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Abstract
Tumor vascularization occurs through several distinct biological processes, which not only vary between tumor type and 
anatomic location, but also occur simultaneously within the same cancer tissue. These processes are orchestrated by a range 
of secreted factors and signaling pathways and can involve participation of non-endothelial cells, such as progenitors or 
cancer stem cells. Anti-angiogenic therapies using either antibodies or tyrosine kinase inhibitors have been approved to treat 
several types of cancer. However, the benefit of treatment has so far been modest, some patients not responding at all and 
others acquiring resistance. It is becoming increasingly clear that blocking tumors from accessing the circulation is not an 
easy task to accomplish. Tumor vessel functionality and gene expression often differ vastly when comparing different can-
cer subtypes, and vessel phenotype can be markedly heterogeneous within a single tumor. Here, we summarize the current 
understanding of cellular and molecular mechanisms involved in tumor angiogenesis and discuss challenges and opportuni-
ties associated with vascular targeting.
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Introduction

Malignant cells require oxygen and nutrients to survive and 
proliferate, and therefore need to reside in close proximity 
to blood vessels to access the blood circulation system. The 
early observation that rapidly growing tumors were heavily 
vascularized, while dormant ones were not, led Judah Folk-
man to propose that initiation of tumor angiogenesis was 
required for tumor progression [1]. Further, Folkman isolated 
a tumor-derived factor that induced angiogenesis [2] and 
hypothesized that inhibition of angiogenic signaling path-
ways might block new vessel formation and result in tumor 
dormancy. This exciting concept attracted considerable 
interest from the research community and spurred extensive 
efforts dedicated to isolating tumor-derived pro-angiogenic 
factors and delineating their signaling pathways [3]. In 2003, 
a clinical trial demonstrating prolonged survival of patients 
with metastatic colorectal cancer when chemotherapy was 

administrated in combination with humanized neutralizing 
antibodies targeting anti-vascular endothelial growth factor 
(VEGF) resulted in an FDA approval and provided proof-
of-concept that anti-angiogenic therapy can be successfully 
used to treat cancer [4]. Subsequently, several antibodies and 
tyrosine kinase inhibitors designed to target pro-angiogenic 
signaling have been approved as cancer therapies. Despite 
the ever-growing list of FDA-approved drugs, the success of 
anti-angiogenic therapy has so far been quite limited, only 
providing short-term relief from tumor growth before resist-
ance occurs and typically resulting in modest survival ben-
efits. The limited efficacy has several explanations including 
tumors employing alternative modes of angiogenesis and 
development of resistance mechanisms. In addition, many 
tumors can obtain access to blood supply through vascular 
co-option, bypassing the need of tumor angiogenesis [5]. 
In this review, we summarize the current understanding of 
molecular and cellular mechanisms involved in tumor angi-
ogenesis, the molecular and functional heterogeneities of 
tumor vessels and emerging concepts for vascular targeting 
during cancer therapy.
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Initiation of tumor vascularization: 
the angiogenic switch

Small dormant tumors that are devoid of active blood ves-
sel formation can frequently be observed in human tissue 
and in genetically engineered mouse models of multistage 
carcinoma at early stages of cancer progression. Tumor 
progression is often accompanied by ingrowth of blood 
vessels, consistent with a need for malignant cells to have 
access to the circulation system to thrive. Tumors can be 
vascularized either through co-option of the pre-existing 
vasculature [5], or by inducing new blood vessel formation 
through a variety of molecular and cellular mechanisms 
briefly described below. Vascular homeostasis is regulated 
by a large number of pro- and anti-angiogenic factors. 
When these are in balance, the vasculature is quiescent 
and endothelial cells are non-proliferative. Initiation of 
blood vessel formation is induced when pro-angiogenic 
signaling is dominating, a process that in tumors has been 
coined the “angiogenic switch” [6]. The angiogenic switch 
releases tumors from dormancy and sparks rapid growth of 
malignant cells in association with new blood vessel for-
mation. The development of genetically engineered mice 
modelling multistage tumor progression has been instru-
mental in investigating the angiogenic switch. One of the 
most widely studied models is the RIP1-Tag2 model of 
pancreatic insulinoma expressing the semian virus 40 large 
T (SV40T) oncogene under the rat insulin promoter, which 
was developed in Douglas Hanahan’s laboratory [7]. In 
this model, tumors develop sequentially in mice carrying 
the transgene, initiating as non-angiogenic clusters of dys-
plastic cells, of which a proportion later develop to small 
angiogenic tumor islets that can progress to large vascu-
larized tumors that metastasize to the lung. By combining 
this and other murine tumor models with advanced in vitro 
and in vivo models of angiogenesis [8], a wide range of 
factors and cellular mechanisms have been described that 
can initiate vessel formation in tumors. The angiogenic 
switch can be triggered either by additional genetic alter-
ations of tumor cells, leading to increased proliferation 
and hypoxia or expression of pro-angiogenic factors, or by 
tumor-associated inflammation and recruitment of immune 
cells.

Mechanisms of blood vessel formation 
in tumors

The blood circulation system is critical in delivering 
nutrients and chemicals to tissues, removing waste prod-
ucts, and maintaining homeostasis. The vascular system, 

composed of the aorta, arteries, capillaries and veins 
transports blood throughout the body. Arteries carry 
blood away from the heart, transporting oxygenated blood 
to the tissues. The capillary networks have narrow walls 
that help in gas exchange between the blood and tissues. 
Oxygen is released into the tissues and carbon dioxide 
is absorbed by the blood, and is transported back to the 
heart through veins. Transmigration of immune cells into 
tissues is facilitated by post-capillary venules. The capil-
lary wall is made of an endothelial cell layer surrounded 
by a basement membrane and is supported by pericytes. 
Angiogenesis is typically initiated from the capillaries 
and it plays an important part in tumor growth, mainte-
nance and metastasis. Blood vessel formation in tumors 
can be induced through several cellular processes (Fig. 1) 
as briefly summarized below.

Sprouting angiogenesis

New capillaries can bud from parental vessels through a 
multi-step process known as sprouting angiogenesis. Forma-
tion of sprouts involves (a) Tip cell selection: a cell from the 
parent vessel becomes the migratory leading cell and blocks 
its neighboring cells from adopting a tip cell fate by a lateral 
inhibition process. (b) Sprout extension: the tip cell migrates 
along the chemotactic path, followed by trailing stalk cells 
and (c) Lumen formation: connection of the luminal space 
of the sprout with the parent vessel. The developing sprout 
then connects with other vessels through a process called 
anastomosis.

Endothelial cells are normally quiescent, but can be 
induced to sprout and initiate angiogenesis by pro-angio-
genic factors including vascular endothelial growth factor 
(VEGF). Tip and stalk cell selection is regulated through 
cross-talk between the VEGF and Dll4/Notch pathways 
[9]. In response to VEGF, tip cells produce Delta-like-4 
(DLL4) ligand, platelet derived growth factor-B (PDGF-
B), VEGF receptor-2 (VEGFR-2) and VEGFR-3/Flt-4 
[10–12]. VEGF blocks Notch signaling and enhance 
sprouting, branching, migratory capacity and filopodia 
formation in tip cells [13]. DLL4 secreted by tip cells 
activated Notch signaling in the neighboring endothelial 
cells, suppressing tip cell formation by inhibiting VEGFR2 
and VEGFR3 expression and inducing VEGFR1 (decoy 
for VEGF) expression [14–17]. Tip cells extend numer-
ous filopodia, and acquire motile and invasive phenotypes, 
secreting matrix degrading proteins that guide new blood 
vessel formation towards the VEGF gradient [18]. Neuro-
pilins, which are non-tyrosine kinase receptors, promote 
tip cell function by enhancing signaling through VEGFR2 
and VEGFR3 [19, 20]. Stalk cells follow the tip cells and 
branch out from the parent vessel, establishing the vascular 
lumen and junctional connections to the forming sprout. 
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They are more proliferative and have fewer filopodia as 
compared to the tip cells, a process fine-tuned by Notch-
regulated ankyrin repeat protein [21]. The term vascular 
anastomosis defines development of junction between two 
new sprouts (‘head-to-head’ anastomosis) or a sprout and 
an existing blood vessel (‘head-to-side’ anastomosis). Live 
imaging studies in Zebrafish indicate that development of 
cell junctions is a highly stereotypical process [22–24]. 
Migrating tip cell filopodia express junctional proteins 
such as VE-cadherin [25, 26]. The filopodia from adjacent 
tip cells make and break contacts many times during initial 
contact formation, after which VE-cadherin is deposited 
at a single point of filopodia contact and a ring shaped 
junction is formed to create a small luminal pocket at this 
site [22, 25, 27]. Next, the excess filopodia retract, mem-
branes of the anastomosing fuse, express apical markers 
like podocalyxin, and upregulate expression of junctional 
molecules on the cell surface [25]. The different mecha-
nisms by which the lumen and perfused tubes form are 

termed type I and type II anastomosis, reviewed in detail 
by Betz et al. [28].

