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Abstract: This article presents the results of research on a new method of spatial analysis of walls and
buildings moisture. Due to the fact that destructive methods are not suitable for historical buildings
of great architectural significance, a non-destructive method based on electrical tomography has been
adopted. A hybrid tomograph with special sensors was developed for the measurements. This device
enables the acquisition of data, which are then reconstructed by appropriately developed methods
enabling spatial analysis of wet buildings. Special electrodes that ensure good contact with the
surface of porous building materials such as bricks and cement were introduced. During the research,
a group of algorithms enabling supervised machine learning was analyzed. They have been used in
the process of converting input electrical values into conductance depicted by the output image pixels.
The conductance values of individual pixels of the output vector made it possible to obtain images of
the interior of building walls as both flat intersections (2D) and spatial (3D) images. The presented
group of algorithms has a high application value. The main advantages of the new methods are:
high accuracy of imaging, low costs, high processing speed, ease of application to walls of various
thickness and irregular surface. By comparing the results of tomographic reconstructions, the most
efficient algorithms were identified.

Keywords: inverse problem; electrical tomography; moisture inspection; dampness analysis; machine
learning; nondestructive evaluation

1. Introduction

This article presents the results of research on the development of an effective and non-invasive
method for the detection of moisture walls and historical buildings. Humidity is one of the basic,
and at the same time undesirable, physical characteristics of building materials [1]. Detection of water
inside the walls of buildings and structures made of bricks or lightweight concrete and brick blocks is
one of the most frequently performed tests.

All buildings are exposed to various factors that erode the material of which they are made. Such
factors include water [2]. Many buildings have damp walls and foundations [3]. This is evidenced by
often appearing molds and fungi, dark spots, and detachment of plasters or paint coatings. This is
especially factual for older buildings. One of many reasons for this is the technology and materials that
were formerly used in construction—for example, lack of insulation. Moisture in the walls significantly
reduces their durability. The bricks and mortar that contain water are significantly weakened and
are less resistant to compression, which is particularly true for lime mortar. This results in both
deteriorations of the building’s operational conditions and safety. In addition, the water accumulated
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in the walls significantly worsens the thermal insulation properties of the walls and contributes to
their gradual erosion. Another important problem related to moisture in walls is their harmful impact
on inhabitant’s health. Microclimate, which arises in rooms and walls with high humidity, often causes
the formation of mold fungi that can cause respiratory diseases and intoxication.

It can be argued that the main factor causing the destruction of the walls is just moisture.
In combination with daily temperature changes, moisture has the greatest impact on the overall
strength and durability of building structures. The water in the outer wall has a negative effect on the
walls regardless of the state of aggregation, i.e., in solid form (ice, snow), as a liquid (rain) and gas
(water vapor). Most structural defects, e.g., brick movements, cracking, molds, fungi, and chemical
reaction, are initiated and compounded by the presence of moisture.

In order to reduce the risks associated with excessive humidity, moisture evaluations are necessary
for buildings [4]. Such tests can be helpful in determining the impact of rainwater and groundwater,
leakage, and moisture from water supply and sewage systems as well as condensation of water vapor.

Permeation of moisture in the walls of old buildings that are in direct contact with the soil due to
the lack of a horizontal or vertical barrier separating the walls from water in the soil leads to migration
of moisture (Figure 1). This leads to the migration of dissolved in water salt, which is responsible for
many construction problems. Building materials, both natural and man-made (e.g., the brick or concrete),
are porous. Moisture from bricks and masonries can be drawn by gravity using the capillary effect [5].

The condition of effective prevention of moisture in the building walls is its proper identification.
There are many methods that can generally be divided into two groups—destructive and non-
destructive methods. For obvious reasons, non-destructive methods are more desirable and have
bigger applied value [6,7]. This feature is gaining importance when walls’ humidity needs to be
measured in buildings of historical importance. Among the destructive methods can be distinguished,
among others, the “drying-weight” or “carbide” method. Unfortunately, this is an invasive examination.
The destructive methods consist in taking samples of the material being examined, which is not always
possible, especially in the case of historic buildings. In such cases, these types of methods are not
recommended, because they involve a violation of the structure of the examined object. Therefore,
non-invasive tests may be a better solution in such situations.

Non-destructive methods include, for example, thermovision or ultrasound methods.
The disadvantage of thermovision is its exterior nature and the impossibility of penetrating under the
surface of the investigated structure. The ultrasound approach is of little use due to the high porosity
of materials containing cells (pores) filled with air or water.

Non-destructive methods also include electrical impedance tomography (EIT), in which electrical
measurements are made [8]. This method, thanks to the measuring device and the implemented
algorithms, allows for non-invasive spatial determination of the degree of moisture. In the case of
impedance tomography, it is a technique for imaging the spatial distribution of conductivity [9].

