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Abstract

Precision-recall curves are highly informative about the performance of binary classifiers, and the area under these curves is
a popular scalar performance measure for comparing different classifiers. However, for many applications class labels are
not provided with absolute certainty, but with some degree of confidence, often reflected by weights or soft labels assigned
to data points. Computing the area under the precision-recall curve requires interpolating between adjacent supporting
points, but previous interpolation schemes are not directly applicable to weighted data. Hence, even in cases where weights
were available, they had to be neglected for assessing classifiers using precision-recall curves. Here, we propose an
interpolation for precision-recall curves that can also be used for weighted data, and we derive conditions for classification
scores yielding the maximum and minimum area under the precision-recall curve. We investigate accordances and
differences of the proposed interpolation and previous ones, and we demonstrate that taking into account existing weights
of test data is important for the comparison of classifiers.
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Introduction

In both theoretical and applied machine learning, assessing the

performance of a classifier is of fundamental importance as a

crucial step in model selection and comparison [1]. During the last

decades, a plethora of performance measures has been proposed

and extensively used [2].

Several of these performance measures [3] are scalar values

computed from a single confusion matrix. However, as the

confusion matrix depends on some arbitrarily chosen classification

threshold, comparisons based on such performance measures are

often flawed unless at least one cell of the confusion matrix is fixed.

In addition, even in such cases where for instance the sensitivity is

fixed, the result of the comparison may be different for other

thresholds and sensitivities.

Varying the threshold leads to a series of confusion matrices. In

case of binary classification, this series of confusion matrices can be

visualized by curves, which can then be compared quantitatively

by the area under curve (AUC). One popular curve is the receiver

operating characteristics (ROC) curve, which plots the true

positive rate (sensitivity, recall) against the false positive rate (1 -

specificity) [4,5]. Despite its popularity, the ROC curve has some

drawbacks including the decoupling from the class skew [6].

For this reason, the precision-recall (PR) curve [7], which plots

the precision (positive predictive value) against the recall (true

positive rate) and is equivalent to the false discovery rate curve [8],

has gained increasing attention during the last years. Hence, the

area under the precision-recall curve (AUC-PR) and performance

measures approximating the AUC-PR including R-precision,

average precision, and 11-point interpolated average precision

also gained increasing attention [9,10]. These performance

measures have been widely used in diverse fields such as computer

vision [11], computational biology [12,13], information retrieval

[14], medicine [15], and natural language processing [16,17].

For computing the AUC-PR and AUC-ROC, the interpolation

between two adjacent points of the curve is based on a linear

interpolation between the underlying confusion matrices [7].

While for ROC curves this interpolation leads to a linear

interpolation of the curve, it is in most cases non-linear for PR

curves. The common method for computing PR curves and their

AUC-PR for unweighted data is a discrete interpolation along the

true positives [7].

In recent years, soft-labeling has gained increased attention, as

for many classification problems the labeled input data are

associated with some measure of confidence, generically denoted

as weights in the following. In this paper, we consider as weights

values reflecting soft class labels resulting from uncertainty of class

labels, some measured signal, or multiplicities of data points, since

the methods proposed in this paper are applicable to all these types

of weights. We provide a formal definition of the weights

considered in section.

While weights are widely used for learning classifiers from

training data, the assessment of classifier performance on test data

is often restricted to the hard-labeled or unweighted case.

However, the determination of a single confusion matrix for a

given threshold is straight-forward, where the entries of the

confusion matrix are accumulated weights. Hence, it is also

straight-forward to compute scalar performance measures as for
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instance precision and recall for the weighted case. Consequently,

the supporting points of ROC and PR curves can also be

computed for weighted data, ROC curves and AUC-ROC can be

derived as for the unweighted case due to the linear interpolation.

Aiming at computing the AUC-PR for weighted data, it is

unclear how to interpolate between such real-valued confusion

matrices. For this reason, previous publications considering

weighted test data resorted to approximations of the AUC-PR.

Examples for such approaches are average precision [18] or an

approximation of PR curves for uncertain class labels specific to

alternative labelings of image boundaries by several individuals

[19]. Here, we propose a continuous interpolation between the

points of the PR curve, and we use a piecewise-defined function

for computing the AUC-PR by a piecewise explicit integration

along the recall values. This approach allows for computing AUC-

PR for unweighted as well as weighted data.

In a case study, we investigate differences between the AUC-PR

computed using the continuous and the discrete interpolation.

Furthermore, we investigate if taking into account given weights

when computing AUC-PR may lead to different conclusions when

comparing classifiers or when doing model selection based on this

performance measure.