Intussusceptive angiogenesis

A less studied process of neo-angiogenesis is “intussuscep-
tion”, where transluminal tissue pillars develop within exist-
ing vessels and subsequently fuse to remodel the vascular 
plexus, first described in remodeling of lung capillaries [29, 
30]. The molecular mechanisms involved in intussuscep-
tive angiogenesis are not completely understood, but the 
process can be induced by growth factors including VEGF, 
PDGF and erythropoietin [31–33]. Intussusceptive angio-
genesis have been observed in various tumor types including 
melanoma, colorectal cancer, glioma and mammary tumors 
[34–37]. In melanoma, VEGF expression correlates with the 
occurrence of intussusceptive angiogenesis and the number 
of intraluminal tissue folds [34]. Xenografts of human ade-
nocarcinoma utilize intussusceptive angiogenesis as a mode 

Fig. 1   Mechanisms of blood vessel formation. Neo-vascularization 
in normal tissues and tumors occur through one or more of the fol-
lowing mechanisms: a Sprouting angiogenesis: a process involving 
formation and outgrowth of sprouts (tip cells), which eventually fuse 
with an existing vessel or newly formed sprout. b Intussusceptive 
angiogenesis: the formation of new vasculature where a pre-existing 
vessel splits in two. c Vasculogenesis: prenatal neo-vascularization 
from endothelial progenitor cells. The endothelial progenitor cells 

proliferate and form lumens, eventually assembling into new blood 
vessels. d Recruitment of endothelial progenitor cells: vessel forma-
tion in tumors by recruitment of circulating endothelial progenitor 
cells. e Vascular mimicry: a matrix-embedded fluid-conducting mesh-
work formed by tumor cells. f Trans-differentiation of cancer stem 
cells (CSC): neo-vascularization in tumors through differentiation of 
CSCs to endothelial cells
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for rapid vascular remodeling and maintenance of blood flow 
in tumors [36]. Intususceptive angiogenesis is thought to 
contribute to tumor growth by increasing the complexity 
and number of microvascular structures within the tumor.

Vasculogenesis and recruitment of endothelial 
progenitor cells

De novo blood vessel formation in the embryo is induced 
through differentiation and association of endothelial pro-
genitor cells (EPCs) in a process coined vasculogenesis [38, 
39]. In mice, progenitor cells differentiate and assemble into 
clusters called blood islands, as early as embryonic day (E) 
6.5–7 [40]. A subset of cells located at the perimeter of the 
blood islands, termed angioblasts give rise to precursors 
for endothelial cells, while those at the center differentiate 
to hematopoietic cells. Angioblasts migrate to the paraxial 
mesoderm, assemble into aggregates, proliferate and differ-
entiate to form a plexus with endocardial tubes in mouse. 
This leads to formation of dorsal aortae, cardinal veins and 
the embryonic stems of arteries and veins in the yolk sac. 
Vasculogenesis is also described in adults during capillary 
formation post ischemia [41] or in tumors as alternative 
mechanism for neo-vascularization to meet the increasing 
need for oxygen and nutrient supply [42]. In preclinical gli-
oma models, it has been shown that revascularization that 
occurs during glioma recurrence after irradiation is mediated 
by vasculogenesis and not angiogenesis [43]. Vasculogenesis 
in tumors is mediated by recruitment of EPCs or bone mar-
row–derived hematopoietic cells, resulting in the formation 
of new vessels to support tumor growth [44, 45]. EPCs are 
mostly unipotent adult stem cells that have the capacity to 
self-renew, proliferate, take part in neovascularization and 
repair endothelial tissue [46, 47]. They were first identified 
in 1997 by Asahara et al. [41]. EPCs are characterized by 
expression of CD34, VEGFR1, CD133, Tie-2 (endothelial 
receptor tyrosine kinase), Nanog and Oct-4 (Octamer-4), and 
by their ability to bind Ulex-lectin and uptake acetylated 
low-density lipoproteins [48, 49]. EPCs can be derived from 
hematopoietic stem cells, myeloid cells, circulating mature 
endothelial cells or other circulating progenitor cells [46, 
50]. EPCs contribute to postnatal vasculogenesis, and are 
recruited from the bone marrow to sites of injury via growth 
factors, cytokines and hypoxia-related signaling pathways, 
where they differentiate into mature endothelial cells and 
incorporate themselves into sites of active neovasculari-
zation [41, 51]. In tumors, vasculogenesis is initiated by 
crosstalk between tumor cells and EPCs in the bone marrow. 
VEGF in the tumor microenvironment mobilizes VEGFR2+ 
EPCs from the bone marrow [52–54]. Tumors also secrete 
other factors well known to mobilize EPCs to the tumor 
bed and promote neovascularization, including chemokines 

C–C motif ligand (CCL)2 and CCL5, the hypoxia respon-
sive chemokine CXCL12 (also known as SDF-1) [55] and 
adiponectin [55–57].

Vascular mimicry

Aggressively growing tumor cells can form vessel like 
structures through a process denoted as vascular mimicry. 
These structures, which are formed without contribution of 
endothelial cells, represents an alternate channel for tumor 
cells to source sufficient blood supply and nutrients. Vascu-
lar mimicry has been observed in many tumor types includ-
ing melanoma [58], glioma [59], head and neck cancer [60], 
lung cancer [61], colorectal cancer [62] and prostate cancer 
[63]. The existence and relative importance of vascular mim-
icry was initially debated and questioned in the field [64], 
but has since been supported by findings of several research 
groups [65]. Structures formed through vascular mimicry are 
identified in tumor samples with IHC using CD31 and peri-
odic acid–Schiff (PAS) as markers [66]. The endothelial-like 
tumor cells can secrete collagens IV and VI, proteoglycans, 
heparan sulfate, laminin and tissue transglutaminase anti-
gen 2, aiding in tubular structure formation and stabilization 
[67]. Tumor cells participating in vascular mimicry in uveal 
melanoma have a multipotent, stem cell-like phenotype and 
express CD271 [68]. Both vascular mimicry and fibrovascu-
lar septa are present in the stroma of melanoma and can be 
distinguished by their thickness and lamination [69].

Vascular mimicry can contribute to tumor progression 
in several ways. In melanoma, mitochondrial reactive oxy-
gen species induce activation of the Met proto-oncogene 
under hypoxic conditions, promoting vascular mimicry. This 
results in tumor cell motility, invasion, and metastasis [70]. 
In gliomas, increased vascular mimicry has been reported 
following anti angiogenic therapy [71]. This may serve as an 
alternative neovascularization process adopted by the tumor 
to cope with the therapy and counteract the hypoxic envi-
ronment. Vascular mimicry is a marker for poor prognosis 
in several cancer types [62, 72]. However, there is a lack of 
techniques that can be used to clearly distinguish vascular 
mimicry from normal endothelial cell lining, which hampers 
investigations of the relative importance of this process.

Trans‑differentiation of cancer stem cells

Trans-differentiation of cancer stem cells to endothelial cells 
and vascular smooth muscle-like cells, giving rise to neo-
vascularization, has been reported in several tumor types 
[59, 73–76]. Tumor endothelial cells have in some studies 
been observed to harbor similar somatic mutations as the 
malignant cells of the tumor, indicating a neoplastic origin 
[59, 73]. Trans-differentiation of glioma cells to endothe-
lial cells in vitro was demonstrated by culturing of glioma 
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cancer stem cells in endothelial-promoting media, resulting 
in expression of pan-endothelial markers CD31, CD34 and 
vWF, formation of tubular structures and uptake of LDL 
[59, 77]. In vivo xenografts of human glioma stem cells were 
observed to develop tumor vessels with endothelial cells 
expressing human endothelial proteins CD34, CD144, and 
VEGFR2. Selective therapeutic targeting of tumor-derived 
cells expressing Tie-2 could disrupt the vasculature and 
eradicate the tumor, leading the authors to conclude that gli-
oma stem cell derived endothelial cells contributed to vascu-
larization of glioma [59]. However, these results have been 
controversial and the clinical relevance has been questioned 
since endothelial cells in human glioblastoma have not been 
observed to harbor genetic alterations in other studies [78, 
79]. Notably, Tie-2 is not only a marker of endothelial cells, 
but is also expressed by proangiogenic monocytes and peri-
cytes [80]. A later study using lineage-specific fluorescent 
reporters did not support tumor cells as a source of endothe-
lial cells in glioma, instead demonstrating that glioma cancer 
stem cells can differentiate into pericytes and that specific 
depletion of pericytes disrupted tumor vessels and tumor 
growth [81]. The trans-differentiation of glioma cancer stem 
cells to pericytes was enhanced by TGFβ, and their recruit-
ment to endothelial cells was mediated by CXCL12/CXCR4 
signaling [81].

Molecular and functional features of tumor 
blood vessels

While physiological blood vessels formation occurring 
during development, menstrual cycle or wound healing is 
a tightly controlled process that ceases when the need for 
new blood vessels have been met, tumor angiogenesis is 
deregulated due to a persistence of pro-angiogenic factors in 
the tumor microenvironment. Efficient circulation depends 
on an ordered division of the vascular tree into arteries, 
arterioles, capillaries, venules and veins. However, in the 
presence of constant pro-angiogenic signaling in the tumor, 
the newly formed vascular networks may fail to mature and 
prune, the division into arterioles, capillaries and venules 
may be lacking, vessel caliber size can be markedly hetero-
geneous and blood flow through the poorly organized and 
malformed vessels can be chaotic [82, 83]. This can lead 
to uneven blood flow within the tumor parenchyma result-
ing in areas of persisting or intermittent hypoxia [84, 85]. 
Endothelial junctions are often disrupted in tumor vessels, 
leading to enhanced permeability, and interstitial fluid pres-
sure is increased [86]. This can in turn reduce the efficacy of 
cancer therapy since compression of tumor vessels and poor 
vascular perfusion hamper drug delivery [87]. Pericytes are 
generally partially detached from endothelial cells in tumor 
vessels, and the basement membrane is unevenly distributed, 

leading to increased vessel fragility and risks of hemor-
rhage [88–90]. Defects in vascular function and integrity 
profoundly alters the tumor microenvironment (Fig. 2a–c). 
However, the extent of structural and functional abnormali-
ties observed in tumor vessels vary greatly depending on 
the tumor type and anatomical location, and also within the 
same tumor depending on the tumor microenvironment.

