concentrations in the ELF upon
removal of 50% of redox-active components from PM2.5 calculated for selected geographic locations
with different PM2.5 concentration levels and composition (Supplementary Table 7).

731Supplementary Figure 7: Temporal evolution of antioxidants, surfactants and oxidants when exposed732to 100 ppb O_3 and 5×10^6 cm⁻³ OH for 1 h. (A) Total antioxidant concentrations in the nasal cavity733(green), bronchi (blue) and alveoli (red). (B) Concentrations of surfactants in the nasal cavity, bronchi734and alveoli. Bulk concentration profiles of ozone (C) and OH (D) within the ELF in the nasal cavity.

737 Supplementary Figure 8: Chemical half-life of antioxidants and surfactants in the epithelial lining 738 fluid of the nasal cavity (green), bronchi (blue), and alveoli (red) as a function of (A) ambient 739 concentrations of OH and (B) PM2.5. Deposition of PM2.5 within ELF can lead to formation of OH 740 radicals, which can react with antioxidants and surfactants.

736

742

743

744Supplementary Figure 9: (A) Measured 70 and modeled ratio of products of the reactions between745ozone and ascorbic acid as a function of pH: threonate (THR) / dehydroascorbic acid (DHA) (red) and746ascorbate ozonide (AOZ) / DHA (black). (B) Measured747reactions between ozone and uric acid as a function of pH: uric acid ozonide (U-O₃) / epoxide (U-O)748(black) and uric acid peroxide (U-O₂) / U-O (red).

750

Supplementary Figure 10: pH effect on oxidation products of ozonolysis of ascorbate (A, C) and uric acid (B, D) within ELF in bronchi after one-hour exposure of 100 ppb O₃. (A) Concentrations of ascorbate ozonide (AOZ), dehydroascorbic acid (DHA), and threonate (THR) as a function of pH. (B) Concentrations of uric acid epoxide (UA-O), peroxide (UA-O₂), and ozonide (UA-O₃) as a function of pH. Temporal evolution of ozonolysis products of (C) ascorbate and (D) uric acid at an ELF pH of 7.4 (dashed lines) and pH 4 (solid lines).

Supplementary Figure 11: Ranges for kinetic parameters obtained with global optimization to experimental data^{3,4}. Multiple optimizations for reactions involving iron (left, N=210) and copper (right, N=38) yield estimations of fit parameter uncertainty. Black boxes denote the .25 to .75 percentile of all obtained fit parameters and black whiskers denote the .05 and .95 percentile. The median values are given as black horizontal line. Red markers indicate the fitting boundaries; blue squares and green diamonds represent the best fit to the full kinetic data set.

Reaction number	Reaction	Rate coefficient/ cm ³ s ⁻¹	Reference
O ₃ reactio	ns		
1	$Asc + O_3 \rightarrow DHA + AOZ + THR$	$k_1 = 9.1 \times 10^{-17}$	65
2	$UA + O_3 \rightarrow UA-O + UA-O_2 +$ $UA-O_3$	$k_2 = 9.6 \times 10^{-17}$	65
3	$1.25\text{GSH} + 0.5\text{O}_3 \rightarrow 0.5(\text{GSO}_3^- + \text{GSO}_3^{2-})$	$k_3 = 9.6 \times 10^{-20+}$	65
4	α -Toc + O ₃ $\rightarrow \alpha$ -TO + α -TO ₂ + α - TO ₃ + α -TO ₄ + α -TO ₅	$k_4 = 1.2 \times 10^{-18}$ ⁺⁺	65
5	$SP-B_{1-25} + O_3 \rightarrow Products$	$k_5 = 1.0 \times 10^{-14}$	67,80
6	$POG + O_3 \rightarrow Products$	$k_6 = 4.5 \times 10^{-16}$	21
OH reacti	ons		
7	Asc + OH \rightarrow Products	$k_7 = 1.8 \times 10^{-11}$	81
8	$UA + OH \rightarrow Products$	$k_8 = 1.2 \times 10^{-11}$	82
9	$GSH + OH \rightarrow Products$	$k_9 = 1.7 \times 10^{-11}$	83,84
10	α -Toc + OH \rightarrow Products	$k_{10} = 4.5 \times 10^{-13}$	85
11	$SP\text{-}B_{1\text{-}25} + OH \rightarrow Products$	$k_{11} = 1.7 \times 10^{-11}$	86-88
12	$POG + OH \rightarrow Products$	$k_{12} = 1.7 \times 10^{-11}$	Assumed to be the same

766 **Supplementary Table 1**: A summary of the chemical reactions and rate coefficients included in the

767 KM-SUB-ELF model.

Reactions involving semiquinones

13	$PQN + Asc \rightarrow PQN + Asc$	$k_{13} = 1.2 \times 10^{-20}$	3
14	$PQN^{-} + O_2 \rightarrow PQN + O_2^{-}$	$k_{14} = 4.6 \times 10^{-13}$	See text & Supplementary
			Fig. 11
15	$PQN + O_2 + 2H^+ \rightarrow PQN + H_2O_2$	$k_{15} = 3.3 \times 10^{-12}$	See text & Supplementary
			Fig. 11
16	$1,2-NQN + Asc \rightarrow 1,2-NQN +$	$k_{16} = 1.5 \times 10^{-19}$	3

as R11

Asc
17
$$1,2-NQN + O_2 \rightarrow 1,2-NQN + O_2^{-}$$
 $k_{17} = 4.6 \times 10^{-13}$ See text & Supplementary
Fig. 11
18 $1,2-NQN + O_2^{-} + 2H^+ \rightarrow 1,2 k_{18} = 3.3 \times 10^{-12}$ See text & Supplementary
NQN + H₂O₂ Fig. 11
19 $1,4-NQN + Asc \rightarrow 1,4-NQN + k_{19} = 6.3 \times 10^{-21}$ 3
Asc
20 $1,4-NQN + O_2 \rightarrow 1,4-NQN + O_2^{-}$ $k_{20} = 4.6 \times 10^{-13}$ See text & Supplementary
Fig. 11
21 $1,4-NQN + O_2^{-} + 2H^+ \rightarrow 1,4 k_{21} = 3.3 \times 10^{-12}$ See text & Supplementary
NQN + H₂O₂ Fig. 11

