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ABSTRACT Antibiotic resistance is a major problem in Salmonella enterica serovar
Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are preva-
lent in parts of Asia and Africa and are often associated with the dominant H58 hap-
lotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic
cases of resistance to third-generation cephalosporins or azithromycin have also
been reported. Here, we report the first large-scale emergence and spread of a
novel S. Typhi clone harboring resistance to three first-line drugs (chloramphenicol,
ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-
generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug
resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since
November 2016. Additionally, a single case of travel-associated XDR typhoid has re-
cently been identified in the United Kingdom. Whole-genome sequencing of over 80
of the XDR isolates revealed remarkable genetic clonality and sequence conserva-
tion, identified a large number of resistance determinants, and showed that these
isolates were of haplotype H58. The XDR S. Typhi clone encodes a chromosomally
located resistance region and harbors a plasmid encoding additional resistance ele-
ments, including the blaCTX-M-15 extended-spectrum �-lactamase, and carrying the
qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plas-
mid exhibited high sequence identity to plasmids found in other enteric bacteria
isolated from widely distributed geographic locations. This study highlights three
concerning problems: the receding antibiotic arsenal for typhoid treatment, the abil-
ity of S. Typhi to transform from MDR to XDR in a single step by acquisition of a
plasmid, and the ability of XDR clones to spread globally.

IMPORTANCE Typhoid fever is a severe disease caused by the Gram-negative bac-
terium Salmonella enterica serovar Typhi. Antibiotic-resistant S. Typhi strains have be-
come increasingly common. Here, we report the first large-scale emergence and
spread of a novel extensively drug-resistant (XDR) S. Typhi clone in Sindh, Pakistan.
The XDR S. Typhi is resistant to the majority of drugs available for the treatment of
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typhoid fever. This study highlights the evolving threat of antibiotic resistance in
S. Typhi and the value of antibiotic susceptibility testing and whole-genome se-
quencing in understanding emerging infectious diseases. We genetically character-
ized the XDR S. Typhi to investigate the phylogenetic relationship between these
isolates and a global collection of S. Typhi isolates and to identify multiple genes
linked to antibiotic resistance. This S. Typhi clone harbored a promiscuous antibiotic
resistance plasmid previously identified in other enteric bacteria. The increasing anti-
biotic resistance in S. Typhi observed here adds urgency to the need for typhoid
prevention measures.

KEYWORDS antibiotic resistance, Salmonella, Typhi, typhoid

Typhoid fever remains a significant public health threat in low- and middle-income
countries, with an estimated ~200,000 typhoid-associated deaths each year (1).

Typhoid fever is caused by the bacterial pathogen Salmonella enterica subsp. enterica
serovar Typhi (S. Typhi), a human-restricted monophyletic serovar of S. enterica. S. Typhi
is transmitted from human to human by the fecal-oral route, often via contaminated
water. Vaccination, access to clean water, and improved sanitation are effective means
to prevent typhoid. Antibiotics are also vital to the treatment of typhoid, but antibiotic-
resistant S. Typhi strains have become increasingly prevalent.

Historically, the first-line treatments for typhoid have been ampicillin, trimethoprim-
sulfamethoxazole, and chloramphenicol (2). S. Typhi strains with resistance to these
three antibiotics are considered multidrug resistant (MDR), and such isolates were first
observed in the late 1970s to early 1980s. Resistance to the second-line antibiotics the
fluoroquinolones has also been frequently reported since these became the preferred
treatment in regions with MDR infections. Ceftriaxone, a third-generation cephalospo-
rin, and azithromycin, a macrolide, are now also used to treat typhoid fever when other
options cannot be used (2). However, sporadic cases of ceftriaxone- or azithromycin-
resistant S. Typhi have recently been reported.

Over the past two decades, a dominant, commonly MDR, haplotype of S. Typhi
called H58 has been spreading globally (3). It is prevalent across South and Southeast
Asia and parts of Africa and Oceania. Multiple local outbreaks of typhoid have been
linked to various sublineages of H58 (4–7).

The transfer of antimicrobial resistance (AMR) genes between bacteria is commonly
facilitated by plasmid or transposon exchange. In H58, as with other S. Typhi clades, the
AMR genes are generally associated with an IncHI1 plasmid. Such plasmids harbor a
composite transposon that can carry multiple resistance genes, including blaTEM-1

(ampicillin resistance), dfrA7, sul1, sul2 (trimethoprim-sulfamethoxazole resistance),
catA1 (chloramphenicol resistance), and strAB (streptomycin resistance) genes. This
composite transposon has also been found integrated into the chromosome in some
H58 S. Typhi lineages (3, 5). Ceftriaxone resistance, although previously uncommon in
S. Typhi, is associated with the acquisition of an extended-spectrum �-lactamase (ESBL)
gene.