Aside from the structural and functional defects observed 
within the tumor vasculature, tumor blood vessels are molec-
ularly distinct from normal vessels since they respond to 
environmental cues by transcriptional regulation of gene 
expression [91–99]. Transcriptional signatures of tumor 
endothelial cells may vary depending on the anatomic loca-
tion, the tumor type and the malignancy grade. However, 
tumor vessels typically up-regulate subsets of genes that are 
transcriptionally active also during developmental and phys-
iological angiogenesis. Consistent with this, a meta-analysis 
of transcriptional profiles from different types of human can-
cer identified a core gene signature including, e.g. VEGFR2, 
TIE1 and TIE2 which are central regulators of pro-angio-
genic VEGF and angiopoietin signaling [100]. This tumor 
angiogenesis core gene signature also included CLEC14A 
and CD93, which together with endosialin and thrombomod-
ulin constitute a C-type lectin family that are frequently up-
regulated in tumor vessels [95, 101–106]. CLEC14A, CD93 
and endosialin all bind to the secreted extracellular matrix 
associated protein multimerin-2 [107, 108]. The interac-
tion between endothelial CD93 and MMRN2 regulates 
fibronectin deposition during glioma angiogenesis, and loss 
of endosialin, mainly expressed in pericytes, protects against 
development of fibrosis, suggesting that this protein family 
participates in regulating the extracellular matrix [105, 109]. 
However, CD93-deficiency is associated with increased per-
meability, while endosialin expression in pericytes promotes 
intravasation of tumor cells and metastatic dissemination, 
indicating opposite roles in regulating vascular integrity 
[104, 110]. The specific transcriptional response of tumor 
endothelial cells is not only related to angiogenesis and ves-
sel integrity, but may also affect endothelial activation and 
recruitment of leukocytes. Pro-angiogenic signaling leads to 
endothelial anergy, reduced response to pro-inflammatory 
signaling and decreased regulation of adhesion molecules 
and chemokines necessary for capture and trans-endothelial 
migration of leukocytes [111–114]. Up-regulation of FASL 
in tumor vessels further strengthens the endothelial barrier 
and contributes to immune suppression by inducing apopto-
sis of cytotoxic T-lymphocytes [115]. Similarly, expression 
of endothelin B in tumor vessels in ovarian cancer has been 
shown to decrease T cell homing [116]. Especially in brain 
tumors, the changes in endothelial gene expression induced 
by the tumor microenvironment can also be beneficial for 
therapy. The specific gene expression signature induced in 
tumor endothelial cells in WNT-medulloblastoma leads to 
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disruption of the blood brain barrier and thereby renders the 
tumor sensitive to chemotherapy [117]. Proteins that are up-
regulated in tumor vessels alter vascular function, and may 
constitute new targets for therapy as discussed further below.

Growth factor and chemokine signaling 
in tumor angiogenesis

A large number of pro-angiogenic factors and their cognate 
receptors are known to promote vessel formation in tumors, 
including vascular endothelial growth factor (VEGF), 

fibroblast growth factor 2 (FGF-2), platelet derived growth 
factor (PDGF), angiopoietins, ephrins, apelin (APLN) and 
chemokines. These factors are often expressed simultane-
ously, effectively co-operating at different stages of tumor 
angiogenesis. The main functions and features of the most 
prominent pro-angiogenic factors are discussed briefly below.

Vascular endothelial growth factors (VEGF)

The vascular endothelial growth factor family consists of 
five secreted proteins, VEGF (also referred to as VEGF-A), 

Fig. 2   Morphological and functional characteristics of tumor vessels 
as compared to normal vessels. a Normal vessels display an organ-
ized and hierarchical branching pattern of arteries, veins, and capil-
laries. In healthy vessels, endothelial cells are supported by basal 
membrane and pericytes coverage and they are tightly connected by 
stable cell-cell junctions. b Tumor vessels are morphologically and 
functionally different from normal vessels. In response to persis-
tent and imbalanced expression of angiogenic factors and inhibitors, 
tumor vessels display an unorganized network lacking of a hierar-

chical vessel division. Tumor vessels are characterized by reduced 
blood flow, endothelial cell sprouting, disruption of endothelial cell 
junctions, loss of pericytes coverage and increased vessel leaki-
ness resulting in increased tissue hypoxia and intravasation of tumor 
cells. Moreover, tumor endothelial cell basal membrane is abnormal, 
including loose associations with endothelial cells and variable thick-
ness. c Tumor vessel abnormalization shown by immunofluorescent 
staining for the vessel marker CD31 (green) in an orthotopic synge-
neic mouse model of glioma growing in the brain
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VEGF-B, VEGF-C, VEGF-D and placental growth factor 
(PlGF).

VEGF, originally identified as vascular permeability fac-
tor (VPF), is one of the most potent inducers of angiogenesis 
[118]. In cancer, VEGF is produced and secreted by tumor 
cells and surrounding stroma and is associated with tumor 
progression, increased vessel density, invasiveness, metas-
tasis and tumor recurrence [119].

VEGF is up-regulated during hypoxia and orchestrate 
blood vessel formation mainly via activation of VEGF 
receptor-2 (VEGFR-2) expressed by endothelial cells [120]. 
VEGFR-2 activation initiates several signaling pathways 
leading to specific endothelial responses such as cell sur-
vival, proliferation, migration, invasion, vascular permeabil-
ity and vascular inflammation [121]. A tight coordination 
of these cellular processes is crucial for a successful estab-
lishment of new vessels. During tumor angiogenesis, VEGF 
secreted by tumor cells induces endothelial cell prolifera-
tion and survival primarily via the ERK and PI3K/Akt path-
ways [122, 123]. Endothelial cell migration downstream of 
VEGFR2 is induced via multiple signaling pathways, often 
involving PI3K stimulation and activation of Rho GTPases 
[124]. On the other hand, VEGF-mediated cell invasion is 
promoted by the expression of MT (membrane type)-MMP 
(matrix metalloproteinase), MMP-2, MMP-9 and urokinase 
plasminogen activator which degrade the basal membrane 
and extracellular matrix allowing migration of endothelial 
cells and the formation of capillary sprouts [123, 125].

Vascular permeability is crucial for normal tissue homeo-
stasis and is considered a prerequisite for VEGF-induced 
angiogenesis. VEGF induces vascular permeability by sev-
eral mechanisms, including junctional remodeling, induction 
of fenestrae, and vesiculo-vascular organelles (VVOs) [126]. 
In pathological conditions such as cancer, dysregulation of 
these mechanisms leads to vascular hyper-permeability that 
in turn may exert direct effects on the tumor microenviron-
ment including increased interstitial pressure and impaired 
therapeutic delivery [127]. Moreover, the leaky vasculature 
may facilitate the escape of tumor cells into the bloodstream 
promoting the establishment of distant metastases [128].

Vascular permeability is tightly related to vascular inflam-
mation. Although VEGF is not an inflammatory cytokine, 
VEGF can induce the activation of the transcription factor 
NFAT in endothelial cells via PLCγ/calcineurin, promot-
ing an inflammatory gene expression pattern similar to that 
of IL-1β [129]. In addition, VEGF-mediated activation of 
NF‐κB downstream of Akt can induce an inflammatory‐type 
response, promoting the attraction of leukocytes that can 
contribute to the angiogenic process. [123].

PlGF is a member of the VEGF family; however, its role 
in modulating tumor angiogenesis has been a subject of con-
troversy. PlGF has been reported to enhance pathological 
angiogenesis by initiating a cross-talk between VEGFR-1 

and VEGFR-2 [130], while others have demonstrated anti-
angiogenic properties of PlGF [131]. Similarly, there have 
been contradictory results regarding the efficiency of anti-
PlGF therapy in inhibiting angiogenesis and halting tumor 
growth in preclinical tumor models [132, 133].

Fibroblast growth factor‑2 (FGF2)

The mammalian fibroblast growth factor (FGF) family com-
prises 22 molecules, 18 of which interact with high affinity 
to tyrosine kinase receptors FGFR1, FGFR2, FGFR3 and 
FGFR4 [134]. FGFs are secreted glycoproteins that are 
sequestered in the extracellular matrix. To signal, FGFs are 
released from the extracellular matrix by heparinases, pro-
teases or specific FGF binding proteins, and the liberated 
FGFs subsequently bind to cell surface heparan sulphate 
proteoglycans (HPSGs) stabilizing the FGF-FGFR interac-
tion [135].

FGFs that signal through FGFR regulate a broad spectrum 
of biological functions and can involve both tumor cells and 
the surrounding stroma. These effects include cellular prolif-
eration, resistance to cell death, increased motility and inva-
siveness, enhanced metastasis as well as increased angiogen-
esis [134]. FGF-2, also known as basic FGF (bFGF), is the 
most characterized pro-angiogenic mediator in physiological 
conditions as well as during tumor progression [136, 137]. 
FGF-2 exerts its effects on endothelial cells via a paracrine 
signaling after being released by tumor and stromal cells or 
mobilized from extracellular matrix. It has been described 
that FGF-2 can promote angiogenesis acting together with 
VEGF, by inducing the secretion of MMPs, plasminogen 
activator and collagenase responsible for the degradation and 
organization of the extracellular matrix [134]. In addition, a 
recent study has identified FGF signaling as a key regulator 
of blood and lymphatic vascular development by modulating 
endothelial metabolism driven by MYC-dependent glyco-
lysis, which is crucial for endothelial cell sprouting, migra-
tion and proliferation [138]. In tumors, FGF expression has 
been associated with resistance to anti-angiogenic therapy. 
Indeed, activation of the proangiogenic FGF signaling path-
way has been proposed to be a mechanism that the tumor 
cells use to escape from VEGF-targeted therapies. A recent 
study performed in a murine breast cancer model shows that 
FGF receptor inhibition leads to decreased vessel density 
and restored tumor sensitivity to anti-VEGF therapy [139].