Methods

In this section, we first formally define weights and then revisit

confusion matrices. In the remainder of this section, we revisit

discrete interpolations for PR curves, propose a generalization

yielding a continuous interpolation, and finally show how this

interpolation can be applied to weighted data.

Weights Definition
We consider the case of binary classification and denote the two

classes by foreground (fg) and background (bg). We further consider a

sample of data points x1,x2, . . . ,xN from these two classes. In case

of unweighted data, each data point is assigned to exactly one

class, either to the foreground class or to the background class.

In this paper, we additionally consider weighted data, where the

following types of weights may be assigned to data point xn:

Soft class labels pfg,n, pbg,n[½0,1�, pfg,nzpbg,n~1 indicating

uncertainty in the class labels, where pfg,n and pbg,n reflect the

probability that data point xn belongs to the foreground class

and the background class, respectively [18–20].

Values rfg,n,rbg,n [ R, rfg,n, rbg,n§0, which reflect the strength

of some measure of confidence for data point xn in the two

classes. Such measures of confidence are either some

experimental measurement or are assigned to the data points

by expert knowledge. For instance, the values rfg,n, rbg,n could

be the expression values of gene xn in cancerous (fg) and

normal (bg) tissue [21].

Multiplicities mfg,n, mbg,n [ N of data point xn, where a data

point (or different data points indistinguishable by the features

considered) occurs with certain frequencies, including 0, in one

or both of the classes. For instance, the values mfg,n,mbg,n could

be the number of occurrences of a short sequence

xn [ fA,C,G,TgL
in foreground and background data sets

with N&4L data points [22,23].

Since the methods presented in the remainder of this paper are

applicable to all these types of weights, we generically refer to such

soft labels pfg,n, pbg,n, measures of confidence rfg,n, rbg,n, and

multiplicities mfg,n, mbg,n as weights, and we denote the weight of

data point xn for the foreground class by wfg,n and for the

background class by wbg,n. Integrating the above definitions, we

derive that each data point has a foreground and background

weight wfg,n and wbg,n, respectively, which are non-negative but

may be equal to zero if data point xn does not occur in foreground

or background. The unweighted binary classification problem is a

special case of this schema, where wfg,n and wbg,n are either 0 or 1,

i.e., wfg,n [ f0,1g and wfg,nzwbg,n~1.

Confusion Matrix for Weighted and Unweighted Data
In Table 1, we present the schema of a confusion matrix for a

binary classification problem. The entries of the confusion matrix

are the numbers of true positives TP, false positives FP, true

negatives TN, and false negatives FN. In addition, the table

contains the number of foreground data points Rfg, the number of

background data points Rbg, the number of foreground prediction

Pfg, the number of background prediction Pbg, and the number of

all data points N.

Based on the classification score sn for data point xn and a

classification threshold t, the entries can be computed as defined in

Table 1. These numbers are integer values for unweighted data

(wfg,n, wbg,n [ f0,1g), while they are non-negative real values for

weighted data (Table 2).

Varying the classification threshold leads to a series of confusion

matrices and corresponding performance measures that can be

visualized by ROC and PR curves. However, previous interpo-

lations for computing PR curves from a number of supporting

points [7] are not applicable to weighted data as defined in the

previous sub-section. In the following, we propose an alternative

interpolation for computing PR curves, which is directly applicable

to all types of weights considered.

Discrete Interpolation of Precision-recall Curves for
Unweighted Data

For unweighted data, Davis and Goadrich notice that it is

usually not reasonable to use linear interpolation for the PR curve

if two adjacent points of the PR curve differ by more than one true

positive [7]. For this reason, they propose to use a piecewise linear

interpolation along the true positives between the confusion

matrices underlying these points. For reasons of simplicity, we

follow Davis and Goadrich [7] and focus on the interpolation

between two points A and B obtained from different classification

thresholds with the corresponding numbers of true and false

positives TPA,FPAð Þ and TPB,FPBð Þ where TPAƒTPB and,

hence, FPAƒFPB.

The interpolation introduces intermediate points, which make

linear interpolation more reasonable than the linear interpolation

between the points A and B. The interpolation between the

original points A and B is described by

Vx [ ½0, TPB{TPA� :
TPAzx

Rfg

,
TPAzx

TPAzxzFPAzh:x

� �
ð1Þ

for integer values of x and with h~
FPB{FPA
TPB{TPA

. Using these

intermediate points, the trapezoidal rule is used for computing the

AUC-PR [7]. In the remainder of this manuscript, we denote this

interpolation by discrete-TP.