Reactions involving iron

22	$Asc + Fe^{3+} \rightarrow Asc^{-} + Fe^{2+}$	$k_{22} = 1.1 \times 10^{-19}$	See text & Supplementary
			Fig. 11
23	$Asc + Fe^{IV} \rightarrow Asc^{-} + Fe^{3+}$	$k_{23} = 7.6 \times 10^{-19}$	See text & Supplementary
			Fig. 11
24	$\mathrm{Fe}^{2+} + \mathrm{O}_2 \rightarrow \mathrm{O}_2^{-} + \mathrm{Fe}^{3+}$	$k_{24} = 5.2 \times 10^{-21}$	See text & Supplementary
			Fig. 11
25	$\mathrm{Fe}^{2+} + \mathrm{O}_2 + 2H^+ \rightarrow \mathrm{Fe}^{3+} + \mathrm{H}_2\mathrm{O}_2$	$k_{25} = 3.1 \times 10^{-14}$	See text & Supplementary
			Fig. 11
26	$\mathrm{Fe}^{2+} + \mathrm{H}_2\mathrm{O}_2 \rightarrow \mathrm{Fe}^{3+} + \mathrm{OH}^2 + \mathrm{OH}^3$	$k_{26} = 4.3 \times 10^{-18}$	See text & Supplementary
			Fig. 11
27	$\mathrm{Fe}^{2+} + \mathrm{OH} \rightarrow \mathrm{Fe}^{3+} + \mathrm{OH}^{-}$	$k_{27} = 5.3 \times 10^{-13}$	89
28	$\mathrm{Fe}^{3+} + \mathrm{H}_2\mathrm{O}_2 \rightarrow \mathrm{Fe}^{2+} + \mathrm{HO}_2 + H^+$	$k_{28} = 3.3 \times 10^{-24}$	90
29	$\mathrm{Fe}^{3+} + \mathrm{HO}_2 \rightarrow \mathrm{Fe}^{2+} + \mathrm{O}_2 + H^+$	$k_{29} = 3.3 \times 10^{-18} + ++$	91
30	$\mathrm{Fe}^{2+} + \mathrm{H}_2\mathrm{O}_2 \rightarrow \mathrm{Fe}^{\mathrm{IV}}\mathrm{O}^{2+} + \mathrm{H}_2\mathrm{O}$	$k_{30} = 9.5 \times 10^{-18}$	See text & Supplementary
			Fig. 11
31	$Fe^{IV} + Fe^{2+} \rightarrow 2Fe^{3+}$	$k_{31} = 6.6 \times 10^{-18}$	92

Reactive oxygen radical reactions

32	$\mathrm{H_2O_2} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{HO_2}$	$k_{32} = 5.5 \times 10^{-14}$	93
33	$\rm OH + OH \rightarrow H_2O_2$	$k_{33} = 8.6 \times 10^{-12}$	94
34	$\rm OH + HO_2 \rightarrow H_2O + O_2$	$k_{34} = 1.2 \times 10^{-11}$	94
35	$\mathrm{HO}_2 + \mathrm{HO}_2 \rightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2$	$k_{35} = 1.4 \times 10^{-15}$	91

Reactions involving copper

40	$Asc + Cu^{2+} \rightarrow Asc^{-} + Cu^{+}$	$k_{40} = 1.4 \times 10^{-18}$	See text & Supplementary
			Fig. 11
41	$Cu^+ + O_2 \rightarrow O_2 + Cu^{2+}$	$k_{41} = 6.9 \times 10^{-20}$	See text & Supplementary
			Fig. 11
42	$\mathrm{Cu}^+ + \mathrm{HO}_2 + H^+ \rightarrow \mathrm{Cu}^{2+} + \mathrm{H}_2\mathrm{O}_2$	$k_{42} = 5.8 \times 10^{-15}$	See text & Supplementary
			Fig. 11
43	$Cu^+ + H_2O_2 \rightarrow Cu^{2+} + OH^- + OH$	$k_{43} = 2.4 \times 10^{-20}$	See text & Supplementary
			Fig. 11
44	$Cu^+ + H_2O_2 \rightarrow Cu^{3+} + 2OH^-$	$k_{44} = 5.0 \times 10^{-19}$	See text & Supplementary
			Fig. 11
45	$Cu^+ + Cu^{3+} \rightarrow 2Cu^{2+}$	$k_{45} = 5.8 \times 10^{-12}$	98
46	$\mathrm{Cu}^{2+} + \mathrm{H}_2\mathrm{O}_2 \rightarrow \mathrm{Cu}^+ + \mathrm{HO}_2 + H^+$	$k_{46} = 3.8 \times 10^{-24}$	See text & Supplementary
			Fig. 11
47	$\mathrm{Cu}^{2+} + \mathrm{O}_2 \longrightarrow \mathrm{Cu}^+ + \mathrm{O}_2$	$k_{47} = 8.3 \times 10^{-12}$	See text & Supplementary
			Fig. 11
48	$\mathrm{Cu}^{2+} + \mathrm{HO}_2 \rightarrow \mathrm{Cu}^+ + \mathrm{O}_2 + H^+$	$k_{48} = 1.6 \times 10^{-11}$	See text & Supplementary
			Fig. 11
49	$\mathrm{Cu}^+ + \mathrm{HO}_2 \rightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{Cu}^{2+} + \mathrm{OH}^-$	$k_{49} = 2.3 \times 10^{-12}$	See text & Supplementary
			Fig. 11

Other reactions

	$\kappa_{50} = 5.0 \times 10$	99 99
$O_2^- \rightarrow Asc^- + H_2O_2$	$k_{51} = 5.1 \times 10^{-17}$	See text & Supplementary
		Fig. 11
Benzoate \rightarrow p-HBA	$k_{52} = 5.0 \times 10^{-12}$	100
$O_2^- + 2H^+ \xrightarrow{\text{SOD}} H_2O_2 + O_2$	$k_{53} = 2.7 \times 10^{-12}$	101
1	$O_2^- \rightarrow Asc^+ + H_2O_2$ Benzoate → p-HBA $O_2^- + 2H^+ \xrightarrow{SOD} H_2O_2 + O_2$	$O_{2}^{-} \rightarrow Asc^{+} + H_{2}O_{2} \qquad \qquad k_{50} = 5.0 \times 10^{-17}$ Benzoate $\rightarrow p$ -HBA $k_{52} = 5.0 \times 10^{-12}$ $O_{2}^{-} + 2H^{+} \xrightarrow{SOD} H_{2}O_{2} + O_{2} \qquad \qquad k_{53} = 2.7 \times 10^{-12}$

- 768 Asc, UA, GSH and α -Toc represent both the protonated and deprotonated species which will be
- 769 present in different quantities at different pH.
- 770 ⁺Units are $cm^{2.25} s^{-1}$.
- 771 ⁺⁺ This is a maximum value based upon $k_1/k_4 > 75$.
- 772 ⁺⁺⁺ This is a maximum value.
- 773