The platelet derived growth factor (PDGF) family

The PDGF family comprise four heparin-binding poly-
peptide growth factors denoted A, B, C, and D. PDGF is 
secreted by activated platelets, endothelial, epithelial, glial 
cells as well as inflammatory cells and it targets a broad 
spectrum of cell type including, fibroblasts, pericytes, 
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smooth muscle cells, glial cells or mesangial cells [140]. 
PDGF signals through two cell-surface tyrosine kinase 
receptors, PDGFRα and PDGFRβ, and regulates many bio-
logical functions including angiogenesis, by promoting ves-
sel maturation and recruitment of pericytes and by inducing 
upregulation of VEGF [141]. All members of the PDGF 
family display potent angiogenic activity in vivo, however, 
the PDGF-B/PDGFRβ axis is the most characterized. The 
importance of PDGF in vessel function was demonstrated 
by lethality of mice lacking components of the PDGF-B/
PDGFRβ pathway, displaying vessel leakage and micro-
hemorrhage [142].

PDGF and PDGFR are involved in cancer development 
and progression through autocrine stimulation of tumor cell 
growth and paracrine stimulation on stromal cells inducing 
tumor-associated angiogenesis. In an experimental model 
of glioma, PDGF-B enhanced angiogenesis by stimulating 
VEGF expression in tumor-associated endothelial cells and 
by recruiting pericytes in newly-formed vessels [143].

Angiopoietins

Angiopoietins (ANGPTs) are growth factors that regulate 
development, maintenance and remodeling of the blood ves-
sels, and they play a key role in controlling tumor growth 
and angiogenesis. The human angiopoietin family comprises 
the ligands ANGPT-1, ANGPT-2, and ANGPT-4 [144, 145]. 
Angiopoietins signaling is mediated by endothelial recep-
tor tyrosine kinases TIE-1 and TIE-2, TIE-2 being the best 
characterized [146].

ANGPT-1 and ANGPT-2 both bind to TIE-2, but elicit 
very different responses. ANGPT-1 promotes vessel matura-
tion and stabilization of the newly-formed vessels through 
the Akt/survivin pathway. In contrast, ANGPT-2 has been 
shown to induce vessel destabilization, pericytes detach-
ment, vessel sprouting and angiogenesis [147]. Increased 
ANGPT-2 expression has been observed in activated 
endothelial cells during inflammation and in tumor-associ-
ated vessels of several human cancers in response to hypoxia 
and VEGF [148]. Moreover, ANGPT-2 has been identified 
as an autocrine regulator of endothelial cell inflammatory 
response by sensitizing endothelial cells towards TNF and 
inducing upregulation of adhesion molecules [149].

Upregulation of ANGPT-2 in glioblastoma has been asso-
ciated with reduced efficacy of anti-VEGF treatment and 
increased therapy resistance [150]. Preclinical studies have 
demonstrated beneficial effects on inhibiting tumor pro-
gression by dual inhibition of ANGPT-2/VEGFR2. Indeed, 
simultaneous ANGPT-2 and VEGFR2 inhibition impairs 
tumor growth, prolong vessel normalization and blocks 
macrophage recruitment improving survival of glioma bear-
ing mice [151, 152]. Co-targeting of ANGPT-2/VEGFR2 is 

also effective in other murine tumor models, including early 
breast cancer, colorectal and renal cancer [153].

Eph/ephrin signalling

The Eph proteins belong to the superfamily of receptor 
tyrosine kinases and include 14 human type 1 transmem-
brane protein members. The Eph proteins are divided in 
two subgroups, EphA and EphB based on their sequence 
homologies and the ability to bind their ligands, the ephrins. 
The EphA subgroup includes nine members (EphA1-A8 
and A10) and the EphB subgroup five members (EphB1-
B4, B6). Unlike other tyrosine kinases whose ligands are 
soluble proteins, the Ephs ligands are associated with the 
plasma membrane of expressing cells and are classified in 
two subclasses based on the type of membrane binding. The 
ephrins A include six members (A1–A6) and are attached 
to the membrane by a glycosylphosphatidyl-inositol (GPI) 
domain. The Ephrins B are single pass type 1 transmem-
brane proteins and this subclass includes three members 
(B1–B3) [154].

A unique features of Eph receptors and their membrane 
anchored ligands is their ability to mediate bi-directional sig-
nals (forward and reverse signal) between adjacent cells. The 
“forward signal” occur when Eph/ephrin signal transduce 
into receptor-binding cell and the “reverse signal” when the 
ligand-receptor interaction leads to transduction into the 
ligand-expressing cell, reviewed in [155].

Ephrins and Eph receptors are involved in several pro-
cesses that occur during embryogenesis including vascular 
development, tissue-border formation, cell migration and 
axon guidance [156, 157]. However, an important role Eph/
ephrins system has also been found in pathological con-
ditions such as cancer [158, 159]. Many ephrins and Eph 
receptors are upregulated in human tumors such as breast, 
colon, liver, brain, prostate and melanoma and are often 
associated with tumor progression and metastasis [158, 
159]. On the other hand, also downregulation of Eph recep-
tors can lead to increased metastasis as shown for EphA1 in 
colorectal cancer, EphA7 in prostate carcinomas, and EphB6 
in melanoma [160, 161].

Several studies directly associate Eph/ephrins system to 
tumor angiogenesis. Ogawa et al. [162] was one of the first to 
report tumor vasculature-specific expression of EphA2 and 
ephrinA1 in blood vessels of preclinical models of breast 
carcinoma and Kaposi’s sarcoma. Subsequently, it was found 
that blocking EphA receptor signalling using soluble EphA 
receptors decreases tumor vascular density, tumor volume 
and cell proliferation [163–165].

EphB4-ephrinB2 signalling was also associated with 
increased tumor angiogenesis and tumor progression 
[166] as well as with resistance to anti-angiogenic therapy 
[167]. Indeed, in this preclinical study of glioma, EphB4 
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overexpression was associated with alterations in vascular 
morphogenesis, pericyte coverage, cellular proliferation 
and apoptosis, inducing a vascular phenotype resistant to 
therapy. Furthermore, a recent study identified EphrinB2 
as a regulator of perivascular invasion and proliferation of 
glioblastoma stem-like cells [168].

Importantly, a connection between ephrins and VEGF 
signalling has also been shown. In particular, it was found 
that ephrin-B2 is able to control VEGF signalling by induc-
ing VEGFR2 and VEGFR3 internalization, thereby regulat-
ing angiogenesis and lymphangiogenesis in physiological 
conditions as well as during tumor progression [169, 170].

Apelin/APLNR pathway

Apelin (APLN) is an endogenous peptide-ligand of the G 
protein-coupled receptor APJ (APLNR) [171]. The APLN/
APLNR signaling pathway is involved in developmental 
angiogenesis, where the APLNR expression is predomi-
nantly restricted to the ECs of the developing vascular sys-
tem and APLN regulates vascular patterning in the embryo 
[172–174]. APLN/APLNR signaling has key function in 
several physiological processes like cardiac function, angio-
genesis, metabolism and body fluid homeostasis, and also 
in pathological conditions like heart failure, cancer, obesity 
and diabetes (reviewed in detail [175]).

The APLN/APLNR pathway is upregulated in malignant 
cells in many tumor types [174, 176, 177], as well as in 
tumor endothelial cells [178], and elevated Apelin levels are 
associated with disease progression and poor clinical out-
come [176, 179–181]. Apelin expression in tumors is regu-
lated by hypoxia [181] and is suggested to promote tumor 
growth in several ways. Apelin directly stimulates tumor cell 
proliferation [181–183], tumor cell migration and metasta-
sis [184, 185]. Apelin also stimulates neoangiogenesis and 
microvascular proliferation within the tumor, leading to 
enhanced tumor growth [174, 176, 186, 187].

The clinical outcome of targeting APLN/APLNR path-
way for cancer therapy depends on the tumor type. In mod-
els of lung and breast cancer, targeting Apelin prevented 
resistance associated with anti-angiogenic therapy by reduc-
ing tumor growth, metastasis and improving vessel func-
tion [188]. In models of glioma, targeting Apelin promoted 
invasiveness of tumor cells positive for APLNR. However, 
combined targeting of VEGFR2 and Apelin improved sur-
vival of glioma bearing mice [189]. In another glioma study 
targeting APLNR with a competitive antagonist reduced 
tumor growth in mice [190]. In a renal cell carcinoma study, 
APLNR expression in a subset of patients was found to be 
negatively correlated with tumor PD-L1 expression [177]. 
This also indicates a role of APLN/APLNR signaling in the 
regulation of immunological processes, which needs to be 
further investigated.

Chemokines

Chemokines are a large family of small secreted proteins 
with conserved cysteine residues that act through binding 
G-protein linked chemokine receptors with seven trans-
membrane structures. Depending on the number of amino 
acids separating the cysteine residues that make up the 
disulfide bonds that are required for structural integrity, 
chemokines are classified into CC, CXC, XC and CX3C 
subclasses [191]. The CXC chemokines are further divided 
into ELR + or ELR− groups depending on the presence 
or absence of a Glu-Leu-Arg motif preceding the first 
cysteine residue in the N-terminus, which is essential to 
regulate chemotaxis across endothelium. Chemokines 
mediate specific homing of progenitor cells and leukocytes 
expressing their cognate receptors. In cancer, chemokines 
contribute to tumor angiogenesis either directly through 
binding chemokine receptors expressed on endothelial 
cells, or indirectly through recruitment of inflammatory 
cells and progenitors.