One alternative to a stepwise interpolation along the true

positives is a stepwise interpolation along the false positives,

yielding

AUCPR for Weighted and Unweighted Data
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Vy [ ½0, FPB{FPA� :

TPAzh{1:y

Rfg

,
TPAzh{1:y

TPAzh{1:yzFPAzy

� �
:

ð2Þ

In analogy to the method of [7], the trapezoidal rule could be

used for computing the AUC-PR. In the remainder of this

manuscript, we denote this interpolation by discrete-FP.

Continuous Interpolation of Precision-recall Curves for
Weighted and Unweighted Data

Here, we propose a piecewise-defined function allowing to

compute the AUC-PR by a sum of integrals. In general, we can

compute the AUC-PR by parameterizing the PR curve by

AUC~

ð1

0

p(r)dr, ð3Þ

where p and r denote precision and recall, respectively [24].

Brodersen et al. use this parameterization in an a-binormal model

[24], which requires the assumption that the distribution of scores

in both classes follows a normal distribution. In contrast, we

propose a piecewise definition of the curve that requires no

additional assumptions, which is closely related to the definition

published by Boyd et al. [25] while this manuscript was in

preparation.

We use a piecewise definition for computing the PR curve and

the area under this curve. Specifically, we compute

AUC~
XM
m~2

AUCm~
XM
m~2

ðzm

zm{1

fm(r)dr, ð4Þ

where M is the number of sorted intermediate recall values zm,

and fm(r) is one piece of the piecewise-defined function. Based on

equation (1) and the substitution r : ~
TPAzx

Rfg
, we propose to

compute the AUC between A and B by

AUCm~

ð TPB
Rfg

TPA
Rfg

r:Rfg

r:RfgzFPAzh(r:Rfg{TPA)
dr: ð5Þ

Table 1. Binary confusion matrix.

real label

fg bg S

predicted label fg
TP~

PN
n~1

d(sn§t)wfg,n FP~
PN
n~1

d(sn§t)wbg,n

Pfg

bg
FN~

PN
n~1

d(snvt)wfg,n TN~
PN
n~1

d(snvt)wbg,n

Pbg

S Rfg Rbg N

The confusion matrix can be computed for weighted and unweighted data. For unweighted data each data point contributes with a weight of one, whereas for
weighted data each data point contributes with its specific weight for the given class.
doi:10.1371/journal.pone.0092209.t001

Table 2. Classification for unweighted and weighted data.

(a) Classification scores, labels and weights

classification score class wfg wbg

2.54 fg 0.9 0.1

2.37 fg 0.92 0.08

1.56 bg 0.22 0.78

1.35 bg 0.07 0.93

0.06 fg 0.67 0.33

21.08 bg 0.09 0.91

(b) Confusion matrices for unweighted and weighted data

unweighted weighted

fg bg fg bg

fg TP = 2 FP = 1 TP = 2.04 FP = 0.96

bg FN = 1 TN = 2 FN = 0.83 TN = 2.17

The entries of a confusion matrix have been calculated for a classification threshold of 1.5. In case of unweighted data, the class label is fg if wfg§wbg and otherwise bg.
doi:10.1371/journal.pone.0092209.t002
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This integral can be easily solved by substituting a~1zh and

b~
FPA{h:TPA

Rfg
, and subsequently rewriting the integrand of

equation (5) as fm(rja,b) : ~
r

a:rzb
, yielding

AUCm~

ðTPB
Rfg

TPA
Rfg

fm(rja,b)dr~
1

a
r{

b

a
: ln (a:rzb)

� �����
TPB
Rfg

TPA
Rfg

: ð6Þ

Equation (6) states how to compute the AUC between the two

points A and B. For computing the complete AUC-PR, we sum up

the contributions between all adjacent points of the curve. In

Table 3 (Algorithm 1), we provide pseudo code for computing the

complete AUC-PR.

The goal of this manuscript is the computation of PR curves and

AUC-PR values for weighted data as introduced in section. In this

case, the entries of the confusion matrix are accumulated weights

of the corresponding data points (cf. Table 1) yielding a real-

valued confusion matrix (cf. Table 2).

Discrete interpolations depend on the step size of the

interpolation. In case of unweighted data, a step size of one is

reasonable, because it corresponds to one data point. However, it

is not obvious how to choose a reasonable step size for weighted

data.

In contrast to discrete interpolations, the continuous interpola-

tion based on equation (6) can be directly applied to real-valued

confusion matrices. When we replace the integration limits of

equation (6) by the corresponding entries of the real-valued

confusion matrix, i.e., the ratios of the sums of the weights of true

positive and all foreground data points, we obtain a definition of

the AUC-PR for weighted data. Hence, the continuous interpo-

lation allows the computation of the AUC-PR for weighted data.