Previous studies show that electrical resistance can be used to measure the humidity of concrete
and masonry walls [10–12]. There is a known relationship between moisture inside a porous building
material and its electrical resistivity (Figure 2). Similar relationships can be observed for a brick wall
and a lightweight concrete blocks wall. The electrical resistance increases as the moisture content
decreases. It can be seen that the smallest change in resistance occurs in the highest range of moisture
content. Although current techniques for measuring moisture in concrete and brick walls are accurate,
the use of electrical resistance has the advantage of being a relatively simple procedure that can be
used with inexpensive equipment [13].
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This fact is a basic problem with regard to the analysis of thick walls because the moisture inside 

each wall is usually a few percent higher than at its surface [16]. The destructive nature of currently 

used techniques requiring sample collection is unacceptable, especially in historical buildings. In such 

cases, only non-invasive methods may be used. 

The humidity of the walls can be directly measured with electric meters. Electrical moisture 

meters, and in particular conductivity meters, are sensitive to very low amounts of moisture and/or 

some types of contaminants with soluble salt. For example, a free moisture content lower than 0.1% 

can cause high meter readings. Due to the influence of salinity causing a change in electrical resistance 

and a small depth of measurement, evaluations made with the use of electric humidity meters should 

be considered as not very accurate [5,16]. They can give an approximate image of the dampness inside 
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Figure 2. Relationship between saturation and resistivity of concrete [15].

Each measuring technique has its own conditions, advantages, and disadvantages. Thanks to
this it can be used only in special circumstances. Currently, the main problem in research on the
concentration of moisture in the walls is the lack of a method that provides spatial imaging of its
distribution inside the wall without the need to take samples. Most of the available research methods
allow only a spot evaluation of moisture, which makes it possible to obtain only a discrete model [4].
In most cases, methods based on real data are invasive.

This fact is a basic problem with regard to the analysis of thick walls because the moisture inside
each wall is usually a few percent higher than at its surface [16]. The destructive nature of currently
used techniques requiring sample collection is unacceptable, especially in historical buildings. In such
cases, only non-invasive methods may be used.

The humidity of the walls can be directly measured with electric meters. Electrical moisture
meters, and in particular conductivity meters, are sensitive to very low amounts of moisture and/or
some types of contaminants with soluble salt. For example, a free moisture content lower than 0.1%
can cause high meter readings. Due to the influence of salinity causing a change in electrical resistance
and a small depth of measurement, evaluations made with the use of electric humidity meters should
be considered as not very accurate [5,16]. They can give an approximate image of the dampness inside
the walls (Figure 3).
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Figure 3. An image of building walls’ dampness developed on the basis of the results of an electrical
test. Higher moisture concentrations are depicted by a color of higher intensity [17].

The main purpose of this study is to present and compare non-destructive algorithms based on
electrical tomography that allow estimation of humidity not only on the wall surface but also inside
the masonry wall.

With reference to the tomography of building walls, the most commonly used methods are
impedance tomography (EIT), capacitance tomography (ECT), and resistive tomography (ERT). All the
above methods belong to the group of electrical tomography methods, including many tomographic
techniques showing the distribution of electrical parameters in the tested object [18–20], while the EIT
shows the spatial distribution of conductivity γ [21,22]. Authors such as Holder or Karhunen et al. [23,24]
in the monograph give the general principles of the EIT, its instruments, procedures, and challenges.

The proposed tomographic method in which the building materials humidity evaluation is an
indirect assessment based on a different physical characteristic, such as resistivity, allows for many
measurements (tomographic approach in [25,26]) without the need to damage the tested object.

The tomographic approach allows archiving the moisture distribution inside the wall in a digital
form and comparing it with the next results in the future (moisture monitoring) when it is necessary.
This action is extremely useful in buildings requiring the use of a high imaging efficiency method, in
particular: constant monitoring of wall humidity, control of the effectiveness of the methods used for
drying walls and assessment of the moisture condition of load-bearing walls, in particular, thick ones.

The main advantages of the proposed measurement system are the non-invasive and non-
destructive measurement of the tested object thanks to specially designed electrodes, the possibility
of imaging the moisture distribution not only on the surface but also inside the investigated object.
The described research uses simulation tools based on the Matlab scientific software and scripts in
the Python and R programming languages. A special role was played by the toolbox called EIDORS
dedicated to the Matlab software [18]. It has been used for modeling domain and topological algorithms
using the finite element method (FEM) to solve the inverse problem (IP).

The structure of the article was divided into five parts including the introduction. Section 2
presents the hardware of the measurement system and algorithms for solving forward and inverse
problems. Section 3 presents the results of tests both in relation to simulation experiments and to the
reconstruction of the real object. The analysis covered three types of algorithms applicable in EIT:
LARS, ElasticNET and ANN. The real object was also reconstructed. Section 4 includes the comparison
of three selected algorithms and discussions in the perspective of previous studies. It also refers to
other, known methods within the studied issues. The possible improvements were also suggested.
Finally, Section 5 summarizes this article.