ELR + CXC chemokines, including CXCL1, CXCL2, 
CXCL3, CXCL5, CXCL6, CXCL7 and CXCL8 enhance 
angiogenesis through binding to their common recep-
tor CXCR2. CXCR2 can be expressed in microvascular 
endothelial cells [192], and in tumor vessels in several types 
of human cancer [193, 194]. Inhibition of CXCR2 decreased 
tumor growth and angiogenesis in a genetic murine model 
of pancreatic ductal adenocarcinoma [195]. In human ovar-
ian carcinoma cells, CXCR2 activation induced angiogen-
esis through enhanced expression of VEGF and knockdown 
reduced tumorigenesis in nude mice [196]. Expression of 
ELR + chemokines may also induce angiogenesis indi-
rectly, since CXCR2 can be expressed on neutrophils and is 
involved in leukocyte arrest prior to transendothelial migra-
tion [197]. Among the CXC ELR + chemokines, especially 
CXCL8 has been found to be important for tumor angio-
genesis in several tumor types [198, 199]. It can support 
endothelial survival and induce release of pro-angiogenic 
factors such as VEGF, MMP-2 and MMP-9 [200–203]. 
CXCL8 is a strong neutrophil attractant, and induces neu-
trophil respiratory burst upon recruitment [204].

CXCL12/SDF1 binds to CXCR4 and is the only CXC 
ELR- chemokine that is directly pro-angiogenic and chem-
otactic, while other chemokines in this group, including 
CXCL4, CXCL9 CXCL10, CXCL11 and CXCL14 have 
angiostatic effects [205]. CXCR4 is enriched in tip cells 
and highly expressed in tumor vessels [11, 206]. Hypoxia-
induced stabilization of HIF1a leads to up-regulation of 
CXCL12, which in turn mediates recruitment of CXCR4-
expressing endothelial progenitor cells from the bone mar-
row, thereby contributing to vasculogenesis [207]. In addi-
tion, CXCL12/CXCR4 is involved in vessel co-option and 
trafficking of leukocytes to the tumor.
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CCL2 is expressed in tumors and affects endothelial per-
meability and metastasis through interacting with CCR2 
expressed on tumor endothelial cells [208]. Endothelial 
progenitor cells expressing CCR2 can be recruited from 
the circulation in response to tumor expression of CCL2, 
contributing to tumor angiogenesis [209]. The necessity 
of CCL2 for mobilization of endothelial progenitor cells 
was demonstrated in a genetic murine breast cancer model, 
exhibiting reduced numbers of these cells in the blood in 
Her2/neu CCL2-deficient mice [209]. Survival of Her2/neu 
mice was increased by treatment with CCXC872, a small 
molecule antagonist targeting CCR2.

Other proangiogenic factors contribute to tumor 
angiogenesis

During tumor progression, expression of various matrix 
metalloproteases (MMPs) either by the tumor cells or by 
surrounding stromal cells, helps to remodel the ECM and 
release ECM- and membrane-bound growth factors pro-
moting tumor progression, metastasis and tumor-associated 
angiogenesis. Transcription of MMPs can be induced by 
various signals including cytokines, growth factors, and 
mechanical stress. Secretion of MMP-2 and MMP-9 activate 
the latent form of transforming growth factor-beta (TGF-β), 
further promoting tumor invasion and angiogenesis [210]. 
TGF-β is an important regulator of neovascularization in 
tumor and it acts in a context-dependent manner by promot-
ing angiogenesis via stimulation of pro-angiogenic factors 
like VEGF or inhibiting tumor angiogenesis by impairing 
endothelial cell proliferation and migration or by inducing 
apoptosis [211].

Tissue necrosis factor-α (TNF-α) is an inflammatory 
cytokine released by macrophages, mast cells and T-lym-
phocytes and it is also implicated in tumor progression, 
cell survival, differentiation, invasion, metastases as well 
as secretion of cytokines and pro-angiogenic factors. The 
effect of TNF on angiogenesis, however, is controversial. 
Indeed, it has been reported that depending on its temporal 
expression during the angiogenic process it can exert pro- 
or anti-angiogenic effects by regulating the expression of 
VEGFR2 [212].

Another pro-angiogenic factor expressed in tumors is 
pleiotrophin (PTN), a small heparin-binding cytokine that 
is abundant in the brain during embryonic development and 
is re-induced during pathological conditions [213]. PTN 
level is increased in several types of cancer including gli-
oma, breast cancer, lung cancer, melanoma, neuroblastoma, 
pancreatic cancer, and prostate cancer, and may increase 
tumor growth either through direct effects on tumor cells or 
through stimulation of angiogenesis and remodeling of the 
tumor microenvironment [214, 215].

High levels of PTN correlates with poor survival of 
patients with astrocytomas and is associated with vascular 
abnormalities. Studies in murine glioma models have pro-
vided evidence that PTN can enhance tumor growth through 
stimulation of the tumor vasculature [216].

Many other factors potentially regulating angiogenesis 
in tumors have been identified, but have not yet been fully 
explored. Neurite outgrowth inhibitor or Nogo belongs to 
the reticulon 4 (RTN4) protein families, which consists of 
three major splicing isoforms (NogoA, Nogo-B, and Nogo-
C) with distinct expression patterns that binds to NgR recep-
tors [217, 218]. An essential role of Nogo-B in regulating 
vascular remodeling was reported in Nogo-A/B-deficient 
mice [219]. Mice that are deficient for Nogo-A/B exhibit 
reduced arteriogenesis and angiogenesis in vivo due to 
impaired macrophage infiltration [219, 220]. More recently 
it has been reported that the expression level of Nogo-B is 
upregulated in hepatocellular carcinoma and Nogo-B defi-
ciency suppressed the tumor growth and metastasis [221]. 
The expression level of Nogo-B correlated with tumor vessel 
density in hepatocellular carcinoma and anti-Nogo-B anti-
body inhibited tumor growth in vivo via suppressing tumor 
angiogenesis [222].

Hypoxia or genetic alterations leading 
to stabilization of HIF induce tumor 
angiogenesis

Hyper-proliferation of tumor cells results in increased oxy-
gen consumption, and when the tumor mass surpass the 
blood supply the tumor becomes hypoxic. Hypoxia induces 
production of pro-angiogenic factors leading to enhanced, 
rapid and chaotic blood vessel formation. Cellular adapta-
tion to hypoxia is primarily mediated by a family of tran-
scriptional regulators, hypoxia-inducible factors (HIFs). 
HIFs are heterodimers consisting of an oxygen-dependent 
α-subunit (HIF-α) and an oxygen-independent β-subunit 
(HIF-β). HIF-α has three isoforms, HIF-1α, HIF-2α, and 
HIF-3α. HIF-1α being the major responsible for activating 
transcriptional responses under hypoxia [223]. Hypoxia-
induced stabilization of HIF-1α, promote the upregulation 
of several pro-angiogenic genes including VEGF, FGF and 
PDGF [224].

Genetic alterations in the oxygen-signaling pathway can 
influence the activation of HIF under normoxic condition. 
The von Hippel-Lindau (VHL) protein plays a central role in 
the oxygen-sensing pathway promoting HIFα proteosome-
mediated degradation during normoxia. Mutations in this 
gene, resulting in the stabilization of HIF-1α and activation 
of the target pro-angiogenic genes is found in many tumors 
and it is associated with tumor progression and poor patient 
outcome [225].
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Contributions of immune cells to tumor 
angiogenesis

The tumor microenvironment is comprised of a broad array 
of stromal cells, endothelial cells, immune and inflamma-
tory cells. The malignant cells and cells within the tumor 
microenvironment continuously interact with each other 
to develop a dynamic and tumor-promoting milieu [226]. 
Notably, there is tight and mutual interplay between the 
immune and endothelial cells. Immune cells depend on 
the expression of adhesion molecules on endothelial cells 
for extravasation into tumor tissue, where they can exhibit 
their anti-tumor properties. On the other hand, immune 
cells are a source for several soluble factors that influ-
ence angiogenesis, endothelial cell behavior and subse-
quent tumor progression. The impact of different immune 
subsets on angiogenesis and endothelial cell remodeling 
is well studied [227–229]. The contribution of the most 
prominent immune cell types (macrophages, myeloid 
derived suppressor cells, neutrophils and lymphocytes) to 
tumor angiogenesis and endothelial cell remodeling are 
discussed below.

Macrophages

Macrophages are specialized phagocytes that clear invad-
ing microbes and cell debris, present antigens to the adap-
tive immune system and release various immunomodula-
tory cytokines. They are very plastic cells, able to exist 
in a range of different phenotypes based on stimuli in the 
tissue microenvironment [230]. The two extremes of this 
range are the pro-inflammatory M1 phenotype, associ-
ated with active microbial killing, and the M2 phenotype, 
associated with immune suppression, tissue remodeling 
and angiogenesis [231]. Tumor-associated macrophages 
(TAMs) can have different phenotypes depending on the 
tumor microenvironment, but generally closely resemble 
M2 macrophages [232].

TAMs are known to modulate and support angiogen-
esis. Depletion of TAMs results in the inhibition of tumor 
angiogenesis, whereas reconstitution of TAMs promotes 
angiogenesis in murine cancer models [233, 234]. Hypoxia 
in the tumor microenvironment simulates metabolic adap-
tation of TAMs and pro-angiogenic characteristics. Pri-
marily, TAMs promote angiogenesis by producing multi-
ple proangiogenic factors facilitating the proliferation of 
endothelial cells, induction of sprouting, tube formation, 
and maturation of new blood vessels. These factors include 
VEGFA, VEGFC, VEGFD, EGF, FGF2, chemokines 
(CXCL8, CXCL12, TNFα and MCP-1), semaphorin 4D, 
adrenomedullin, and thymidine phosphorylase [231, 

235–237, 237]. TAMs release a number of angiogenesis-
modulating molecules that include enzymes (COX-2, 
iNOS) [238], matrix metalloproteinases (MMPs-1, 2, 3, 
9, and 12) [239], cathepsin proteases [240] and plasmin, 
urokinase plasminogen activator [241]. They act in syn-
ergy and trigger degradation of the basement membrane 
and extracellular matrix components, destabilizing the 
vasculature and promoting migration and proliferation of 
endothelial cells. TAMs can also promote angiogenesis by 
inhibiting the expression of angiogenesis inhibitors, such 
as vasohibin-2 [242]. TAMs expressing Tie2 (TEMs) have 
been identified to be closely associated with the blood ves-
sel and transmit angiogenic signals at least partially by the 
expression of FGF-2 [80]. TEMs support vessel stability 
by antagonizing the effect of vascular disrupting agents 
and promoting tumor growth [243].