Characteristics of AUC-PR
Three characteristics are central for each performance measure:

its maximum, its average for a random classifier, and its minimum.

In the Text S1, we prove the following Theorem.

Theorem 1 Let D be a weighted data set of N data points and

(wfg,n,wbg,n) be the weights for data point xn. Furthermore, let cn be the

classification score of data point xn assigned by a classifier, and let s be the

order of classification scores, i.e.,

Vi [ ½1,N{1� : csi
ƒcsiz1

:

1. The maximal AUC-PR is obtained iff the weights of the data
points are monotonically increasing with respect to the sorting
s, i.e.,

Vi [ ½1,N{1� :
wfg,si

wfg,si
zwbg,si

ƒ

wfg,siz1

wfg,siz1
zwbg,siz1

:

2. The minimal AUC-PR is obtained iff the weights of the data
points are monotonically decreasing with respect to the sorting
s, i.e.,

Vi [ ½1,N{1� :
wfg,si

wfg,si
zwbg,si

§

wfg,siz1

wfg,siz1
zwbg,siz1

:

Table 3. Algorithm 1: Pseudo code for computing the AUC-PR based on the continuous interpolation.

determine A with TPA = Rfg

auc = 0

while TPA . 0 do

B = A

determine new A

If TPA , TPB then

determine a, b, h

pB = TPB/ Rfg

pA = TPA/ Rfg

If b ? 0 then

auc + = (pB – pA – b/ a?(log(a?pB+b) – log(a?pA + b)))/a

else

auc + = (pB – pA)/a

end

end

end

Initially, we choose the classification threshold such that the number of true positives is equal to the total number of positives. Then we iterate as long as the number of
true positives – and, hence, recall – is greater than 0. We determine the new point A by choosing the next existing score as classification threshold. Unless this threshold
leads to an identical number of true positives, we compute the values of a, b, and h as defined by equation (6), and set the borders of the integration. We use these
values to compute the AUC between the current points A and B, and proceed with the while-loop. After termination of the loop, auc holds the AUC-PR.
doi:10.1371/journal.pone.0092209.t003
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Based on the minimum and the maximum, normalized

performance measures as for instance the normalized AUC-PR

can be computed [26]. In the following, we study these three

characteristics of the AUC-PR based on continuous interpolation

for unweighted and weighted test data sets.

First, we consider the optimal classifier, i.e., the classifier with

the maximal AUC-PR. For unweighted test data, the optimal

classifier always yields an AUC-PR of 1. Hence, we focus on

weighted data sets in the following. We reach a recall of 1 only if

all data points are assigned to the foreground. In this case, the

precision is computed as sum of all foreground weights divided by

the sum of all foreground weights wfg,n and corresponding

background weights wbg,n. If at least one data point has a

foreground and background weight greater than 0, i.e., if wfg,nw0

and wbg,nw0 then the sum of the corresponding wbg,n is greater

than 0, and a precision of 1 can not be gained. For this reason, it is

impossible to reach a precision of 1 for a recall of 1 and, hence, an

AUC-PR of 1 for weighted data.

In Figure 1, the blue PR curves yield the maximal AUC-PR

according to Theorem 1. In Figure 1(a), the AUC-PR of the

optimal classifier is equal to 1. In contrast, Figure 1(b) clearly

indicates that the point (1,1) cannot be reached leading to an

AUC-PR smaller than 1. Accordingly, the maximal value of AUC-

PR depends on the weights and we cannot provide a closed-form

solution of this maximal value.

Second, we consider the worst classifier, i.e., the classifier with

the minimal AUC-PR. Such a classifier always decides for the class

with the lower confidence. In Figure 1, the red PR curves yield the

minimal AUC-PR according to Theorem 1. Trivially, the minimal

AUC-PR is larger than 0 in both cases. The worst possible

classifier initially yields a very low precision, since the first data

points classified as foreground always have a greater background

weight wbg,n than foreground weight wfg,n. With increasing recall,

the precision increases as well, because additional data points with

increasing foreground weight and, hence, decreasing background

weight are added to the foreground predictions. Finally, the worst

possible classifier reaches the common point of all classifiers with a

recall of 1 and a precision of
Rfg

N
, i.e., the sum of all foreground

weights wfg,n divided by the sum of all foreground and all

background weights.

Finally, we consider the AUC-PR for random guessing. Since

random guessing can not be represented by a single random

classifier, we investigate an ensemble of 1,000 random classifiers.

In Figure 1, we illustrate the corresponding curves in gray. To give

a better overview, we summarize them by green boxplots. By

inspecting the characteristics of these curves, we find in both cases

that the median of the boxplots is approximately the class ratio
Rfg

N
.