Parameter	Description	Value
$\alpha_{s,0,OH}, \alpha_{s,0,O3}, \alpha_{s,0,O2}$	Surface mass accommodation of $OH O_3$ and O_2 at time zero	1
H_{03}	Henry's law constant of O ₃	$1 \times 10^{-5} \text{ mol cm}^{-3} \text{ atm}^{-1} \text{ a}$
H _{OH}	Henry's law constant of OH	$0.03 \text{ mol cm}^{-3} \text{ atm}^{-1} \text{ a}$
H_{02}	Henry's law constant of O ₂	$1.3 \times 10^{-6} \text{ mol cm}^{-3} \text{ atm}^{-1} \text{ atm}^{-1}$
D _{b,OH} , D _{b,O3} , D _{b,O2}	Bulk diffusion coefficient of OH, O3 and O2	$1 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$
D b,AO, D b,Products	Bulk diffusion coefficient of antioxidants and products	$1 \times 10^{-7} \mathrm{cm}^2 \mathrm{s}^{-1}$
$\tau_{\rm d,OH}, \tau_{\rm d,O3}, \tau_{\rm d,O2}$	Desorption lifetime of OH, O3 and O2	10 ⁻⁹ s
σ_{03}	Effective molecular cross-section of O ₃	$4.8 \times 10^{-15} \mathrm{cm}$
$\sigma_{ m OH}$	Effective molecular cross-section of OH	$2.4 \times 10^{-15} \text{cm}$
σ_{02}	Effective molecular cross-section of O ₂	3.7×10^{-15} cm
ω ₀₃	Mean thermal velocity of O ₃	$3.6 \times 10^4 \text{ cm s}^{-1}$
$\omega_{ m OH}$	Mean thermal velocity of OH	$6.1 \times 10^4 \text{ cm s}^{-1}$
ω ₀₂	Mean thermal velocity of O ₂	$4.4 \times 10^4 \text{ cm s}^{-1}$
$D_{g,O3}, D_{g,OH}$	Gas phase diffusion coefficient of O3 and OH	$0.23 \text{ cm}^2 \text{ s}^{-1}$

774 **Supplementary Table 2**: Input parameters of the KM-SUB-ELF model.

776 ^a Values are from reference 102 .

775

778	Supplementary Table 3: Epithelial lining fluid characteristics: literature values of the ELF thickness,
779	antioxidant concentrations, surface area and diameter of respiratory tract in the nasal cavity, bronchi
780	and alveoli.

	Nasal cavity	Bronchi	Alveoli
ELF thickness (µm)	10	0.5	0.05
Antioxidant conc.*			
Ascorbate (µM)	28	40	40
Uric acid (µM)	225	207	207
Glutathione (µM)	0.5	109	109
α-Tocopherol (µM)	0.7	0.7	0.7
Surface area (cm ²)**	180	4500	885000
Diameter of the respiratory tract (cm)***	4.5	1	0.02

* Mudway and Kelly¹⁰³.

782 ****** Cross *et al.*¹⁸.

783 *** Ochs *et al.*¹⁰⁴, Franciscus and Long¹⁰⁵.

Supplementary Table 4: Properties and effects of fine particulate matter with particle diameters less than 2.5 µm (PM2.5) at various locations: measured mass concentrations of PM2.5, Fe, and Cu in ambient air and calculated production rates and concentrations of ROS, after two hours of exposure, in the epithelial lining fluid (ELF).

Location	Ambient mass A concentrations		Ambio frac	ent mass ctions	References	S ELF production rates						ELF concentrations				
	PM2.5 (μg m ⁻³)	Fe (ng m ⁻³)*	Cu (ng m ⁻³)*	Fe (%)	Cu (%)		OH from Fe (pmol L ⁻¹ s ⁻¹)	OH from Cu (pmol L ⁻¹ s ⁻¹)	H2O2 from Fe (pmol L ⁻¹ s ⁻¹)	H ₂ O ₂ from Cu (pmol L ⁻¹ s ⁻¹)	ROS from Fe (pmol L ⁻¹ s ⁻¹)	ROS from Cu (pmol L ⁻¹ s ⁻¹)	OH (nmol L ⁻¹)**	HO ₂ (nmol L ⁻¹) **	O2 ⁻ (nmol L ⁻¹) **	Total ROS (≈ H ₂ O ₂) (nmol L ⁻¹) **
Amazon (wet season)	1.65	33	0.07	2.0	0.004	106	4.42×10^{-2}	1.86 × 10 ⁻⁷	2.50	2.43 × 10 ⁻¹	4.65×10^{2}	47.35	1.53 × 10 ⁻¹⁰	2.17 × 10 ⁻⁶	2.05×10^{-3}	12.80
Mace Head	~4.2	~5.68	~0.71	0.13	0.02	38	1.41×10^{-3}	1.65×10^{-5}	0.44	2.07	85.02	4.03×10^2	3.15×10^{10}	2.15×10^{-6}	$2.02\times10^{\text{-3}}$	13.46
Amazon (dry season)	4.87	19	0.80	0.39	0.02	106	$1.52\times 10^{\text{-2}}$	2.14×10^{-5}	1.45	2.33	2.76×10^{2}	4.53×10^2	3.83×10^{-10}	$2.82\times10^{\text{-6}}$	2.65×10^{-3}	17.46
Edinburgh	7.1	27.6	1.39	0.39	0.02	37	$3.14\times10^{\text{-2}}$	$6.00\times 10^{\text{-5}}$	2.10	3.67	3.94×10^2	$7.13\ \times\ 10^2$	5.74×10^{-10}	$4.17\times 10^{\text{-6}}$	$3.93\times 10^{\text{-3}}$	25.77
West Midlands (UK, rural, median)	7.6	51.3	13.5	0.68	0.18	8	1.02×10^{-1}	3.04×10^{-3}	3.84	17.57	6.98×10^{2}	3.34×10^{3}	8.38×10^{-10}	1.57 × 10 ⁻⁵	$1.48\times10^{\text{-}2}$	91.97
West Midlands (UK, urban, median)	9.0	80.2	13.9	0.89	0.15	8	2.32×10^{-1}	3.19×10^{-3}	5.88	17.89	1.03×10^{3}	3.40×10^{3}	1.11 × 10 ⁻⁹	$1.65 imes 10^{-5}$	1.56×10^{-2}	96.15
Skukuza (South Africa)	9.4	51	0.41	0.54	0.04	107	1.01×10^{-1}	5.75 × 10 ⁻⁶	3.82	1.27	6.94×10^{2}	2.48×10^{2}	$7.83 imes 10^{-10}$	$3.87\times10^{\text{-6}}$	$3.64\times 10^{\text{-3}}$	24.84
Amazon (Serro do Navio)	9.87	120	1.65	1.21	0.02	108	4.83×10^{-1}	7.88 × 10 ⁻⁵	8.64	4.13	1.45×10^3	$8.01\ \times 10^2$	1.11 × 10 ⁻⁹	8.27×10^{-6}	7.80×10^{-3}	48.69
Amazon (Cuiabá)	10.5	175	1.55	1.67	0.01	108	$2.70 imes 10^{-1}$	$5.96\times10^{\text{-3}}$	6.35	22.51	1.11×10^{3}	4.24×10^3	1.31 × 10 ⁻⁹	$1.86 imes 10^{-5}$	$1.76\times 10^{\text{-}2}$	$1.09 imes 10^2$
West Midlands (UK, rural, average)	10.5	87.1	20	0.83	0.19	8	9.21×10^{-1}	$7.09 imes 10^{-5}$	12.24	3.94	1.94×10^{3}	7.66×10^{2}	1.41 × 10 ⁻⁹	9.89 × 10 ⁻⁶	$9.32\times10^{\text{-3}}$	56.80