Myeloid‑derived suppressor cells (MDSCs)

MDSCs are a heterogeneous population of immature mye-
loid cells that expand and accumulate under pathological 
conditions such as infection, trauma, autoimmune diseases 
and cancer. MDSCs are broadly classified in two sub-popu-
lations, the monocytic MDSC (M-MDSC) and granulocytic 
MDSC (G-MDSC), which exist both in humans and mice 
[244] [245]. However, there are no clear set of markers to 
differentiate G-MDSCs and neutrophils, and there has there-
fore been a debate and confusion in the field concerning the 
identity and relationship between these two cell types [246]. 
MDSC recruitment to the tumor can be induced by many dif-
ferent factors e.g. CSF3, IL-1β, and IL-6, and subsequently 
lead to activation of STAT3, rendering them potent as proan-
giogenic and immunosuppressive cells [247].

The capability MDSC regulating tumor angiogenesis 
is similar to M2-like TAMs. MDSCs promote and sustain 
tumor angiogenesis primarily by secretion of MMPs. In par-
ticular, MMP-9 is known to boost angiogenesis and stimu-
late tumor neovasculature by increasing the bioavailability 
of VEGF [248]. This initiates a feedforward loop as VEGF 
can further trigger MDSC recruitment [249]. MDSC accu-
mulation in the tumor correlates with intra-tumoral VEGF 
concentration during disease progression [250]. In the pres-
ence of VEGF, MDSCs can create a pro-angiogenic milieu 
within the tumors by secreting angiogenic factors including 
CCL2, CXCL8, CXCL2, IL-1β, ANGPT1, ANGPT2, and 
GM-CSF [251, 252]. These chemokines can further promote 
MDSCs accumulation in the tumor creating a vicious circle. 
They also express Bv8, also known as prokineticin 2, which 
plays an important role in MDSC mediated angiogenesis 
[253]. Accumulation of MDSCs in the tumor microenvi-
ronment induces resistance to anti-angiogenic therapy [254, 
255], while MDSC ablation has synergistic effects with anti-
VEGF/VEGFR treatment [249, 256].
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Neutrophils

Neutrophils are the most abundant leukocyte population, 
providing the first line of defense against invading patho-
gens. They are a rich source of soluble factors such as ROS, 
peptides, cytokines and enzymes that exert antimicrobial 
activities [257]. Neutrophils are one of the main sources of 
VEGF and are known to play an important role during physi-
ological angiogenesis, for example in endometrial angiogen-
esis during the menstrual cycle [258, 259]. Other studies 
have demonstrated that depletion of neutrophils affects neo-
vascularization in animal models of angiogenesis [260, 261].

Conclusive evidence of neutrophils involvement in tumor 
angiogenesis came from studies in the RIP1-Tag2 multi-step 
pancreatic carcinogenesis mouse model. Neutrophil deple-
tion using anti-GR1 antibodies reduced the number of dys-
plastic islets that were undergoing angiogenesis [262]. In 
addition, two subtypes of neutrophils have been reported 
at least in murine tumor models: TGFβ-independent type 
1 (N1) with antimicrobial functions, and TGFβ-dependent 
tumor-associated neutrophils (N2, TANs) possessing pro-
tumor and proangiogenic functions [263, 264]. Neutrophil 
survival and proliferation in tumors depend on CSF3-CSF3R 
mediated activation of STAT3 signaling. STAT3 activation 
in neutrophils triggers the angiogenic switch through secre-
tion of VEGF, IL-8, TNF-α, MMP9, FGF2, ANGPT-1 and 
HGF in mice [265–267]. CSF3 is also known to stimulate 
neutrophils to secrete Bv8 and induce myeloid cell mobiliza-
tion in tumors and promote myeloid-dependent angiogenesis 
[253]. MMP9-producing TANs contribute to the initiation of 
angiogenic switch and acceleration of tumorigenesis [262]. 
TANs usually lack expression of tissue inhibitors of met-
alloproteinases (TIMP1), rendering them more angiogenic 
than cells that are capable of producing TIMP1/MMP9 com-
plexes [268].

Lymphocytes

There are three major types of lymphocytes, namely T cells 
and B cells, which constitute the adaptive immune system 
and NK cells, which are part of the innate immune system. 
The contribution of lymphocytes towards tumor angiogen-
esis is not as well understood, as that of myeloid cell types.

A subset of NK cells (CD56brightCD16−KIR+, dNK cells), 
characterized by poor cytotoxicity and pro-angiogenic 
capacity have been identified in the decidua during preg-
nancy. They secrete VEGF, placental growth factor (PlGF), 
IFNγ, IL10 and CXCL8 that are critical for spiral artery 
formation and decidual vascularization [269, 270]. TGFβ 
promotes dNK cell polarization and can induce VEGF and 
PlGF secretion from healthy donor NK cells [271, 272]. In 
the presence of TGFβ, NK cells convert to type 1 innate 

lymphoid cells, leading to evasion of immune response and 
an inability to control tumor growth and metastasis [273].

The ability of B cells to modulate tumor angiogenesis 
depends on activation of STAT3. Transfer of B cells express-
ing STAT3 to Rag1−/− mice leads to enhanced tumor growth 
accompanied with increased angiogenesis. This is a result 
of an interaction between STAT3-activated B cells and 
endothelial cells through production of VEGF [274]. B cells 
also contribute to tumor angiogenesis via antibody-mediated 
activation of Fcγ receptors on TAMs, inducing secretion of 
IL-1. This leads to recruitment of myofibroblasts and promo-
tion of tumor angiogenesis [275].

T cells promote angiogenesis by secretion of pro-angi-
ogenic factors FGF-2 and heparin-binding epidermal-like 
growth factor (HB-EGF) [276]. However, the most promi-
nent T cell derived factors, such as TNF, TGFβ, and inter-
ferons (IFNs), have anti-angiogenic functions [277–279]. 
The antiangiogenic effects of IFNs are mediated by direct 
effects on endothelial cells and other cells in the tumor 
microenvironment. Treatment with IFN-α/β induced necro-
sis of endothelial cells within tumors and decreased tumor 
metastases to the liver and spleen [280]. In vitro, TNF and 
IFNs can block collagen synthesis and extracellular matrix 
formation and thus inhibit the formation of capillary-like 
structures [281, 282]. IFN-γ can inhibit neovascularization 
and induce apoptosis if endothelial cells in murine glioma 
models [277]. Type-I polarized T cells (Th1) secrete IFNγ 
and their presence in the tumor microenvironment usually 
correlates with good clinical outcome [283]. Interferon-
induced CXC family chemokines inhibit endothelial cell 
proliferation, promote Th1 type T cell, NK and DC infiltra-
tion, thereby inhibiting tumor growth. CXCL9, CXCL10 and 
CXCL11 are interferon-inducible angiostatic chemokines 
that can directly inhibit angiogenesis by binding CXCR3 on 
endothelial cells [284–286].

Anti‑angiogenic therapy: successes 
and failures

The concept of targeting angiogenesis as a means to starve 
tumors was introduced by Judah Folkman and colleagues 
48 years ago [1]. Since then, several antiangiogenic thera-
pies, mainly targeting VEGF signaling pathway have been 
developed and approved for the treatment of a variety of 
tumors (Table 1). Despite promising results showed by pre-
clinical studies, anti-VEGF monotherapy such as bevaci-
zumab, sunitinib and aflibercept among others have only 
provided limited benefits in certain tumor types including 
advanced-stage renal cell carcinoma, hepatocellular carci-
noma and colorectal carcinoma and have not shown efficacy 
in pancreatic adenocarcinoma, prostate cancer, breast cancer 
or melanoma [287]. Data obtained by the AVANT trial of 
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adjuvant bevacizumab in colorectal cancer shows evidence 
of higher incidence of relapses and deaths in bevacizumab 
treated patients due to disease progression suggesting an 

increased tumor aggressiveness after anti-angiogenic ther-
apy [288]. This is consistent with studies in experimental 
models of cancer, which correlate anti-angiogenic treatment 

Table 1   FDA approved anti-angiogenic drugs and their targets

Drug Target molecule(s) Tumor type References

Monoclonal antibodies
 Bevacizumab VEGF-A Colorectal cancer, non-small cell lung cancer, cervi-

cal cancer, ovarian cancer, renal cell carcinoma, 
glioblastoma

[4, 335–339]

 Ramucirumab VEGFR-2 gastric or gastro-oesophageal junction cancers, colo-
rectal cancer, hepatocellular carcinoma, non-small-
cell lung carcinoma

[340–343]

 Cetuximab EGFR Squamous cell carcinoma of the head and neck, colo-
rectal cancer

[344, 345]

 Panitumumab EGFR Colorectal cancer [346]
 Necitumumab EGFR Squamous non-small-cell lung cancer [347]
 Trastuzumab HER2 HER2-positive breast cancer, HER2-positive advanced 

gastric or gastro-oesophageal junction cancer
[348, 349]

 Pertuzumab HER2 HER2-positive breast cancer [350]
Tyrosine kinase inhibitors
 Sorafenib VEGFR-1, VEGFR-2, VEGFR-3, PDGFR family, RAF Hepatocellular carcinoma, renal cell carcinoma, thy-

roid cancer
[351–353]