2. Materials and Methods

This chapter presents a measurement system that enabled the collection of electrical data used
subsequently to solve forward and inverse problems. Then there are short descriptions of four
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selected algorithms: Least Angle Regression (LARS), ElasticNet, Artificial Neural Networks (ANN),
and Gauss-Newton. The first three methods were used in the experiments on tomographic imaging
and compared with each other. All tested algorithms are classified as machine learning and artificial
intelligence methods. Thanks to the above algorithms, it was possible to use the supervised machine
learning method, which in combination with the parallel computing (multi-core CPU, GPU) allowed
us to quickly reach effective solutions in the field of building models of reconstructed objects.

2.1. Selected Hardware Issues, Sample Models, and Reconstructions

Electrical tomography is a technique for imaging the distribution of conductivity or permeability
inside an object under investigation based on measurements of the potential distribution on the
object’s surface. Numerous different techniques can be used in the process of optimization of
tomographic methods.

The data collection system collects the measured voltage from the electrodes and then processes
the data. Conventional data acquisition systems require voltage, filtering, demodulation and converting
equipment to be digitized and a signal processor to transfer data to a computer. Our device for
measurement in electrical tomography uses two methods: electrical capacitance tomography and
electrical impedance tomography. It allows you to take measurements up to 32 channels. Figure 4a
shows the inside of the tomograph, while Figure 4b shows the main panel of the device with sockets
designed to connect the electrodes. This device provides a non-invasive way to test the spatial
distribution of moisture. The system includes an additional software solution. The advantage of
the system is the simultaneous measurement of voltage and capacitance.
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The measurements were made using the Polar GND EIT method, at 1 kHz frequency and
100 uA excitation current. An object whose internal electrical properties are unknown is surrounded
by electrodes placed on its edge and electrically excited in various combinations (see Figure 5).
Measurements are made for all possible ways of connecting the power source to the next pairs of
electrodes. Other electrodes measure voltage drops. Both parts of Figure 5a,b shows two exemplary
measuring cycles. In this way a series of measurements is created. For a system with 16 electrodes (we
mark them as variable n), there are 16 possibilities to connect the power source, but because of the
symmetry of the system, we accept only half of them (n/2 = 8).

Input data for the image construction algorithm are voltage measurements made between adjacent
electrodes. Measurements made on electrodes with an attached excitation source are omitted due to
unknown voltage drop between these electrodes and the tested area. For a system of n = 16 electrodes
and any projection angle, n− 4 = 12 independent measurements can be obtained. Thus, the full number
of voltages measurable between neighboring voltage electrodes at n/2 = 8 angles is: (n − 4) (n/2) = 12
× 8 = 96. The method of measuring the inter-electrode voltages shown in Figure 5 corresponds to the
first and the second projection angle. For subsequent angles, sequential switching of the power supply
and measurement circuit to the neighboring electrodes takes place.
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For a system of n = 32 electrodes and any angle of projection, n − 4 = 28 independent
measurements can be obtained. Hence the full number of possible independent measurements of
voltages between neighboring voltage electrodes at n/2 = 16 angles is: (n − 4) (n/2) = 28 × 16 = 448.
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Figure 5. Voltage measurement method: (a) first measuring cycle, (b) second measuring cycle.

Potential values of electrodes depend on the current distribution within the region, and thus
also on the distribution of conductivity. The algorithm of computer image reconstruction is looking
iteratively for such a distribution of conductivity, for which the calculated values of inter-electrode
voltages are as close as possible to the corresponding measurement values.

The measured voltage is generally a voltage drop on the two impedances of the electrodes and
the impedance of the object. The voltage drop on the impedances of the spot electrodes can be omitted
due to the high impedance of the measuring system. In the case of surface electrodes, the potential
decrease at the electrode is very low, the tested object has low conductivity, while the electrode has a
high conductivity. Therefore, the voltage drop is negligible, the surface impedance coefficient of the
electrode tends to zero (it is negligibly small), but it is programmatically included in the reconstruction
process. The contact impedance is included in the model but has a limited effect on the measurement.

Voltage drops are measured on the surface of the tested object, so it is a non-invasive method.
After applying the power source in the wall, current starts flowing, which has a higher value closer to
the shore and the power source. The further away from the electrodes, the more the current flow is
getting smaller (tends to zero). This is the factor that causes the reconstruction to be more optimal closer
to the measuring electrodes, the further away from the electrodes, the detection precision may be lower
(the reconstruction may be worse due to the current depth distribution). Therefore, measurements on
one edge usually give worse quality compared to measurements on two or more edges. Sometimes,
however, only one-sided measurement is possible.

The tested physical models of the wall parts contained 16 or 32 electrodes each for measuring the
wet wall. The electrodes were placed on both sides of the tested wall sample. Electrical impedance
tomography is based on the measurement of the potential difference. The ability to determine the wall
condition results from the unique conductivity value of each material. The necessary equipment such
as electrodes, meters, alternating current generator, multiplexer and a computer with LabVIEW and
EIT modules was used for the measurements. Figure 6a,b shows the partially immersed lightweight
concrete block on which the surface electrodes are placed. It can be seen that in the presented picture
the block samples have 2 × 8 (a) and 2 × 16 (b) electrodes.
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Figure 6. A tomographic laboratory to study the moisture inside the cellular lightweight concrete block.