West Midlands (UK, urban, average)	11.6	102	21.9	0.88	0.19	8	3.58×10^{1}	$6.92\times 10^{\text{-3}}$	7.38	23.76	1.26×10^{3}	4.46×10^{3}	1.5 × 10 ⁻⁹	1.96×10^{-5}	$1.85\times10^{\text{-}2}$	1.15×10^2
Helsinki	11.8	96	3.1	0.81	0.03	109	$3.24\times10^{\text{-1}}$	$2.54\times10^{\text{-4}}$	7.00	6.72	1.20×10^3	1.30×10^{3}	1.2×10^{-9}	$8.67\times 10^{\text{-}6}$	$8.18\times10^{\text{-3}}$	51.84
Tampa (Florida)	12.7	79	2.4	0.62	0.02	110	$2.26 imes 10^{-1}$	1.63×10^{-4}	5.79	5.60	1.02×10^3	1.08×10^3	1.09×10^{-9}	$6.7 imes 10^{-6}$	6.31 × 10 ⁻³	41.63
Toronto	12.7	55	2.5	0.43	0.02	111	$1.16\times10^{\text{-1}}$	$1.73\times10^{\text{-4}}$	4.11	5.75	7.43×10^2	1.11×10^{3}	1.65×10^{-9}	$1.34\times 10^{\text{-5}}$	$1.26\times 10^{\text{-2}}$	77.37
South Phoenix	12.95	147	7.6	1.14	0.06	112	$6.85\times10^{\text{-1}}$	$1.20\times 10^{\text{-3}}$	10.42	12.38	1.70×10^3	2.38×10^3	1.18×10^{-9}	$7.44 imes 10^{-6}$	$7.01\times 10^{\text{-3}}$	45.52
Tehran (inside a school dormitory)	14	102.13	22.17	0.73	0.16	113	3.62×10^{-1}	7.01 × 10 ⁻³	7.42	23.87	1.27×10^{3}	4.48×10^{3}	$1.69 imes 10^{-9}$	1.97 × 10 ⁻⁵	$1.86\times10^{\text{-}2}$	$1.16 imes 10^2$
Tehran (inside a retirement home)	15	130.78	25.1	0.87	0.17	113	5.60 × 10 ⁻¹	8.59 × 10 ⁻³	9.35	25.69	1.55×10^{3}	4.80×10^3	1.99 × 10 ⁻⁹	2.13 × 10 ⁻⁵	2.01 × 10 ⁻²	$1.25 imes 10^2$
South-Eastern Italy (background sites)	16.4	86.8	3.1	0.53	0.02	11	2.70×10^{-1}	2.54×10^{-4}	6.35	6.72	1.11×10^{3}	1.30×10^{3}	$1.5 imes 10^{-9}$	8.42×10^{-6}	7.94×10^{-3}	52.05
Fukue island (Japan)	16.5	102	Unkn own	0.62	Unkno wn	114	$3.58 imes 10^{-1}$	N/A	7.38	N/A	1.26×10^{3}	N/A	N/A	N/A	N/A	N/A
Patras	17.4	124	7.28	0.71	0.04	36	$5.09\times10^{\text{-1}}$	$1.12\times 10^{\text{-3}}$	8.89	12.05	1.48×10^3	2.32×10^3	$1.86\times 10^{\text{-9}}$	$1.27\times 10^{\text{-5}}$	$1.20\times 10^{\text{-2}}$	75.44
Yeongwol (Korea)	19.7	31.2	9.8	0.16	0.05	115	$3.97\times 10^{\text{-2}}$	1.84×10^{-3}	2.37	14.56	4.42×10^2	2.79×10^{3}	1.6×10^{-9}	1.22×10^{-5}	$1.15\times10^{\text{-2}}$	75.66
Budapest	20	430	18.4	2.15	0.09	116	3.85	$5.22\times 10^{\text{-3}}$	27.76	21.44	3.56×10^3	4.05×10^3	$4.23\times 10^{\text{-9}}$	$2.27\times 10^{\text{-5}}$	$2.14\times10^{\text{-2}}$	1.19×10^2
South-Eastern Italy (industrial sites)	21.7	85	5.1	0.39	0.02	11	2.59×10^{-1}	6.07×10^{-4}	6.22	9.52	1.09×10^{3}	1.84×10^3	1.94 × 10 ⁻⁹	1.02 × 10 ⁻⁵	9.58 × 10 ⁻³	63.47
Zahrze (Unner																
Silesia, Poland)	22	160.8	6.5	0.73	0.03	117	7.97 × 10 ⁻¹	9.22 × 10 ⁻⁴	11.31	11.20	1.82×10^{3}	2.15×10^{3}	2.38×10^{-9}	1.31×10^{-5}	1.23 × 10 ⁻²	77.92
Silesia, Poland) Chuncheon (Korea)	22 23	160.8 29.6	6.5 9.9	0.73 0.13	0.03 0.04	117 115	7.97×10^{-1} 3.58×10^{-2}	9.22×10^{-4} 1.87×10^{-3}	11.31 2.25	11.20 14.66	1.82×10^{3} 4.20×10^{2}	2.15×10^{3} 2.80×10^{3}	2.38 × 10 ⁻⁹ 1.84 × 10 ⁻⁹	1.31×10^{-5} 1.23×10^{-5}	1.23×10^{-2} 1.16×10^{-2}	77.92 77.20
Silesia, Poland) Chuncheon (Korea) Detroit	22 23 23	160.8 29.6 234	6.5 9.9 6	0.73 0.13 1.02	0.03 0.04 0.03	117 115 118	7.97×10^{-1} 3.58×10^{-2} 1.49	9.22×10^{-4} 1.87×10^{-3} 8.02×10^{-4}	11.31 2.25 15.99	11.20 14.66 10.61	1.82×10^{3} 4.20×10^{2} 2.40×10^{3}	2.15×10^{3} 2.80×10^{3} 2.04×10^{3}	2.38×10^{-9} 1.84×10^{-9} 2.86×10^{-9}	1.31×10^{-5} 1.23×10^{-5} 1.44×10^{-5}	1.23×10^{-2} 1.16×10^{-2} 1.36×10^{-2}	77.92 77.20 83.04