 Sunitinib VEGFR-1, VEGFR-2, VEGFR-3, PDGFR family, Kit, 
FLT3, CSF-1R, RET

Gastrointestinal stroma tumor, pancreatic cancer, renal 
cell carcinoma

[354–356]

 Imatinib PDGFR, c-Kit, Abl Gastrointestinal stroma tumor, myeloid leukemia, 
philadelphia chromosome-positive acute lymphoblas-
tic leukemia

[357–359]

 Pazopanib VEGFR-1, VEGFR-2, VEGFR-3, PDGFR family, Kit, 
Itk, LcK, c-FMS

Renal cell carcinoma, soft tissue sarcoma [360, 361]

 Gefitinib EGFR Non-small cell lung cancer [362]
 Erlotinib EGFR Non-small cell lung cancer, pancreatic adenocarcinoma [363, 364]
 Vandetanib VEGFR-2, FGFR family, RET, BRT, Tie-2,EPH, Src 

family
Medullary thyroid cancer [365]

 Regorafenib VEGFR-2, VEGFR-3, PDGFR-β, RAF, RET, Kit Colorectal cancer, Gastrointestinal stroma tumor, 
hepatocellular carcinoma

[366–368]

 Neratinib EGFR, HER-2 HER-2 positive breast cancer [369]
 Lapatinib EGFR, HER-2 HER-2 positive breast cancer [370]
 Afatinib EGFR, HER-2 Non-small cell lung cancer [371]
 Axitinib VEGFR-1, VEGFR-2, VEGFR-3, PDGFR family, Kit Renal cell carcinoma [372]
 Cabozantinib VEGFR-2, c-Met Hepatocellular carcinoma, medullary thyroid cancer, 

renal cell carcinoma
[373–375]

 Lenvatinib VEGFR-1, VEGFR-2, VEGFR-3, FGFRs, PDGFR-α, 
KIT, RET

Hepatocellular carcinoma, thyroid cancer [376, 377]

Receptor fusion proteins
 Ziv-afliber-

cept (VEGF 
trap)

VEGF-A, VEGF-B, PlGF Colorectal cancer [378]

Immunomodulatory agents with anti-angiogenic effect
 Thalidomide TNF-α, ILs, IFNs, VEGF, bFGF Multiple myeloma [379]
 Lenalidomide TNF-α, ILs, IFNs, VEGF, bFGF Multiple myeloma [380]

mTOR inhibitor with anti-angiogenic effect
 Everolimus mTOR Renal cell carcinoma, breast cancer, pancreatic cancer, 

gastrointestinal cancer, lung neuroendocrine tumor, 
subependymal giant cell astrocytoma

[381–385]
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with increased local tumor invasiveness and formation of 
distant metastasis [289–292]. In glioma, numerous clinical 
studies collectively show that anti-angiogenic treatment can 
prolong progression-free survival but fails to improve overall 
survival [293]. The limited success of anti-angiogenic ther-
apy in glioma is likely at least in part due to an escape from 
therapy by invasive tumor cells co-opting the vasculature 
of the surrounding brain tissue. Several molecular mecha-
nisms have been identified that may explain resistance and 
increased invasion after anti-angiogenic therapy in glioma, 
including mesenchymal transition of tumor cells, up-reg-
ulation of pro-angiogenic factors, activation of MET and 
up-regulation of MMPs [293–296]. Metastasis-promoting 
effects have mainly been obtained from experimental models 
and clear evidence from clinical studies is still lacking. The 
reasons underlying insufficient efficacy of vessel-targeting 
strategies have been extensively investigated, and include 
stroma and tumor cell mechanisms of resistance [287, 297].

Mechanisms of resistance to anti‑angiogenic 
therapy

Resistance to anti-angiogenic therapy is an important issue 
that likely explains the variable response in different types of 
tumors and the limited overall survival benefits. Resistance 
can be classified into intrinsic resistance, observed from the 
outset of the therapy, and acquired resistance, observed after 
an initial positive response to therapy [297]. Several mecha-
nisms have been proposed for anti-angiogenic therapy resist-
ance, including direct effects of hypoxia such as induction of 
tumor invasion and metastasis, co-option of normal vessels 
in the surrounding tissue, vascular mimicry as well as the 
contribution of stromal cells including recruitment of TAMs, 
EPC and pro-angiogenic myeloid cells as well as the upregu-
lation of alternative pro-angiogenic factors [297] [298].

As already mentioned, anti-angiogenic therapy can pro-
mote tumor invasion and metastasis in pre-clinical cancer 
models, which might be triggered by increased hypoxia due 
to vessel depletion. Indeed, the transcription of HIF-regu-
lated genes controls different steps of tumor invasion and 
metastasis, including EMT, activation of MET signaling, 
recruitment of stromal cells, vascular mimicry and vessel 
co-option [299]. Vessel co-option is defined as a non-angi-
ogenic process whereby tumor cells directly utilize the pre-
existing vasculature of the non-malignant tissue as a supply 
of oxygen and nutrients, resulting in resistance to anti-angi-
ogenic therapy [5]. The first evidence of vessel co-option 
as a mechanism of acquired resistance to anti-angiogenic 
therapy was demonstrated by a study in a mouse model 
of hepatocellular carcinoma investigating the response to 
sorafenib treatment [300]. In addition to vessel co-option, 
tumor cells can develop vascular mimicry as an alternative 
blood transportation system to counteract the lack of oxygen 

and nutrient upon anti-angiogenic therapy. Indeed, preclini-
cal studies conducted in renal carcinoma model reported that 
the VEGFR2 inhibitor sunitinib increases vascular mimicry 
under hypoxia by transforming tumor cells into endothelial-
like cells resulting in tumor resistance [301].

Recruitment of stromal cells, immune cells and pro-
genitors is another potential mechanism for resistance to 
anti-angiogenic therapy. In particular, many studies have 
pointed out an important role of bone marrow derived cells 
(BMDCs) in this aspect. Recruitment of BMDCs in glio-
blastoma can cause resistance to vatalanib treatment and the 
depletion of BMDCs can potentiate the effects of this anti-
angiogenic drug [302]. Release of proangiogenic factors and 
increased hypoxia in response to vascularization blockade 
can lead to recruitment of endothelial progenitor cells (EPC) 
from the bone marrow, which contribute to tumor vasculari-
zation and have been linked to development of resistance 
to anti-VEGF therapy [303]. Moreover, recruitment of pro-
angiogenic myeloid cells is also considered to be a mecha-
nism whereby tumors bypass the inhibitory effects of anti-
angiogenics drugs. Tumors can recruit different populations 
of myeloid cells with pro-angiogenic properties which in 
turn can be used as an alternative source of pro-angiogenic 
chemokines and cytokines [304].

In addition, alternative pro-angiogenic signaling path-
ways including ANGPT-2, FGF-2, IL-8 can be induced by 
tumor cells in response to a pharmacological inhibition of 
the VEGF signaling pathway [297]. In recent years, pro-
gress has been made towards understanding the mechanism 
of action of anti-angiogenic drugs through evaluating the 
effects of anti-angiogenic inhibitors on tumor vessels in pre-
clinical and clinical studies. An important aspect that have 
emerged is the broad spectrum of effects covered by the 
angiogenic inhibitors and the diversity in terms of therapeu-
tic response [305].

Mechanisms mediating the therapeutic 
effect of angiogenesis inhibitors

Although anti-angiogenic drugs were initially designed to 
block blood vessel formation, their ability to control tumor 
growth may be due to several different mechanism, which 
are not mutually exclusive. To improve vascular targeting, 
a thorough understanding of the cellular and molecular 
mechanisms that hinder tumor progression in response to 
anti-angiogenic therapy in specific tumors is necessary. The 
possible mechanism of actions of angiogenesis inhibitors 
on tumor blood vessels can be broadly classified into three 
categories: (a) vessel depletion, (b) vessel normalization, 
and (c) immune activation (Fig. 3).
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Fig. 3   Effects of anti-angiogenic therapy. The mechanism of actions 
of angiogenesis inhibitors on tumor blood vessels can be classified 
into three categories: a vessel depletion, b vessel normalization, and 
c immune activation. a Vessel depletion result in tumor cell starva-
tion and an increased tissue hypoxia. Enhanced hypoxia may promote 
the recruitment of pro-angiogenic myeloid cells and the mobilization 
of tumor cell from the hypoxic tissue to the normal tissue as well as 
co-option of normal vessels. In addition, the depletion of tumor ves-
sels results in an inefficient delivery of anti-cancer drugs. b Nor-
malization of tumor blood vessels achieved by restored endothelial 

cell junctions, increased pericytes coverage and re-established blood 
flow result in decrease tissue hypoxia and increased drugs delivery. 
In addition, vessel normalization promote the expression of endothe-
lial adhesion molecule facilitating immune cell infiltration. c Immune 
activation, induced by anti-angiogenic drugs include dendritic cell 
(DC) maturation, activation and infiltration of T-cell as well as the 
polarization of tumor associated macrophages (TAM) towards an 
M1-like phenotype. In addition, a decrease in regulatory T-cells 
(Treg), myeloid derived suppressor cells (MDSCs) and mast cells 
have been observed in response to anti-angiogenic therapy
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Vessel depletion

The development of anti-angiogenic drugs was initiated by the 
hypothesis that starving tumors by blocking angiogenesis would 
slow tumor progression and improve patient survival [1]. Early 
preclinical studies were promising and demonstrated a signifi-
cant tumor growth delay and reduced metastasis. However, the 
effects of anti-angiogenic agents administrated as monotherapy 
in cancer patients during clinical trials often failed to show sig-
nificant survival benefits. These observations suggest that anti-
angiogenic therapy alone is insufficient to induce substantial 
tumor shrinkage in most cancer patients. Particular attention 
must be placed on the effects of tumor vessel depletion on the 
tumor microenvironment as well as the development of anti-
angiogenic resistance. Indeed, as mentioned above, hypoxia 
induced by vessel depletion can activate several mechanisms 
used by tumor cells to counteract the lack of oxygen and nutri-
ents such as increased tumor invasiveness and co-option of 
normal vessels resulting in ineffective anti-angiogenic therapy.