As mentioned before, a big problem related to the moisture content testing is the lack of a method
allowing us to determine its spatial distribution without the need to take samples. The method that
enables this is electrical impedance tomography. It consists in evenly distributing the electrodes on the
tested object and ensuring a good contact of their surface with the tested surface. Unfortunately, often
the wall surfaces have a varied shape. Also, the building materials themselves, such as brick or plaster,
have a certain porosity, which makes measurement difficult. To ensure an adequate flow of electric
current between the individual electrode pairs, a special multilayer electrode was developed.

Ensuring the proper contact of the electrodes with the wall is particularly important in testing
objects with an uneven as well as a rough surface. An example of the use of this type of electrodes is
the moisture condition investigation inside the masonry. The development of effective and efficient
measuring electrodes for impedance tomography has proved to be a serious challenge. In order to
ensure optimal contact between the electrode and the wall, an electrode with a flexible contact surface
and articulated mounting was designed. Figure 7a shows how to attach a set of rubber electrodes to
the building wall. Figure 7b shows a view of the electrode set, while Figure 7c shows a schematic view
of the structure of a single rubber electrode.

A complete electrode consists of three modules: a specific electrode, a PCB with a contact socket,
and a fastening system. Mechanically, the modules are connected to each other by means of two sleeves
placed one inside the other. Before separating, they are secured by a collar placed on the upper sleeve.
The PCB is made of double-sided 1.54 mm thick laminate with an SMB1251B1-3GT30G-50 socket.

From the active surface, the galvanic plate is connected by means of four leads with a specific
electrode made of electro-conducting silicone coated on the one hand in the galvanization process
with a copper layer. Pins and the copper layer allow contact between the PCB and the electrically
conductive silicone.

The specific electrode made of flexible electrically conductive silicone improves contact with the
surface of the tested object. This feature is particularly useful in examining objects with increased porosity.

The third module is the tripod electrode mounting system. It is made of ASB in 3D printing
technology. The holder has two parallel channels that allow quick mounting on tripod profiles.
The element responsible for the elasticity of the mount is the rubber ring, which task is to adjust
the position of the electrode to the tested object surface, which aims to eliminate the unevenness and
pressing the electrode to the wall. The post-retrofit version is equipped with an additional 10 mm
thick shock absorber and a flexible connection between the conductive rubber and the PCB. As a result,
the electrodes adhere much better to uneven surfaces of the tested object. Newly designed electrode
systems have great potential in practical applications.
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2.2. Wall Moisture Tests with the Use of the Gauss-Newton (GNM) Method

Figure 8 presents the results of tomographic imaging using the Gauss-Newton (GNM) method.
The presented reconstruction (b) deviates somewhat from the pattern image (a). The differences,
however, concern only the details of the contour of the moistened area. You can therefore use this
method to roughly estimate the moisture level and area.
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Figure 9 presents the spatial reconstruction of a wall fragment using the GNM method by means
of 32 measurement electrodes located around the object. Figure 9a is a reference image. Figure 9b is the
result generated by the use of GNM. Comparing both images, you can see differences in the intensity
of the color. Brighter colors of the reconstructed image indicate less intense moisture inside the wall
compared to the reference image.
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Figure 9. The geometrical model 3D with 4 × 8 electrodes—the image reconstruction: (a) pattern
model, (b) Gauss-Newton method with Laplace regularization.

In Figure 10, we can see an example of a reconstruction of a damp concrete block using
32 electrodes located on both sides of the tested object. In order to solve the problem of the
three-dimensional finite element, mesh was prepared. It can be noticed that surfaces of finite elements
that are localized near electrodes are small. Hence, the solution of the forward problem is precise.
The results obtained are similar to those obtained by placing 32 electrodes around the lightweight
concrete block with dimensions 10 × 40 × 90 cm. The reconstructed image deviates from the pattern
with the too low intensity of colors.
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Figure 10. The geometrical model 3D with 2 × 16 electrodes—the image reconstruction: (a) pattern
model, (b) reconstruction created with the use of Gauss-Newton method with Laplace regularization.

In Figure 11, two special models of the brick cube “wet” and “moist” with 2 × 8 electrodes are
presented. The image was reconstructed by Gauss-Newton method with Laplace regularization or
Tikhonov regularization.
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Figure 11. The geometrical model 3D with 2 × 8 electrodes—the image reconstruction: (a) pattern
model, (b) reconstruction created with the use of Gauss-Newton method with Laplace regularization.

2.3. Masonry Humidity Testing by the Least Angle Regression (LARS) Method

In order to obtain more accurate and stable reconstruction results in solving the inverse problem
in electrical tomography [19–21], a new solution based on the method of the least angle regression was
tested [27]. There are many methods to solve the optimization problem [26]. The statistical methods
can be used to reconstruct an image in electrical impedance tomography [28,29].