Tehran (outside a retirement home)	24	238.81	25.99	1	0.11	113	1.54	9.08 × 10 ⁻³	16.30	26.21	2.43×10^{3}	4.89×10^3	3.43×10^{-9}	2.3 × 10 ⁻⁵	2.17×10^{-2}	1.32×10^2
South-Eastern Italy (urban sites)	24.1	78.8	5.7	0.33	0.02	11	$2.26\times10^{\text{-1}}$	7.35×10^{-4}	5.79	10.25	1.02×10^{3}	1.98×10^{3}	2.11 × 10 ⁻⁹	1.05×10^{-5}	9.88×10^{-3}	66.21
Tehran (outside a school dormitory)	26	280.28	32.42	1.08	0.12	113	2.00	1.29×10^{-2}	18.86	29.69	2.72×10^{3}	5.48×10^{3}	3.99 × 10 ⁻⁹	2.53 × 10 ⁻⁵	2.39×10^{-2}	1.44×10^2
Anaheim	26.8	29.6	39.6	0.11	0.15	119	$3.58\times 10^{\text{-2}}$	$1.77\times10^{\text{-2}}$	2.25	33.25	4.20×10^2	6.08×10^3	$2.22\times 10^{\text{-9}}$	$2.5\times10^{\text{-5}}$	$2.35\times 10^{\text{-2}}$	1.57×10^2
Milan (summer)	27.2	186	10	0.68	0.04	120	1.02	$1.90\times 10^{\text{-3}}$	12.96	14.76	2.03×10^3	2.82×10^3	3.02×10^{-9}	$1.57\times 10^{\text{-5}}$	$1.48\times10^{\text{-2}}$	93.07
Jeddah City (Saudi Arabia)	28.4	590	5.6	2.08	0.02	121	6.09	$7.16\times10^{\text{-4}}$	36.91	10.15	4.27×10^3	1.96×10^3	5.43×10^{-9}	$2.04\times10^{\text{-5}}$	1.92×10^{-2}	1.01×10^2
Hong Kong	29	140	5.7	0.48	0.02	122	$6.31\times 10^{\text{-1}}$	$7.35\times10^{\text{-4}}$	9.97	10.25	1.64×10^3	1.98×10^3	$2.79\times 10^{\text{-9}}$	1.21×10^{-5}	1.14×10^{-2}	75.22
Rio de Janiero	29.2	307	35	1.05	0.12	123	2.30	$1.46\times 10^{\text{-}2}$	20.48	31.03	2.89×10^3	5.71×10^3	$4.47\times 10^{\text{-9}}$	$2.63\times10^{\text{-5}}$	$2.48\times10^{\text{-2}}$	1.49×10^2
Katowice (Upper Silesia,Poland)	31	157	8.2	0.51	0.03	117	$7.66 imes 10^{-1}$	1.36×10^{-3}	11.07	13.00	1.79×10^{3}	2.49×10^{3}	$3.09 imes 10^{-9}$	1.41×10^{-5}	1.33 × 10 ⁻²	86.42
Porto Marghera (Italy)	31	200	9.3	0.65	0.03	9	1.16	1.69×10^{-3}	13.87	14.10	2.15×10^3	2.70×10^{3}	3.37 × 10 ⁻⁹	1.56×10^{-5}	1.47 × 10 ⁻²	93.19
Erzgebirge (Germany)	32.5	188	3	0.58	0.01	124	1.04	2.41×10^{-4}	13.08	6.58	2.05×10^3	1.27×10^3	3.22×10^{-9}	$1.14\times 10^{\text{-5}}$	1.08×10^{-2}	71.02
Barcelona	35	260	52	0.74	0.15	125	1.77	2.72×10^{-2}	17.60	38.73	2.58×10^3	6.96×10^3	$4.79\times 10^{\text{-9}}$	3×10^{-5}	$2.83\times10^{\text{-}2}$	1.77×10^2
Santa Catarina (Mexico)	36.15	466	16	1.29	0.04	126	4.34	4.13×10^{-3}	29.85	19.69	3.74×10^3	3.73×10^3	5.66×10^{-9}	2.24×10^{-5}	2.12×10^{-2}	1.19×10^2
Escobedo (Mexico)	37.78	493	13	1.3	0.03	126	4.71	$2.94\times 10^{\text{-3}}$	31.41	17.36	3.86×10^{3}	3.30×10^3	5.86×10^{-9}	2.18×10^{-5}	$2.05\times10^{\text{-2}}$	1.14×10^2
Arnhem	38.95	241	13.5	0.62	0.03	57	1.57	$3.13\times10^{\text{-3}}$	16.45	17.77	2.45×10^3	3.38×10^3	4.35×10^{-9}	$1.84\times10^{\text{-5}}$	1.74×10^{-2}	1.09×10^2
Guangzhou (rainy season)	40.18	Unkno wn	21.28	Unkno wn	0.05	10	N/A	6.56×10^{-3}	N/A	23.31	N/A	4.38×10^3	N/A	N/A	N/A	N/A