Hence for weighted data, in analogy to the case of unweighted

data, a random classifier yields an AUC-PR of approximately the

class ratio.

Results and Discussion

In this section, we investigate (i) theoretical and practical

differences between the discrete and continuous interpolations and

(ii) whether the extension of PR and ROC curves to weighted data

may possibly allow a more detailed classifier assessment.

Theoretical Comparison of Discrete and Continuous
Interpolations of the Precision-recall Curve

First, we investigate in which situations the discrete and the

continuous interpolations yield identical segments of the curve

and, hence, identical contributions to the AUC. If a segment of the

continuous interpolation is linear, it is identical to the discrete

interpolations. We obtain linear segments in two situations. On the

one hand, we obtain a vertical linear segment if TPA~TPB,

which means that the number of true positives and, hence, the

recall is equal for points A and B. On the other hand, we obtain a

horizontal segment if the function fm(rja,b) is constant. We obtain

a constant function if b~0, which is the case if the ratio of true

positives and false positives is identical at both points (TPB

FPB
~ TPA

FPA
)

or, equivalently, if the ratio of the true positives at the two points is

equal to the ratio of the false positives (TPA

TPB
~ FPA

FPB
).

Second, we investigate situations that result in a large deviation

between discrete and continuous interpolation. Such situations

occur if the discrete interpolations span a large range with few

intermediate points. In Figure 2, we show examples where the

Figure 1. Precision recall curves for data set with 100 data points and class ratio 1 to 4. The blue and the red curve indicate estimators of
the best and the worst curve, respectively. The gray curves represent 1,000 PR curves based on a random scored-based classifications, which are also
summarized by the green boxplots. The pink dashed line indicates the level of the class ratio

Rfg

N
.

doi:10.1371/journal.pone.0092209.g001
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continuous interpolation results in a substantially larger or smaller

AUC-PR than one of the discrete interpolations.

In Figure 2(a), we consider cases exhibiting large deviations

between the discrete interpolation discrete-TP and the continuous

interpolation. For both cases, the points A and B differ by only 5
true positives, which leads to a coarse interpolation with a lower

number of intermediate points for the interpolation along the true

positives. Since the differences of false positives are substantially

greater (295) than the number of true positives (5) for both plots,

the interpolation discrete-FP is much more fine grained. In both

cases, the continuous interpolation plotted as a red curve contains

all intermediate points of both interpolations, and the AUC-PR is

almost identical to that of the interpolation discrete-FP.

In Figure 2(b), we consider the opposite case exhibiting large

deviations between the discrete interpolation discrete-FP and the

continuous interpolation. Here, the difference of true positives

between the points A and B is large, whereas the difference of false

positives is small. For this reason, the interpolation discrete-TP

becomes fine grained, whereas the interpolation discrete-FP uses

only a low number of intermediate points. Again, the continuous

interpolation includes all intermediate points of both discrete

interpolations, and the AUC-PR is almost identical to that of the

interpolation discrete-TP.

In summary, we find that the continuous interpolation fits the

discrete interpolation with more intermediate points in all four

cases.

Figure 2. Differences between discrete and the continuous interpolations of the PR curve. The figure shows for each discrete
interpolation (along true positives or along false positives) one example of a larger and smaller AUC between two supporting points.
doi:10.1371/journal.pone.0092209.g002

AUCPR for Weighted and Unweighted Data
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Practical Comparison of Discrete and Continuous
Interpolations of the Precision-recall Curve

In this section, we compare the interpolations for complete

curves. To this end, we sample classification scores at a fixed class

ratio of 1 to 10 for foreground versus background. Analyzing the

AUC-PR for the interpolation discrete- TP and the continuous

interpolation, we vary the size of the foreground data set as well as

the uniqueness of the classification scores. To achieve the latter, we

sample the classification scores from different numbers of bins.

Trying to obtain almost equally distributed AUC-PRs, we

sample the classification scores from a normal distribution with

mean normally distributed around 1.64 for the foreground and

fixed mean 0 for the background. (The value 1.64 is based on the

class ratio of 1 to 10 and the quantile function,

W{1(1{0:5: 1
10

)&1:64.) In each case we use a standard deviation

of 1. In Figure 3, we present the results of this simulation repeating

the above-described procedure 104 times.

At a first glance, we observe that the difference between the two

interpolations can be up to 0.03. We find this difference for the

smallest data sets comprising 10 and 100 test data points for

foreground and background, respectively, and for the least number

of unique classification scores with at most ten different values.

However, 95% of the absolute differences are smaller than

approximately 0.01.