The main objective of the tomography is to perform image reconstruction. During the
measurements, we can see that the measured values from some electrodes are strongly correlated (due
to the way of measurement). In this case, we have a multicollinearity problem. When the independent
variables (predictors) are correlated (collinear), the matrix tends to a single matrix. By means of the
least squares method, we obtain large absolute values of some estimators with unknown parameters.
Forecasts based on this model are unstable. The most common approach is to reduce the set of input
variables (removing the same predictors that apply to multicollinearity). Then, we have a problem
with the selection of predictor variables that will be included in the regression model. For example,
when comparing the AIC (Akaike Information Criterion) value for linear models with different sets of
predictors, we can choose the best model.

Another possible way to reduce the problem of multicollinearity between predictors depends on
the application of the least angle regression algorithm. This algorithm takes into account only causal
variables in the linear model (from the set of predictors, you should select the input variables that
have a direct impact on the response variable). In this case, the linear model is built by means of step
forward regression, where the best variable is added to the model in every step.

Let the linear system be described by the state equation

Y = Xβ + ε (1)

where Y ∈ Rn, X ∈ Rn×(k+1) denote the observation matrices of response and input variables,
respectively, and β ∈ Rk+1 denotes the vector of unknown parameters. When the linear model (1)
contains the intercept, then the first column of matrix X is a column of ones. The object ε ∈ Rn in
the linear system (1) presents a sequence of disturbances, which is usually defined as a vector of
independent identically distributed random variables with normal distribution N

(
Õ, σ2 I

)
, in which

Õ ∈ Rn is a zeros vector, but I ∈ Rn × n is an identity matrix. The classical Least Square Method
depends on identification of unknown parameters β = (β0, β1, . . . , βk) in (1) by solution the task
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min
β∈Rk+1

‖Y− Xβ‖2 (2)

If det
(
XTX

)
6= 0, then the best unbiased linear estimator of unknown parameters β is

β̂ =
(

XTX
)−1

XY (3)

The problem is often when XTX is singular.
The following is a short version of the least angle regression algorithm as the workflow.

An extended version of LAR has been presented in [30].

1. The predictors should be standardized. The intercept β0 in expression (1) is equal a mean of the
response variable and we put β1 = β2 = . . . = βk = 0. Active set A (set of predictors) is empty.

2. Calculate the residuals r = Y− β0 − X(A)β(A) for the linear model with all predictors from active
set A. Determine the predictor Xj (which is not in active set) most correlated with residuals r and
attach to the active set A.

3. Move coefficient β j from 0 towards its least-squares coefficient
〈

Xj, r
〉

until some other competitor
Xk has a much correlation with the current residuals as does Xk.

4. Move β j and βs in the direction defined by their joint least square coefficient of the current residual
on
〈

Xj, Xs
〉

until some other competitor Xl has a much correlation with the current residual.

Go to step 2 and continue in this way until all k predictors have been entered.

2.4. Masonry Humidity Testing by the ElasticNet Method

Another way to determine the linear regression when the input variables are collinear depends
on the solution of the task

min
(β0,β′)∈Rk+1

1
2n

n

∑
i=1

(
yi − β0 − xiβ

′)2
+ λPα

(
β′
)
, (4)

where xi = (xi1, . . . , xik), β′ = (β1, . . . , βk) for 1 ≤ i ≤ n and Pα is an elastic net penalty given by

Pα

(
β′
)
= (1− α)

1
2
‖β′‖

L2
+ α‖β′‖

L1
=

k

∑
j=1

(
1− α

2
β2

j + α
∣∣β j
∣∣) (5)

We see that the penalty is a linear combination of norms L1 and L2 of unknown parameters β′.
The introduction the penalty function dependent from parameters to the objective function allows to
shrink the estimators of unknown parameters.

The parameter λ in the task (4) denotes the coefficient of penalty, but the parameter 0 ≤ α ≤ 1
creates the compromise between LASSO (Least Absolute Shrinkage and Selection Operator) and
ridge regression. The ridge regression (∝= 0) is called Tikhonov regularization [31] and is one of
the most commonly used for regularization of linear models. LASSO (∝= 1) was introduced by
Roberta Tibshirani [32,33]. This method performs the variable selection and regularization in linear
statistical models [34,35]. For the ridge regression, the penalty is calculated in the norm L1 but for
LASSO in L2. Difference between ridge regression and LASSO is symbolic, only the norms are changed.
The ridge regression shrinks coefficients for correlated predictors towards each other. When the
correlated predictors depend on any latent factor, then ridge regression allows to uniformly distribute
the strength of latent factor on these predictors. Whereas LASSO is indifferent to correlated predictors.
This method allows to determine the preferred predictor and to ignore the rest. By applying the LASSO
method, we obtain a model, where the many coefficients to be close to zero, and as a result, we receive
a sparse model. The elastic net is a connection of ridge regression and LASSO [36,37]. Choosing the
appropriate α, we may create the compromise between ridge regression and LASSO.