Mira Loma (Southern California, average)	41.8	581	75	1.39	0.18	127	5.96	4.82×10^{-2}	36.42	47.33	4.23×10^{3}	8.25×10^3	8.16 × 10 ⁻⁹	3.57×10^{-5}	3.37×10^{-2}	1.91×10^2
Taif (Saudi Arabia, residential area)	46	2000	5.3	4.35	0.01	128	28.45	$6.48 imes 10^{-4}$	1.12×10^2	9.76	7.21×10^{3}	1.88×10^{3}	$1.47 imes 10^{-8}$	3.21 × 10 ⁻⁵	3.02×10^{-2}	$1.08 imes 10^2$
Taif (Saudi Arabia, industrial site)	47	2300	13	4.89	0.03	128	33.22	$2.94\times10^{\text{-3}}$	$1.28 imes 10^2$	17.36	7.53×10^{3}	3.30×10^{3}	$1.66 imes 10^{-8}$	3.43 × 10 ⁻⁵	$3.24\times10^{\text{-2}}$	1.11×10^2
Azusa	47.1	281.9	13.4	0.6	0.03	119	2.02	$3.09\times 10^{\text{-3}}$	18.98	17.68	$2.73\ \times 10^3$	3.36×10^3	$5.24\times 10^{\text{-9}}$	$1.9\times10^{\text{-5}}$	$1.80\times10^{\text{-2}}$	1.13×10^2
Edison	49.6	1953	10	3.94	0.02	129	27.65	$1.90\times 10^{\text{-3}}$	1.10×10^2	14.76	7.15×10^3	2.82×10^3	$1.49\times 10^{\text{-8}}$	$3.25\times10^{\text{-5}}$	$3.06\times 10^{\text{-2}}$	1.11×10^2
Bursa (Turkey)	53	875	15	1.65	0.03	130	10.39	$3.72 imes 10^{-3}$	52.61	18.94	5.20×10^{3}	3.59×10^{3}	9.51 × 10 ⁻⁹	$2.65\times 10^{\text{-5}}$	$2.50\times10^{\text{-}2}$	$1.21 imes 10^2$
Karachi (Pakistan, summer)	55.89	3360	56	6.01	0.1	131	50.10	3.06×10^{-2}	$1.82 imes 10^2$	40.36	8.35×10^{3}	7.21×10^3	2.4 × 10 ⁻⁸	4.07×10^{-5}	$3.84\times10^{\text{-}2}$	$1.20 imes 10^2$
New Delhi (summer, high traffic location)	58.2	710	20	1.22	0.03	132	7.83	$5.96 imes 10^{-3}$	43.44	22.51	4.69×10^{3}	4.24×10^3	9.08 × 10 ⁻⁹	2.62×10^{-5}	2.47×10^{-2}	$1.30 imes 10^2$
Milan (winter)	58.6	309	18	0.53	0.03	120	2.33	$4.98\times 10^{\text{-3}}$	20.60	21.08	2.90×10^3	3.98×10^3	$6.42\times 10^{\text{-9}}$	2.13×10^{-5}	$2.01\times 10^{\text{-2}}$	1.27×10^2
Thessaloniki, Greece (cold period)	60.9	2890	93	4.75	0.15	133	42.62	6.71×10^{-2}	1.58×10^2	53.16	8.03×10^{3}	9.06×10^{3}	$2.31 imes 10^{-8}$	4.26×10^{-5}	$4.02\times 10^{\text{-}2}$	$1.34 imes 10^2$
Thessaloniki, Greece (warm period)	70.6	4094	66	5.8	0.09	133	61.59	$3.94\times10^{\text{-2}}$	$2.19 imes 10^2$	44.10	8.74×10^3	7.78×10^{3}	2.9 × 10 ⁻⁸	4.22×10^{-5}	3.98×10^{-2}	$1.19 imes 10^2$
Córdoba City (Argentina)	70.87	325	8	0.46	0.01	134	2.52	1.31×10^{-3}	21.57	12.81	2.99×10^3	2.46×10^3	7.2×10^{-9}	$1.75\times 10^{\text{-5}}$	1.65×10^{-2}	$1.08 imes 10^2$
Shanghai	71.61	424.93	9.47	0.59	0.01	135	3.79	$1.74\times 10^{\text{-3}}$	27.47	14.26	3.54×10^3	$2.73\ \times\ 10^3$	$7.96\times10^{\text{-9}}$	$1.97\times 10^{\text{-5}}$	$1.86\times10^{\text{-}2}$	1.15×10^2
Guangzhou (dry season)	73.58	Unkno wn	57.89	Unkno wn	0.08	10	N/A	3.21×10^{-2}	N/A	41.05	N/A	7.32×10^{3}	N/A	N/A	N/A	N/A
Yong'an (China, winter)	79.01	582.1	19.6	0.74	0.02	136	5.98	$5.71\times 10^{\text{-3}}$	36.49	22.16	4.24×10^3	4.17×10^{3}	$9.91 imes 10^{-9}$	2.5 × 10 ⁻⁵	2.36×10^{-2}	1.35×10^2

Yong'an (China, spring)	83.26	736.1	16.5	0.88	0.02	136	8.29	$4.35\times10^{\text{-3}}$	45.15	20.06	4.79×10^3	3.80×10^3	$1.11\times10^{\text{-8}}$	$2.57\times10^{\text{-5}}$	$2.43\times 10^{\text{-}2}$	1.30×10^2
Karachi (Pakistan, winter)	98.44	3706	39	3.76	0.04	131	55.56	1.73 × 10 ⁻²	1.99×10^2	33.00	8.55×10^3	6.04×10^3	2.87×10^{-8}	4.01×10^{-5}	3.78×10^{-2}	1.16×10^2
Ji'nan (China, urban site)	101	1040	30	1.03	0.03	137	13.02	1.14×10^{-2}	61.65	28.47	5.63×10^3	5.28×10^3	$1.49 imes 10^{-8}$	3.1×10^{-5}	$2.93\times10^{\text{-2}}$	1.43×10^2
Guangzhou (China)	104.58	66	60	0.06	0.06	138	0.16	$3.40\times10^{\text{-2}}$	4.87	41.87	8.70×10^2	7.44×10^{3}	8.39 × 10 ⁻⁹	$3.08\times10^{\text{-5}}$	$2.91\times 10^{\text{-2}}$	2.21×10^2
Agra (India, urban)	104.9	1900	200	1.81	0.19	139	26.75	2.18×10^{-1}	$1.07 imes 10^2$	80.44	7.08×10^3	1.22×10^4	2.37×10^{-8}	$4.84\times10^{\text{-5}}$	$4.57\times10^{\text{-2}}$	1.96×10^2
Pune (India)	113.8	2090	339	1.84	0.3	140	29.84	$4.85\times10^{\text{-1}}$	1.17×10^2	107.60	7.31×10^3	1.45×10^4	$2.74\times10^{\text{-8}}$	$5.38\times10^{\text{-5}}$	$5.09\times10^{\text{-2}}$	2.26×10^2
Beijing (summer)	125	1060	44.7	0.85	0.04	141	13.32	$2.14\times 10^{\text{-2}}$	62.65	35.58	5.67×10^3	6.46×10^3	$1.73\times10^{\text{-8}}$	$3.37\times10^{\text{-5}}$	$3.18\times10^{\text{-2}}$	1.59×10^2
Ji'nan (China, industrial site)	130	2410	40	1.85	0.03	137	35.01	1.81×10^{-2}	$1.33 imes 10^2$	33.50	7.64×10^3	6.12×10^3	$2.49\times 10^{\text{-8}}$	$3.78\times10^{\text{-5}}$	$3.57\times10^{\text{-2}}$	1.28×10^2
Beijing (winter)	138	1330	53.2	0.96	0.04	141	17.58	$2.82\times10^{\text{-}2}$	76.83	39.24	6.22×10^3	7.04×10^3	$2.02\times10^{\text{-8}}$	$3.6 imes 10^{-5}$	$3.40\times10^{\text{-2}}$	1.58×10^2
Beijing	182.2	1180	70	0.65	0.04	142	15.19	$4.32\times 10^{\text{-}2}$	68.94	45.56	5.93×10^3	7.99×10^3	$2.33\times 10^{\text{-8}}$	$3.78\times10^{\text{-5}}$	$3.56\times 10^{\text{-}2}$	1.82×10^2
New Delhi (winter, high traffic location)	276.9	1150	70	0.42	0.03	132	14.70	4.32×10^{-2}	67.29	45.56	5.86×10^{3}	7.99×10^{3}	3.07×10^{-8}	3.8 × 10 ⁻⁵	3.59×10^{-2}	1.99×10^2
Peat fire episode (Indonesia)	640	4810	100	0.75	0.02	143	72.80	7.30 × 10 ⁻²	$2.55 imes 10^2$	54.74	9.05×10^3	9.27×10^{3}	$8.04\times10^{\text{-8}}$	4.62×10^{-5}	$4.36 imes 10^{-2}$	1.49×10^2