In addition, increasing the size of the data sets or the number of

bins, we find that the difference between both interpolations

reduces drastically to almost 0. Both findings can be explained by a

greater number of supporting and intermediate points and, hence,

a more fine-grained coverage along the recall leading to

converging AUC-PR values for continuous and discrete-TP

interpolation. Hence, the discrete-TP and the continuous inter-

polation are similarly good approximations. This means that

conclusions drawn from the interpolation discrete-TP for un-

weighted data are usually also valid for the proposed continuous

interpolation and vice versa. However, the continuous interpola-

tion allows to directly compute the PR curve and the AUC-PR for

weighted data.

Comparison of Weighted and Unweighted Test Data
In this section, we illustrate the main benefit of the proposed

continuous interpolation, which is its applicability to weighted

data. More specifically, we show in a simulation study that

classifiers that yield an indistinguishable performance using

unweighted test data may indeed achieve a considerably different

performance using weighted test data. Inspecting the relationship

of the classification scores of these classifiers to the given weights,

we show that the ranking of classifiers using ROC and PR curves

for weighted test data is reasonable.

To this end, we generate simulated data as follows: We first

sample weights (i.e., wfg,n [½0,1�, wbg,n~1{wfg,n) from a mixture

of beta distributions for 10 000 hypothetical data points xn as

presented in Figure 4(a). In addition to these weights, we obtain

hard class labels by assigning all data points with wfg,nw0:5 to the

foreground class and all data points with wfg,nƒ0:5 to the

background class, yielding a class ratio of approximately 1:9.

We further sample 10 000 classification scores, one for each

data point assigned to the positive class and one for each data

point assigned to the negative class according to the unweighted

case as shown in Figure 4(b). For computing ROC and PR curves

for unweighted test data (Figure 4(c)), no additional information is

needed. In particular, the values of wfg,n and wbg,n are neglected

given the hard-labeling into foreground and background data

points.

We generate three different hypothetical classifiers by different

assignments of classification scores to the data points within each

class as visualized in Figure 4(d). We conduct this assignment

separately for the data points of each class (according to the

unweighted case) to yield an identical classification performance

Figure 3. Differences of AUC-PR between the interpolations for varying size of the foreground data set. Panel (a) depicts the results for
10 bins equivalent to at most 10 different classification scores, whereas panel (b) depicts the results for 1,000 bins.
doi:10.1371/journal.pone.0092209.g003
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for all three classifiers when using ROC and PR curves for

unweighted test data.

We create a good classifier by assigning classification scores to the

data points of each class in the order given by the foreground

weights wfg,n, i.e., the data point with the smallest wfg,n also obtains

the smallest classification score, and the data point with the largest

wfg,n obtains the largest classification score. Notably, this is not the

optimal classifier according to Theorem 1, because the classifica-

tion scores in both classes are sorted separately.

We create a permuted classifier by assigning classification scores to

the data points of each class in random order.

We further create a bad classifier by assigning classification

scores to the data points of each class in the reverse order

compared to the foreground weights wfg,n, i.e., the data point with

Figure 4. PR and ROC curves and respective AUC values for weighted and unweighted data. Panel (a) show a histogram of foreground
weights (wfg,n) for all data points. The dashed line indicates the threshold used to separate foreground and background data points in the
unweighted case. Panel (b) presents a histogram of classification scores. Within the bars of the histogram, we visualize the number of data points
from the foreground (green) and background (red) class according to the unweighted case. Panel (c) presents classification performance using
unweighted data computed from the classification scores presented in panel (b). Panel (d) visualizes the relationship between classification scores
and weights for the hypothetical good, permuted, and bad classifiers. All three orderings of classification scores share the same underlying
distribution as shown in panel (b). Panel (e) show the clearly distinguishable classification performance of the three classifiers as measured by ROC
and PR curves using weighted data. The corresponding AUC values are listed in panel (f).
doi:10.1371/journal.pone.0092209.g004
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the smallest wfg,n obtains the largest classification score, and the

data point with the largest wfg,n obtains the smallest classification

score. Again, this is not the worst possible classifier according to

Theorem 1, because the classification scores in both classes are

sorted separately. However, the good and the bad classifier yield

the maximal and minimal AUC-PR under this additional

constraint, respectively.

Due to this setup, the distribution of classification scores within

each class according to the unweighted case is identical and,

hence, all three classifiers obtain identical ROC and PR curves for

unweighted data depicted in Figure 4(c).

However, if we consider the relationship of classification scores

and weights as shown in Figure 4(d), we might intuitively favor the

good classifier over the permuted and even more over the bad

classifier. This intuitive ranking is reflected by the ROC and PR

curves that are computed using weighted test data (Figure 4(e)),

where the curves of the good classifier consistently lie above the

curves of the permuted classifier and the curves of the permuted

classifier consistently lie above those of the bad classifier.