By solution the task (4) for fixed λ and α we estimate the unknown parameters of the linear system
(1), where predictors are correlated. Then the prediction based on model (1) is given by the formula
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Ŷ = Xβ̂, where the vector of estimators of unknown parameters β̂ =
(

β̂0, β̂1, . . . , β̂k
)

is estimated by
solution the task (4).

2.5. Masonry Humidity Testing by the Gauss-Newton Method

In the electrical impedance tomography in the reconstruction of the image, the so-called
Generalized Tikhonov regularization is very often used. In the literature on the subject, this method is
also known as the Gauss-Newton algorithm in a generalized form.

The Gauss-Newton method is based on the application of the least squares method in which the
matrix Z(l) fulfills the role of matrix X (first partial derivatives relative to fixed approximations β(l) and
observed values of independent variables), and the role of the vector y (observation of the dependent
variable) vector e(l). It is a vector of differences between the empirical values of the dependent variable
and the lth of its approximations f

(
xt, β(l)

)
.

The Gauss-Newton algorithm is used to estimate the structural parameters of non-linear models.
The general form of the non-linear function is presented below:

yt = f (xt, β) + εt (6)

where:

yt—observations of the explanatory variable,
xt = [xt]—P vector of observations for explanatory variables,
βt =

[
β j
]
—K vector of structural parameters,

εt—implementations of random elements (we assume that random components are uncorrelated,
have an average of zero and equal, positive and finite variance).

In the Gauss-Newton method, the reconstruction of the internal image of the investigated object
is related to the determination of the global minimum of the fitness function. In order to carry
out quantitative considerations, we assume that the tested object is polarized with an alternating
low-frequency current. Then, the electrical material properties can be described by a function with real
values. In this case, in the generalized Laplace equation, we neglect the word proportional to the frequency,
and this function can be equated with the electrical conductivity (real isotropic admittivity case).

2.6. Masonry Humidity Testing by the Neural Imaging

In order to solve the problem of non-invasive imaging of the interior of moist walls, the method of
electrical tomography in connection with artificial neural networks was also used. So far, tomographic
and neural networks methods have not been widely disseminated in the assessment of the wall.
The reason is the low resolution of the reconstructed image and the low accuracy of mappings [7].

To increase the resolution of tomographic reconstructions depicting the degree of internal
humidity of walls, a new method was developed based on a set of many separately trained neural
networks. The number of neural networks corresponds to the 3D resolution of the lattice dividing the
inside of the wall into individual pixels. In the presented experiment a lightweight concrete block with
dimensions 10 × 40 × 90 cm was used, which was divided into 8099 points.

Using a device called a multiplexer, in short intervals, the tomographic system generates 192
values of voltage drops readings between different electrode pairs. These are the input data for the
neural network system. The neural networks are designed in such a way that on the basis of an input
vector containing 192 elements, each of the 8099 neural networks generates the value of a single pixel
of the output image.

Figure 12 shows the mathematical form of the neural model used during simulation experiments.
At the model input, there are 192 electric signals generated by 16 electrodes.
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The same input vector is the basis for training 8099 separate artificial neural networks (ANN).
In this way, from a vector of 192 variables representing electrical values, a set of neural networks
creates a complete lattice of the lightweight concrete block image. The output image is created by
assigning colors to the output values of each pixel. The transformation method is shown in Figure 13.
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Each of the 8099 neural networks had a multi-layered perceptron structure with 10 neurons in the
hidden layer. The scheme of a single perceptron is shown in Figure 14.
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In order to collect data necessary to train the neural network, physical and mathematical models
were developed. The finite element method was used for this. Based on a mathematical model, a data
set was generated. After that, it was used to train the neural network system.

To train the mentioned above neural network, a collection of 6140 historical cases was used (see
Table 1). The main set of data has been divided into three separate subsets: a training set, validation
set, and testing set, in the proportions of 70%, 15%, and 15%. This method of data preparation has
been used for all 8099 neural networks.

Table 1. Training results for one of 8099 neural networks.

Samples MSE R

Training set 4298 5.31979 × 10−6 9.99983 × 10−1

Validation set 921 1.68249 × 10−5 9.99947 × 10−1

Testing set 921 2.03645 × 10−5 9.99934 × 10−1

The highest Mean Squared Error (MSE) concerned the testing set and was 0.000020364. In the
case of validation set, a slightly smaller error was noted. Mean Squared Error is the average squared
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difference between outputs and targets. Lower values mean better performance. Zero means no
error (excellent performance). The training set was trained with the lowest training error, which is the
most common and correct situation. A low MSE error in the training set results from better network
adaptation to training cases. Another indicator of the quality of network learning was R (Regression).
An R value of 1 means a close relationship between pattern and output, and 0 means a random
relationship. In all three cases of data sets (learning, validation, and testing), R was close to 1. This also
applies to the test and validation set, which is particularly valuable. Values close to 1 indicate a good
match of the results obtained by the network (output vectors) to the patterns included in the individual
sets (training, validation, and testing).