* Values within the table represent the total iron and copper concentrations. However, for calculations an iron solubility of 10% and a copper solubility of 40% was assumed.

**ROS concentrations were calculated assuming an average percentage of PM2.5 of 30 % SOA and 0.005% quinones.

Location		Ambient mas	ss concentrations		Ambient mass	References		ELF production rat	tes
	PM2.5 (μg m ⁻³)	PQN (ng m ⁻³)	1,2-NQN (ng m ⁻³)	1,4-NQN (ng m ⁻³)	(%)		OH (pmol L ⁻¹ s ⁻¹)	H ₂ O ₂ (pmol L ⁻¹ s ⁻¹)	ROS (pmol L ⁻¹ s ⁻¹)
Umea, Sweden	7.8	Not measured	Not measured	0.03	N/A	144	2.32×10^{-17}	1.93 × 10 ⁻³	3.77×10^{-1}
Athens	35.6	0.071	0.157	0.26	1.37×10^{-3}	145	4.22×10^{-13}	2.61×10^{-1}	50.84
Mazar-e Sharif (Afghanistan)	69	Not measured	Not measured	0.027	N/A	144	$1.88\times10^{\text{-}17}$	$1.74\times10^{\text{-}3}$	3.39×10^{1}
Kabul (Afghanistan)	86	Not measured	Not measured	0.2	N/A	144	1.03×10^{-15}	1.29×10^{-2}	2.51
Atascadero (southern	~ 5	0.023	0.0127	0.0246	$\sim 5.63 \times 10^{-3}$	146	$3.27\times10^{\text{-15}}$	2.30×10^{-2}	4.48
Birmingham**	~ 15	4.6	3.2	1.7	~0.063	147	1.77×10^{-10}	5.36	1.04×10^{3}
Chiang Mai, Thailand	Not available	Not measured	Not measured	0.051	N/A	148	6.71×10^{-17}	3.29×10^{-3}	6.41×10^{-1}
Lake Elsinore (southern	~ 20	0.311	0.246	0.14	$\sim 3.49 \times 10^{-3}$	146	1.04×10^{-12}	$4.09 imes 10^{-1}$	79.75
California)** Norfolk, UK**	~ 5	0.058	0.024	0.012	$\sim 1.88 \times 10^{-3}$	149	$1.12\times10^{\text{-}14}$	4.26×10^{-2}	8.29
(southern	~ 25	0.57	0.06	0.23	$\sim 3.44 \times 10^{-3}$	150	1.57×10^{-13}	$1.59\times 10^{\text{-}1}$	31.04
Salvador, Brazil**	~ 40	< 0.20 - 7.39	< 0.05 - 2.4	< 0.05 - 3.17	~0.016	151	$\begin{array}{c} 6.22 \times 10^{-14} \text{-} \\ 1.31 \times 10^{-10} \end{array}$	0.10 - 4.61	$19.52 - 8.94 \times 10^2$
Tempe	Not available	0.427	Not measured	Identified	N/A	152	9.97×10^{-15}	4.01×10^{-2}	7.82

Supplementary Table 5: Measured quinone concentrations within PM2.5 in the literature and OH, H_2O_2 and ROS production rates calculated using the KM-SUB-ELF model.

*PM2.5 concentrations were estimated based on the type of location (i.e. rural, city, megacity) and based upon known values for similar locations within Supplementary Table 4.

Location	Ambient mass co	ncentrations	Ambient mass fractions		ELF production rates	
	Submicron aerosols or PM2.5 (μg m ⁻³)	SOA (µg m ⁻³)	(%)	OH (pmol L ⁻¹ s ⁻¹)	H ₂ O ₂ (pmol L ⁻¹ s ⁻¹)	ROS (pmol L ⁻¹ s ⁻¹)
Amazon ^B	1.8	0.34	18.9	0.14	0.05	0.18
Hyytiälä (Finland)	2	1.2	60	0.45	0.16	0.61
Storm Peak (CO, USA)	2.1	0.7	33.3	0.27	0.09	0.36
Jungfraujoch (Switzerland)	2.2	1.2	54.5	0.45	0.16	0.61
Duke Forest (NC, USA)	2.8	1.3	46.4	0.50	0.16	0.65
Chebogue Pt. (Canada)	2.9	1.5	51.7	0.56	0.18	0.74
Edinburgh (UK)	3	1.2	40	0.45	0.16	0.61
Mainz (Germany)	4.3	1.1	25.6	0.41	0.14	0.54
Boulder (CO, USA)	4.4	2.5	56.8	0.95	0.32	1.26
Manchester (UK, winter)	5.2	0.6	11.5	0.23	0.07	0.29
Chelmsford (UK)	5.3	1.8	34	0.68	0.36	1.04
Vancouver (Canada)	7	2.5	35.7	0.95	0.32	1.26
Okinawa (Japan)	7.9	1.7	21.5	0.63	0.20	0.83
Off New England Coast	8.5	4.9	57.6	1.85	0.61	2.45
Thompson Farm (NH, USA) Zurich	9.5	4.2	44.2	1.58	0.52	2.09
(Switzerland,	9.6	4.3	44.8	1.62	0.54	2.16
Cheiu (Korea)	10.7	4	37.4	1 51	0.50	2.00
Fukue (Japan)	11	36	32.7	1 35	0.45	1.80
New York City (USA, winter)	11.6	2.6	22.4	0.97	0.32	1.28
New York City (USA, summer)	12.2	4.8	39.3	1.80	0.61	2.41
Pinnacle Park (NY,	12.3	5.4	43.9	2.03	0.68	2.70

Supplementary Table 6: Measured SOA concentrations within submicron aerosols and PM2.5 in the literature and estimated OH H_2O_2 and ROS production rates.