A similar picture emerges for the areas under the ROC and PR

curves as listed in Figure 4(f). Using unweighted test data, all three

classifiers yield an identical AUC-ROC and an identical AUC-PR

as given in the first line. Using weighted test data, however, the

three classifiers obtain AUC-ROC and AUC-PR values that

correspond to the intuitive ranking of classifiers.

Hence, we may conclude that the applicability of PR curves to

weighted test data, which has been achieved by the interpolation

of equation (6), adds a new dimension to the assessment of

classifiers. This additional dimension allows us to distinguish

classifiers by their performance that would be indistinguishable by

traditional PR curves neglecting existing weights for test data.

This example also illustrates that the transition from unweighted

to weighted data for computing ROC and PR curves changes the

objective measured by these curves. While traditional ROC and

PR curves using unweighted test data only consider the

distribution of classification scores within the two classes, ROC

and PR curves using weighted test data additionally take into

account the confidence of the labeling. Hence, these curves

measure the ability of a classifier to reconstruct the ordering of

data points according to the weighted wfg,n, which makes them

suitable performance measures for regression problems as well.

Nonetheless, ROC and PR curves using weighted test data do not

make assumptions about a functional relationship between

classification scores and weights as it would be the case, for

instance, using Pearson correlation as performance measure.

Practical Application
In this section, we evaluate the efficacy of AUC-PR for weighted

data in practical applications. To this end, we compare the

rankings of classifiers based on their AUC-PR for weighted and

unweighted data in in two real-world examples.

In Figure 5, we present a reassessment of classifiers from an

information retrieval task [18]. The authors kindly provided the

data weights and classifier scores (query 29), and we use these

scores to re-evaluate the classifiers in terms of AUC-PR for

weighted and unweighted test data. Interestingly, we find different

rankings of the six classifiers based on weighted and unweighted

test data. For unweighted test data SSYN-e and SUM-u perform

comparably, whereas for weighted test data SSYN-e clearly

outperforms SUM-u. The classifiers SSYN-u and Bool-u perform

moderately for unweighted data, but perform worst for weighted

test data. In contrast, the classifier Bool-e, which performs worst

for unweighted data, yields a performance similar to that of SUM-

u for weighted data, which clearly outperforms Bool-e for

unweighted test data. These different rankings of the classifiers

show that neglecting weights of test data might lead to different

and possibly erroneous conclusions.

In a second case study, we perform a reassessment of classifiers

from bioinformatics [27] evaluating the performance of classifiers

for 66 protein binding microarray (PBM) data sets. PBMs measure

the in-vitro binding affinity of transcription factors to DNA

sequences using microarrays in an unbiased manner, where

double-stranded probe sequences are chosen such that they

contain all k-mers up to a given k with identical frequency. The

goal of that study was to assess different classifiers for their ability

to distinguish bound from unbound probes, and for the

correspondence of their classification scores (e.g., likelihood ratios)

to measured microarray intensity values.

In the original publication [27], the authors introduce an

unweighted labeling based on the intensity values for all probes

sequences in each of the 66 experiments. For each individual

experiment, they define the threshold separating foreground and

background data points as the mean intensity values plus four

times the standard deviation of intensity values, but requiring at

least 50 foreground data points. Based on this labeling, they

compare classifiers for instance based on the mean AUC-ROC

over all experiments.

Figure 5. Comparison of ranking classifiers by AUC-PR using unweighted and weighted test data for query 29 from [18]. The AUC-PR
for unweighted test data is depicted in black, whereas the AUC-PR for weighted test data is depicted in red.
doi:10.1371/journal.pone.0092209.g005
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In Figure 6, we compare the mean AUC-ROC, the mean

AUC-PR, and the corresponding rankings for unweighted and

weighted test data. In the unweighted case, we take the class labels

suggested by Weirauch et al. [27]. In the weighted case, we use a

logistic function with slope 1 that is shifted along the intensity

values such that a foreground weight of 0.5 is obtained at the

threshold of the unweighted case (cf. Figure 7(b)).

We find that the rankings for both mean AUC-ROC and mean

AUC-PR change considerably going from unweighted to weighted

test data. Focusing on the mean AUC-PR, we find that the ranking

obtained by AUC-PR using weighted test data are in better

accordance to the original ranking of Weirauch et al. than the

ranking using unweighted test data.

Three classifiers with exceptionally different rankings are A, D,

and E, which obtain ranks 1, 3, and 7 considering unweighted test

data, and ranks 9, 1, and 2 using weighted test data, respectively.