Reduced susceptibility to fluoroquinolones is associated with chromosomal muta-
tions and acquisition of AMR genes. In S. Typhi H58 lineages, mutations in the
quinolone resistance-determining region (QRDR), comprised of the DNA gyrase (gyrA
and gyrB) and topoisomerase IV (parC and parE) genes, are becoming common. The
acquisition of plasmid-mediated quinolone resistance (PMQR) genes, such as qnr,
oqxAB, or aac(6=)Ib-cr, can also contribute to fluoroquinolone resistance. Multiple QRDR
single nucleotide polymorphisms (SNPs) or a combination of QRDR SNPs and PMQR
genes results in fluoroquinolone resistance. Recently, fluoroquinolone treatment failure
in typhoid patients was associated with three QRDR SNPs in Nepal (7).

In Pakistan, MDR and quinolone-resistant S. Typhi strains have been a major public
health concern (8). While principal control efforts are directed to water, sanitation, and
hygiene (WASH) measures, diagnosis and effective treatment of typhoid fever may
contribute to control by potentially eliminating fecal carriers and shedders from the
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population. Since the emergence and spread of fluoroquinolone-nonsusceptible S. Typhi in
Pakistan, the empirical treatment of choice for typhoid fever has been a third-
generation cephalosporin such as ceftriaxone/cefotaxime (parenteral) or cefixime (oral).
Laboratory surveillance data from Pakistan from 2009 to 2011 demonstrated the rise of
MDR S. Typhi and a very small proportion of sporadic ceftriaxone resistance (0.08%, in
2 children from Karachi) (8).

Since November 2016, a large proportion of ceftriaxone-resistant cases have been
identified in the province of Sindh, Pakistan, primarily from the cities of Hyderabad and
Karachi. A similar case was also identified in the United Kingdom from a traveler returning
from Pakistan. These S. Typhi strains were resistant to chloramphenicol, ampicillin,
trimethoprim-sulfamethoxazole, fluoroquinolones, and third-generation cephalosporins,
leaving limited treatment options. Here, we report the emergence and spread of these
extensively drug-resistant (XDR) isolates as observed through positive blood cultures
obtained from febrile patients. We used whole-genome sequencing (WGS) of over 80
isolates to comprehensively characterize the genetic basis of antibiotic resistance in this
clonal population of H58 S. Typhi. We identified a plasmid potentially acquired from
Escherichia coli that carries both an extended-spectrum �-lactamase (ESBL) gene and a
qnr fluoroquinolone resistance gene. The emergence of this XDR S. Typhi clone
highlights the need for urgent action before such lineages become the norm and it
becomes more difficult to treat typhoid with existing drugs.

RESULTS

Ceftriaxone-resistant typhoid fever cases were initially detected in November 2016
in Hyderabad, Pakistan. Following disc diffusion assays of the blood-isolated samples,
the isolates were found to be resistant to ceftriaxone, ciprofloxacin, ampicillin, and
trimethoprim-sulfamethoxazole and susceptible to imipenem, meropenem, and
azithromycin. Three hundred thirty-nine isolates with the same XDR pattern were
isolated from the Sindh region of Pakistan between November 2016 and September
2017 (see Fig. S1 in the supplemental material). The majority of the cases were located
in Hyderabad and Karachi. Whole-genome sequencing was carried out on 87 of the XDR
S. Typhi strains isolated in Sindh, Pakistan, over a 6-month period between November
2016 and March 2017. Twelve ceftriaxone-susceptible isolates collected from the same
locations over an analogous time period were also sequenced for context (listed in
Table S1). A complete reconstruction of the entire genome of a representative XDR
isolate (22420_1_10_Pak60006_2016) was created using a combination of Nanopore
and PacBio long-read sequencing methods. The final assembled chromosome was
4,733,003 bp in length along with a plasmid of 84,492 bp. This finished genome
sequence was used as a reference for subsequent analyses.

We determined the genotype of the samples according to the typing framework
described in the work of Wong et. al. (9). All of the XDR isolates and 11 out of 12 of the
contextual (ceftriaxone-sensitive) isolates belonged to the 4.3.1 (H58) clade. In order to
determine the phylogenetic relationship of the Sindh, Pakistan, isolates within the H58
lineage, we constructed a maximum-likelihood phylogenetic tree with H58 isolates
from the previously analyzed global S. Typhi collection (3). The XDR isolates and four of
the contextual Sindh isolates were located on a single branch separated from the other
H58 isolates by 17 single nucleotide polymorphisms (SNPs) (Fig. 1 and S2). On this
branch, the XDR isolates formed a tight cluster with 6 SNPs unique to the XDR cluster.
Within the XDR cluster, there were 17 SNPs in total and a maximum pairwise distance
between isolates of only four SNPs. The lack of diversity and highly clonal nature reflect
the short sampling period and are indicative of an outbreak. Thus, there has been
remarkably little genetic change during transmission, and this may indicate a single
point source or origin.

The phylogenetic branch consisted of isolates from a geographic region covering
Pakistan, India, Bangladesh, Iraq, and Palestine. Isolates without the p60006 plasmid on
this branch have been circulating in Pakistan since at least 2010. Therefore, the XDR
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clone is likely derived from an endemic Pakistan clone that recently acquired ceftriax-
one resistance.