USA)						
Houston (TX, USA)	12.8	2.7	21.1	1.01	0.34	1.35
Tokyo (Japan,	13.2	47	35.6	1 76	0.59	2 34
summer)	15.2	7.7	55.0	1.70	0.57	2.54
Manchester (UK,	14 3	3	21	1 13	0.38	1 51
summer)		-				
Pittsburgh (PA,	14.7	3.1	21.1	1.17	0.38	1.55
USA)						
Tokyo (Japan,	16.2	2.3	14.2	0.86	0.29	1.15
winter)			10 -	• • -	0.00	• • • •
Taunus (Germany)	16.3	7.9	48.5	2.97	0.99	3.96
Riverside (CA,	19.1	7	36.6	2.63	0.88	3.51
USA)	-,					
Zurich						
(Switzerland,	25.5	5.1	20	1.91	0.63	2.54
summer)						
Mexico City	26.8	Q 1	20.2	2.04	1.01	4.05
(Mexico)	20.8	0.1	50.2	5.04	1.01	4.03
Guangzhou ^A	69.1	12.5	18.1	4.68	1.55	6.23
Beijing (China)	79.9	16.6	20.8	6.23	2.07	8.30
Shanghai (China) ^A	90.7	11.1	12.2	4.14	1.37	5.51
Beijing (China) ^A	158.5	40.9	25.8	15.35	5.09	20.43
Xi'an ^A	345.1	53.5	15.5	20.07	6.66	26.73

Xi'an A345.153.515.520.076.6626.73*All concentrations are from Jimenez et al. 153(and references therein) with the exception of A = Huang et al. 154and B= Pöschl et al. 155

Supplementary Table 7: Fra	ctional change of ROS, OH and	O_2^- concentrations upon 50%	removal of redox-active com	ponents from PM2.5: ROS	concentration
after 50 % removal divided by	y initial ROS concentration prior	to 50 % removal.			

Location	Am	bient mass o	concentratio	ons	References		Initial ROS conc.			Conc. / In	itial Conc.		
	PM2.5 (μg m ⁻³)	Fe (ng m ⁻³)	Cu (ng m ⁻³)	SOA (μg m ⁻³)			(nmol L ⁻¹) *	50% Fe	50% Cu	50% SOA	50% quinones	50% Fe and Cu	50% Fe, Cu and SOA
Amazon	1.65	33	0.07	-	106	ROS:	12.9	0.591	0.966	0.979	0.994	0.552	0.530
						OH:	1.53×10^{-10}	0.857	0.993	0.598	0.999	0.853	0.453
						O_{2}^{-} :	2.06×10^{-3}	0.572	0.964	1.001	0.994	0.531	0.531
Edinburgh	7.1	27.6	1.39	-	37	ROS:	27.5	0.879	0.756	0.956	0.990	0.619	0.574
C						OH:	5.77×10^{-10}	0.949	0.979	0.542	0.999	0.937	0.481
						O_2 :	4.21×10^{-3}	0.867	0.731	1.001	0.990	0.580	0.581
Toronto	12.7	55	2.5	-	111	ROS:	44.0	0.880	0.789	0.953	0.990	0.647	0.599
						OH:	1.10×10^{-9}	0.919	0.972	0.568	0.999	0.903	0.473
						O_2 :	6.71×10^{-3}	0.862	0.766	1.001	0.989	0.605	0.606
Tokyo	16.2	-	-	2.3	153	ROS:	92.4	0.912	0.816	0.989	0.995	0.690	0.677
						OH:	1.69×10^{-9}	0.646	0.903	0.827	0.997	0.583	0.412
						O_2 :	1.57×10^{-2}	0.879	0.816	1.001	0.996	0.663	0.664
Budapest	20	430	18.4	-	116	ROS:	124.1	0.971	0.841	0.983	0.997	0.763	0.741
						OH:	4.31×10^{-9}	0.668	0.923	0.820	0.999	0.615	0.438
						O_2 :	2.23×10^{-2}	0.890	0.846	1.001	0.997	0.699	0.700
Hong Kong	29	140	5.7	-	122	ROS:	78.6	0.901	0.831	0.947	0.990	0.702	0.644
						OH:	2.81×10^{-9}	0.872	0.967	0.608	0.998	0.851	0.464
						O_2 :	1.20×10^{-2}	0.863	0.811	1.002	0.988	0.645	0.647
Milan	58.6	309	18	-	120	ROS:	132.5	0.983	0.830	0.947	0.990	0.774	0.711
						OH:	6.49×10^{-9}	0.833	0.959	0.653	0.998	0.806	0.464
						O_2 :	2.10×10^{-2}	0.910	0.820	1.003	0.989	0.697	0.699
Guangzhou	104.58	66	60	-	138	ROS:	234.5	1.009	0.753	0.928	0.990	0.755	0.680
						OH:	8.42×10^{-9}	0.961	0.986	0.537	1.000	0.952	0.491
						O_2 :	3.08×10^{-2}	0.995	0.745	1.003	0.989	0.734	0.736
Pune (India)	113.8	2090	339	-	140	ROS:	238.6	1.380	0.786	0.978	0.997	1.050	1.012
						OH:	2.81×10^{-8}	0.738	0.906	0.838	0.999	0.675	0.515
						O_2 :	5.23×10^{-2}	1.005	0.870	1.001	0.997	0.864	0.865
Beijing	182.2	1180	70	-	142	ROS:	189.3	1.211	0.848	0.935	0.987	0.988	0.892
						OH:	2.35×10^{-8}	0.820	0.959	0.693	0.997	0.791	0.489
						O_2 :	3.68×10^{-2}	0.953	0.867	1.003	0.989	0.783	0.787
New Delhi	276.9	1150	70	-	132	ROS:	206.9	1.230	0.856	0.906	0.982	1.020	0.882
						OH:	3.09×10^{-8}	0.859	0.970	0.645	0.997	0.839	0.490

						O_2 :	3.71×10^{-2}	0.955	0.867	1.004	0.982	0.787	0.793
Peat fires	640	4810	100	-	143	ROS:	148.6	1.350	0.934	0.921	0.983	1.208	1.046
(Indonesia)						OH:	8.04×10^{-8}	0.850	0.983	0.676	0.996	0.834	0.512
						O_2 :	4.36×10^{-2}	0.978	0.944	1.001	0.983	0.887	0.892

*Initial ROS concentrations were calculated assuming average PM2.5 percentages of 30 % SOA, 1.3 % iron, 0.06 % copper and 0.005% quinones unless concentrations were known.