Hence, we further investigate AUC-PR and PR-curves for

classifiers A, D, and E for one exemplary data set (data set 11)

in Figure 7. In Figure 7(a), we plot the predicted log-intensities of

each of the three classifiers against the measured log-intensities for

all probe sequences considered in this PBM experiment. Intui-

tively, we might favour classifiers D and E over classifier A,

because their predictions appear to be in better accordance to the

measured intensities.

In Figure 7(b), we present a histogram of the measured log-

intensities for this data set. In addition, we illustrate the border

between the foreground and the background for the unweighted

case by a red line, and the foreground weights (wfg,n) obtained by

the logistic function as blue line. As explained above, we obtain

wfg,n~0:5 at the class border.

The PR curves of the three classifiers using weighted and

unweighted test data are shown in Figure 7(c). In the unweighted

case, classifier A yields a greater precision than classifier D, and

classifier D yields a greater precision than classifier E for a wide

range of recall values. This ranking is preserved in the weighted

case only for a small range of low recall values, whereas for larger

recall values, the greater precision is gained by classifiers D and E.

The reason for this observation is that in the weighted case almost

all data points (wfg,nw0) need to be assigned to the foreground by

a classifier to yield a precision of 1. Preferably, these data points

should receive classification scores with the same ordering as these

Figure 6. Mean results for AUC-ROC and AUC-PR on PBM data sets using unweighted or weighted test data. The team name and the
ranking is depicted on the abscissa, while the mean result for AUC-ROC and AUC-PR is depicted on the ordinate. Teams are displayed in the order of
the original ranking of Weirauch et al. [27].
doi:10.1371/journal.pone.0092209.g006
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weights (c.f. section), which is neglected using hard-labeling based

on some threshold.

Thresholds or other rules for labeling data points are often

chosen arbitrarily, and mildly different choices could often be

justified no worse than the selected one. For this reason, we

consider the stability of performance measures to mild changes of

the class border an important property.

Hence, we finally investigate the stability of AUC-PR for

unweighted and weighted test data using different thresholds for

the labeling. To this end, we compute the mean AUC-PR using a

threshold of mean intensity plus one standard deviation, and

compare the results with those for the above-mentioned threshold

of mean intensity plus four times standard deviation for all 11

classifiers considered in Figure 6.

We measure the stability of the assessments by the Pearson

correlation of the AUC-PR values obtained for each of the 11

teams and each of the 66 data sets using either of the two

thresholds. We present the results of this analysis in Figure 8. We

find that AUC-PR for unweighted data yields a correlation

coefficient of 0:454 between the AUC-PR values for these two

thresholds considering all 11 classifiers and all 66 data sets. In

contrast, AUC-PR for weighted data yields a correlation

coefficient of 0:917. We obtain similar results using Spearman

rank correlation (unweighted: 0.447; weighted: 0.967 ).

This indicates that the AUC-PR for appropriately weighted

data is more stable leading to less changes in the ranking than the

mean AUC-PR for unweighted data. Hence, the choice of the

classification threshold, which is somewhat arbitrary, is down-

weighted.

Conclusions

PR curves and the areas under these curves have gained

increasing importance in machine learning during the last years.

Computing the area under the precision recall curve depends on

the interpolation between adjacent points for given confusion

matrices.

Figure 7. Comparison of PR curves using unweighted and weighted test data for one exemplary data set (11) of [27]. In panel (a), we
plot the predicted log-intensity values of classifiers A, D, and E against the measured log-intensity values. Panel (b) visualizes the class border in the
unweighted case (red line) and the weights of the foreground class (wfg,n) in the weighted case. In panel (c), we show the PR curves of the three
classifiers using unweighted (left) and weighted (right) test data.
doi:10.1371/journal.pone.0092209.g007
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Here, we introduced a continuous interpolation for computing

the area under the precision recall curve. We compared discrete

and continuous interpolations theoretically and practically and

show the interpolations are in agreement using unweighted data.

The continuous interpolation can also be used for weighted data

sets. The optimal AUC-PR is not necessarily equal to 1 for

weighted, so we derived conditions for gaining the maximum and

minimum AUC-PR.

Based on artificial and real-world data sets, we found that the

ranking of classifiers based on their AUC-PR might differ severely

using unweighted and weighted test data sets. We also found that

AUC-PR using weighted test data is less sensitive to small changes

in the class border than AUC-PR using hard labels.

We implemented Table 3 (Algorithm 1) in the open-source Java

library Jstacs [28] and make it publicly available with version 2.1.

We provide a command line application for computing PR curves

and AUC-PR from weighted and unweighted data at http://www.

jstacs.de/index.php/AUC-PR.

Supporting Information
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(PDF)
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