Good indicators (MSE and R) for the training set show the lack of overtraining effect and the
ability of the network to knowledge generalization (i.e., correct conversion of input data to output
information not only for learning cases).

3. Results

This chapter presents the results of wall humidity tests by EIT tomography in combination with
the following machine learning algorithms: Least Angle Regression (LARS), ElasticNet, and Artificial
Neural Networks. The root mean square error of prediction (RMSE) indicator was used to quantify the
quality of the reconstructions obtained using simulation models.

Let vector x = (x1, . . . , xn) presents the pattern, which should be reconstructed. After reconstruction
we obtain the vector x̂ = (x̂1, . . . , x̂n), which contains the expected values of reconstruction of explored
object. The root mean square error of prediction was determined by the formula (7).

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (7)

In the further part of this paper two variants of images were compared: 2D and 3D. The 2D image
lattice consisted of 2908 pixels, while the 3D grid consisted of 8099 pixels. Thus, in the first case (2D),
n = 2908, while for the 3D variant, n = 8099.

All results enabling the comparison of LARS, ElasticNET, and ANN methods were obtained thanks
to the use of computer simulation methods. The simulated data has been used with added noise to
SNR = 14 dB. This noise parameter was calculated for a given measurement system configuration and
includes measurement patterns and electrode positions. SNR is defined in terms of power as a signal
to noise ratio.

3.1. Results of Wall Moisture Tests Obtained Using the Least Angle Regression (LARS) Method

Figure 15 presents one of the results of tomographic imaging using the LARS method. The input
data was obtained thanks to the use of an EIT tomograph equipped with 16 electrodes (2 × 8).
Intense colors indicate areas with higher humidity. It can be seen, the obtained reconstructive image
(in the middle) is very close to the reference image (left). The difference image (right) indicates small
deviations of the grid points in the reconstructed image from the reference image. The colors in the
images reflect the conductance of the individual pixels that each image consists of. The lack of color in
the original and reconstruction images testify to the lack of moisture. RMSE for a 3D sample with the
use of LARS is 0.0298.

Figure 16 shows a case analogous to the previous one, which was presented in Figure 15, but this
time a cellular concrete sample with slightly different dimensions (10 × 20 × 60 cm) was used.
The reconstruction was carried out in 2D. RMSE for a 2D sample with the use of LARS is 0.122599.
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3.2. Results of Wall Moisture Tests Obtained Using the ElasticNet Method

Figure 17 presents an example of a tomographic 3D imaging result using the ElasticNet method.
The input data was obtained thanks to the use of an EIT tomograph equipped with 16 electrodes
(2 × 8). Intense colors indicate higher humidity spots. It can be seen, the obtained reconstructive
image (middle image) is comparable to the reference image (left). The image of residuals (right)
indicates the occurrence of deviations of the grid points of the image reconstructed from the reference
image. The lack of color and shades of blue in the original and reconstruction images mean the lack of
moisture. RMSE for a 3D sample with the use of ElasticNet is 0.0365.
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Figure 18 presents an example of a tomographic imaging result using the ElasticNet method.
The input data was obtained thanks to the use of an EIT tomograph equipped with 32 electrodes
(2 × 16). Intense colors indicate higher humidity spots. It can be seen that the obtained reconstructive
image (middle image) reproduces the reference image (left) poorly. The image of differences (right)
indicates the occurrence of significant deviations of the grid points of the image reconstructed from
the reference image. RMSE for a 2D sample with the use of ElasticNet is 0.282520. Compared with
LARS, ElasticNet showed the lower quality (higher RMSE) of reconstruction in this case.
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3.3. Results of Wall Moisture Tests Obtained Using the Neural Imaging

Figure 19 presents the results of neural imaging in conjunction with the EIT. Conductive (positive)
areas are shown in shades of red. Non-conductive (negative) areas are shown in blue or they are
transparent. Comparing the pattern of the damp block (original) with the output image, we conclude
that the accuracy of the imaging is very high. The right image shows the absolute (numerical)
differences in the values of individual pixels are minimal. They do not exceed ±0.05. It can be seen
that the results obtained by the neural imaging method are comparable to the results obtained by both
previous methods. RMSE for a 3D sample with the use of ANN is 0.010819 so the quality is better than
LARS and ElasticNET.
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Figure 20 shows an analog measurement of a 2D sample with two rows of electrodes on both
sides of the block (2 × 16). Noteworthy is the small amount of colored pixels in the differential image.
This indicates high quality imaging, which is confirmed by the low RMSE index, which in this case
equals 0.106301.
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3.4. Moisture Test of Real Object