Several studies demonstrate that before reaching complete 
depletion of the vascular bed, anti-VEGF drugs induce an 
early and transient phase in which vessels assume normal 
shape and function [306, 307]. This vessel normalization 
window is characterized by a rescue of the balance between 
pro- and anti-angiogenic factors and it can promote increase 
tumor drug delivery and efficacy.

Vessel normalization

Despite a high vascular density, tumors are usually hypoxic 
and nutrient-deprived since the tumor vessels are abnormal, 
leaky and malfunction. Such abnormal vasculature signifi-
cantly compromises the efficacy of most anti-cancer thera-
pies by limiting the delivery of drugs as well as promoting 
resistance to treatment.

The vessel normalization hypothesis, introduced by Rakesh 
Jain in 2001 [308] suggests that rather than depleting ves-
sels, a sub-maximal doses of anti-angiogenic therapy can 
restore the normal function and structure of tumor vessels 
and improve drug delivery. This hypothesis could explain 
the increased progression-free survival observed in patients 
treated with anti-angiogenic drugs combined with chemother-
apy as compared to treatment with chemotherapy alone [309]. 
Evidence supporting the idea that vessel normalization can 
improve cancer therapy has been obtained in mouse models. 
These studies show that improving tumor vessel perfusion and 
oxygenation ameliorates the efficacy of conventional therapies 
such as radiotherapy, chemotherapy and immunotherapy and 
reduces metastatic dissemination [309, 310].

Evidence that support the notion that vessel normalization 
occur in response to anti-angiogenic therapy has also been 
obtained from clinical studies. The functionality of the tumor 
vasculature in glioblastoma patients treated with anti-VEGF 

therapies has been evaluated by magnetic resonance imag-
ing (MRI). MRI analysis of patients treated with cediranib 
revealed a decrease in vessel diameter, vascular permeability, 
and edema. More importantly, survival of patients with recur-
rent glioblastoma following cediranib-treatment was found to 
correlate with a vascular normalization index [311]. Improved 
perfusion occurred only in a subset of glioblastoma patients 
treated with cediranib, and was associated with improved 
patient overall survival [312]. These observations suggest that 
the degree of vessel normalization in terms of improved perfu-
sion may be used as a tool to distinguish responders to anti-
angiogenic therapy from non-responding patients [312, 313].

Immune activation

Pro-angiogenic factors in tumors induce down-regulation of 
adhesion molecules on endothelial cells in the tumor vascula-
ture and induce anergy to inflammatory signals such as TNFα 
and IL-1. Hereby, tumors with an angiogenic phenotype may 
escape the infiltration of cytotoxic leukocytes [111]. Using 
anti-angiogenic agents can potentially overcome the down-
regulation of adhesion molecules and the unresponsiveness to 
inflammatory signals [314]. Consistent with this, normaliza-
tion of tumor vasculature through anti-VEGF therapy in com-
bination with adoptive T-cell transfer was found to increase 
tumor T-cell infiltration and improve survival in murine mela-
noma model [314].

Inhibition of VEGF signaling in the tumor microenviron-
ment may be beneficial not only in terms of improving immune 
cell recruitment, but can also directly improve immune cell 
activation. Normalization of the tumor vascular network and 
decreased hypoxia can promote T cell infiltration and induce 
polarization of TAM to an M1-like phenotype [315]. Anti-angi-
ogenic therapy can also reduce the prevalence of immunosup-
pressive cells. Decreases in Treg recruitment as well as MDSC 
has been reported after sunitinib treatment in tumor-bearing 
mice and in patients with metastatic renal carcinoma [316, 317]. 
In addition, inhibition of angiogenic signaling may improve 
T-cell priming and activation by improving dendritic cell 
(DC) maturation. Anti-anigogenic therapy using the VEGF-
neutralizing antibody bevacizumab was found to increase the 
number and the maturation of DCs in patients with metastatic 
non-small cell lung carcinoma [318]. These observations indi-
cate that immune activation is an additional mechanism that can 
contribute to response to anti-angiogenic therapy.

Concluding remarks—arising opportunities 
for vascular targeting in cancer

Tumor vessels are often dysfunctional and anergic to 
inflammatory stimuli, leading to a hostile tumor micro-
environment that fuel cancer progression and aggravate 
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therapeutic approaches. Current vascular targeting strate-
gies are based on inhibition of key angiogenic signaling 
pathways known to promote tumor angiogenesis. Although 
several anti-angiogenic drugs have been approved, intrin-
sic and acquired resistance to therapy limit their efficacy. 
An increased understanding of tumor vessel phenotype 
and mechanisms involved in treatment response and resist-
ance to therapy is necessary to overcome the hurdles that 
prevent successful control of the angiogenic response in 
tumors. Alternatively, vascular targeting should instead 
be designed to target the tumor vessels in new ways that 
are conceptually different from inhibition of angiogen-
esis. This may involve altering the timing and dosing of 
already existing anti-angiogenic therapy in combination 
with other drugs, or development of novel therapeutics to 
either directly target the tumor vessels or optimize their 
function to fit the cancer therapy at hand.

Differential gene expression in tumor vessels 
provides new tools for vascular targeting

The fact that tumor vessels differ molecularly from their 
normal counterparts can be used to develop treatment 
strategies that specifically target malignant cells and 
tumor vasculature. Therapeutic vaccination strategies to 
raise endogenous antibodies against antigens specifically 
expressed by tumor vasculature have shown efficacy in 
pre-clinical cancer models [319]. Prophylactic immuni-
zation of the alternatively spliced extra domain (ED)-B 
of fibronectin efficiently reduced growth of syngeneic 
subcutaneous tumors [320], and therapeutic vaccination 
against ED-A after tumor development reduced metastatic 
dissemination in the MMTV-PyMT model of metastatic 
mammary carcinoma [321]. Antibodies targeting tumor 
vessel markers have also been used. Blocking the tumor 
endothelial marker TEM8/anthrax toxin receptor 1 using 
antibodies raised against the extracellular domain inhib-
ited angiogenesis, decreased growth of human tumor 
xenografts and increased the effect of anticancer drugs 
[322]. Conjugating TEM8-targeting antibodies with cyto-
toxic monomethyl auristatin E was successful in specifi-
cally directing the drug to the tumor microenvironment of 
orthotopic tumors and patient derived xenografts, signifi-
cantly inducing regression or eradication of tumor growth 
in pre-clinical models [323]. Using an alternative strategy, 
targeting tumor endothelium and TEM8-positive malig-
nant cells by employing TEM8-specific CAR T cells was 
effective in treating triple negative breast cancer (TNBC) 
patient derived xenograft (PDX) models and metastatic 
TNBC cell-line xenografts [324]. Peptides that specifically 
bind tumor endothelial cells have also been used to target 
either therapeutic antibodies or chemokines to the tumor 

microenvironment to improve efficacy and decrease toxic-
ity [325, 326].

Tailoring tumor vessels to optimize cancer therapy

Going beyond anti-angiogenesis and vascular normalization, 
strategies that can alter vessel phenotype to optimize specific 
types of cancer therapy are quickly emerging. It is already 
established that targeting VEGF/VEGFR signaling can 
enhance the efficacy of cancer immunotherapy by increas-
ing expression of adhesion molecules and chemokines nec-
essary for capture and transendothelial migration of T-cells 
[327, 328]. Several clinical trials have been initiated aimed 
at improving immunotherapy by combining checkpoint 
inhibitors with vascular targeting (http://clini​caltr​ials.gov) 
[327, 328]. To provide an even more efficient gateway for 
T-cells to enter the tumor microenvironment, tumor vessels 
can be induced to differentiate to high-endothelial venules 
(HEV). HEV have a distinct morphology, built up by cuboi-
dal endothelial cells, and they express chemokine and adhe-
sion molecules that mediate efficient recruitment of lympho-
cytes into the tissue [329]. Depletion of Tregs in a model of 
fibrosarcoma led to HEV neogenesis, enabling recruitment 
of T-cells into the tumor [330]. The presence of HEV within 
the tumor was a pre-requisite for tumor control after Treg 
depletion. Subsequently, it was found that activated CD8+ T 
cells induced HEV development within the tumor after Treg 
depletion [331]. Consistent with a role of activated T-cells 
in HEV neogenesis, combining anti-angiogenic therapy with 
anti-PD-L1 immunotherapy was sufficient to induce HEVs 
in several orthotopic and genetically engineered mouse 
models of cancer, stimulating tumor immunity [332]. Spe-
cific targeting of LIGHT/TNFSF14 to tumor vessels using 
vascular targeting peptides improved vessel functionality, 
activated endothelial cells and induced formation of HEV 
in murine glioblastoma, associated with enhanced accumu-
lation of lymphocytes [333]. With respect to brain tumors, 
strategies that transiently open the blood brain barrier to 
enable delivery of drugs are of considerable interest [334]. 
The observation that paracrine signaling in WNT-medullo-
blastoma was associated with fenestrated tumor vessels that 
lack ABC transporters suggests that brain tumor vessels can 
indeed be modulated to allow a better penetration of drugs 
[117]. This exciting possibility has yet to be explored thera-
peutically. It is necessary to gain a deeper understanding of 
how tumor vessel function is altered in specific cancer types, 
and how vessel phenotype can be modulated. This may lead 
to new vascular targeting strategies aimed at tailoring vessel 
function to optimize drug response.
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