Figure 21 shows the results of the reconstruction of a block of cellular concrete immersed in
water, using a system of artificial neural networks. Reconstructions based on data obtained from real
objects, in contrast to simulation experiments based on numerical models are the most difficult type of
test for tomographic systems. The first image on the left is the result of the direct processing of the
tomographic data with the use of ANN. The ambiguous visual effect is caused by noise in the value of
the input vector, which in the case of real objects is basically unavoidable.
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To show the results in a way that visually identifies the moisture area, the input vector was
subjected to a denoising procedure using denoising stacked autoencoders [38]. The results of denoising
were presented in the middle image entitled “First denoising.” Finally, the output image was subjected
to one more processing using a filtering script whose objective was to cut off the output values,
which obviously exceeded the acceptable range. The filtering effects are shown in the image entitled
“Second denoising.” Finally, it was possible to reduce the number of incorrectly reconstructed pixels in
the central part of the sample, but it was not possible to obtain a “clean image”.

Denoising of tomographic data is an important issue because it affects the results of reconstruction.
Due to the complexity of this subject, it may be the subject of separate studies aimed at improving the
quality of tomographic images.

4. Discussion

The imaging results presented in the previous chapter show great application possibilities of the
machine learning algorithms combined with EIT. The analysis involved three methods and algorithms
converting input vectors (values of voltage drops) into reconstructed images reflecting the conductance:
Least Angle Regression (LARS), ElasticNet, and Artificial Neural Networks (ANN). Of the above
methods, the best results were obtained using ANN. However, the LARS method in terms of fidelity
representation is very similar to ANN.

Table 2 presents a summary of the RMSE values for cases of 2D and 3D imaging in relation to
3 methods tested: ANN, LARS and ElasticNET. The lowest values of the indicators, demonstrating the
highest imaging quality, were obtained for ANN.

Both LARS and ANN can be successfully used in the EIT tomography dedicated to the
reconstruction of moisture in masonries and building walls. In comparison to other, previously used
algorithms, these methods allow obtaining precise images with sufficient resolution to perform an
effective and error-free analysis of the moisture content of the walls. It is worth noting that taking into
account the possibilities of spatial image creating, the LARS and ANN methods are more reliable than
invasive methods requiring the sampling of masonry.

Table 2. Comparison of the quality of different imaging methods.

Method
RMSE

2D Samples 3D Samples

ANN 0.106301 0.010819
LARS 0.122599 0.029800

ElasticNET 0.282520 0.036500

It is also important that the presented algorithms, used in connection with the EIT system
and specially designed electrodes, have large application possibilities. Their basic advantages are
functionality, reliability, measurement accuracy and reasonable price. The method is universal due to
the possibility of applying to masonry and walls of the various structure, thickness and moisture level.
An important role is also played by the speed of the computed tomography scanner. Output images
are obtained in real time.

The electrical impedance tomography proposed in this article enables the creation of a new
non-invasive technique for measuring the humidity of building walls. The EIT has been used to
determine the conductivity distribution in specially constructed wall models made of light concrete
blocks or bricks. The finite element method implemented in the EIDORS environment has been used
to solve the problem. The numerous different lattices were used in the presented numerical models.
The analyzed measurement systems contained various electrode distributions. Thanks to this, it is sure
that the obtained results are not accidental but repeatable while maintaining similar conditions of the
measurement environment.
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The research has provided new and promising results. Future work will be continued thanks
to the use of regularization techniques in the optimization process and the hybrid measurement
system. These types of hybrid measuring system should be even more reliable in practical applications.
It would also be interesting to extend the experimental measurements over time by monitoring the
walls at regular intervals. Thanks to this, it would be possible to estimate the speed of spreading the
moisture inside walls, as well as its sources and propagation directions.

5. Conclusions

The main goal of the work was to analyze the solution based on electrical tomography to study
the moisture of walls. Non-destructive methods and algorithms have been analyzed and compared,
which allow estimation of humidity also inside the wall. A new concept of a non-destructive system based
on electrical tomography has been presented. For research purposes, specially designed electrodes were
used, which were placed on the tested lightweight concrete and brick blocks. Three machine learning
algorithms were tested: Least Angle Regression (LARS), ElasticNet, and Artificial Neural Networks.

It was found that all four methods are suitable for practical applications in EIT tomography
dedicated to the detection of moisture in building walls, however, the best results were obtained using
the LARS method and the specially designed multi-ANNs system. A characteristic feature of the
analyzed solution is the division of the modeled object using a specially developed mesh for a set of
elements. The color of each individual mesh element corresponds to the conductance value (in the
EIT tomograph). Thanks to this approach the number of information determining the reconstructive
picture was large enough to guarantee a sufficient resolution of tomography imaging.

The presented research results contain relevant information that may contribute to the acceleration
of the development of computational intelligence and machine learning methods in EIT. The research
contributes to the improvement of the tomographic imaging efficiency of known methods in the
aspect of algorithms for processing input information (electrical quantities) into images. In addition,
enriching an input vector with values other than electrical is an easy way to develop new, intelligent
tomographic hybrid systems.
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