We next identified the antibiotic resistance genes carried by the isolates. Since
antibiotic resistance in H58 is commonly found on a composite transposon that is either
located on an IncHI1 plasmid or integrated into the chromosome at one of two sites
(near yidA or cyaA) (3), we searched for this region. All of the XDR isolates had the
H58-associated composite transposon antimicrobial resistance (AMR) cassette inte-
grated into the chromosome at the yidA site (Fig. 1b and 2). The composite transposon
contains genes that impart resistance to chloramphenicol (catA1), ampicillin (blaTEM-1),
trimethoprim-sulfamethoxazole (dfrA7, sul1, and sul2), and streptomycin (strA and strB),
all of which are present in the XDR samples (Fig. 2). Unlike most other H58 isolates, the
Pakistan XDR isolates were additionally resistant to ceftriaxone and ciprofloxacin, and

FIG 1 XDR isolates from Sindh, Pakistan, form a distinct cluster within the H58 phylogeny. (a) An unrooted maximum-likelihood phylogenetic tree of 98 Sindh,
Pakistan, H58 isolates; 1 United Kingdom traveler isolate; and 853 global H58 isolates inferred from 1,920 SNPs using 22420_1_10_Pak60006_2016 as a
reference. The XDR samples (red branches) are separated by 6 SNPs from the rest of the branch (blue), which is separated by 17 SNPs from the other H58 isolates.
(b) A higher-resolution diagram of the branch from panel a rooted on nearest neighbor 10060_5_62_Fij107364_2012 displaying data for each isolate: country,
sample collection (XDR or contextual organisms collected in Sindh, Pakistan, from 2016 to 2017; XDR organism from United Kingdom traveler to Pakistan; or
organism from the global collection), plasmid content (p60006, described in this study, or pHCM2 cryptic plasmid), presence of chromosomal AMR cassette
(integrated composite transposon), and quinolone resistance-determining region (QRDR) mutations according to the color key.

FIG 2 XDR S. Typhi isolates from Sindh, Pakistan, contain antibiotic resistance genes on the plasmid and chromosome. Genetic map of regions on the plasmid
and chromosome from 22420_1_10_Pak60006_2016 containing antibiotic resistance-associated features. Chromosomal antibiotic resistance region refers to the
composite transposon observed previously in H58 isolates. Regions with BLAST identity of �99% are shown in gray. The figure was made using genoPlotR (34).
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therefore, we sought to identify the genetic basis of this phenotype. We found that the
XDR isolates harbored a blaCTX-M-15 extended-spectrum �-lactamase (ESBL) gene that
mediates resistance to ceftriaxone. The high MIC of ciprofloxacin could be attributed to
the combination of a single mutation in gyrA (S83F) and the acquisition of a qnrS gene.
The contextual isolates from Sindh, Pakistan, which have an intermediate-susceptibility
phenotype for ciprofloxacin have the single gyrA (S83F) mutation but not the qnrS gene
(Fig. 1b; Table S1).

The blaCTX-M-15 and qnrS genes were carried on an IncY plasmid specific to the XDR
isolates in this branch that we named p60006. The antibiotic resistance loci from the
plasmid and the chromosome of the XDR isolate 60006 are shown in Fig. 2. Several
genes and regions of DNA sequence homology were shared between the plasmid
and the chromosomally integrated AMR cassette, including a Tn6029 transposon with
blaTEM-1, strA, strB, and sul2 genes. Plasmid p60006 also contained the complete VirB/Tra
locus for self-transmissible plasmid conjugation.

Plasmids are known to move through bacterial populations and transfer antibiotic
resistance between species (10). Consistent with this, plasmid p60006 exhibited high
DNA sequence identity to a previously sequenced plasmid, pPGRT46, isolated from a
Nigerian E. coli isolate (11). Both plasmids shared the AMR and transfer loci in synteny
(Fig. S3). Further investigation of public DNA databases identified a further 20 E. coli
isolates from seven different studies that potentially contained a plasmid sequence
similar to p60006 (Table S2). Remarkably, these organisms were isolated from six
different countries on four different continents and are from environmental, animal,
and human sources (12–14). We next mapped the raw sequencing reads from these
E. coli strains to p60006 to create assembled sequences that were compared using
BLAST. The E. coli DNA sequences exhibited high sequence identity to p60006 (Fig. 3).
Some genomes were lacking a short region containing the betR gene involved in
betaine transport and osmoregulation, while others lacked the plasmid transfer locus;
however, all contained the AMR locus and the majority of the plasmid. p60006 has
acquired an additional gene, STY2749, that was not found in the E. coli genomes.
STY2749 is a hypothetical S. Typhi gene of unknown function, not present on the
chromosome of the 60006 XDR isolate. We hypothesize that this plasmid originated in
E. coli and was acquired by S. Typhi in Pakistan prior to the emergence and spread of
the XDR clone.

During our analysis, we were alerted by Public Health England that a ceftriaxone-
resistant S. Typhi sample had been isolated from a patient in the United Kingdom who
had recently traveled from Pakistan. We compared the genome sequences and found
that this isolate belonged to the same phylogenetic cluster of emerging XDR isolates
from Sindh, Pakistan (Fig. 1b).

DISCUSSION

We report the emergence of an XDR S. Typhi clone resistant to chloramphenicol,
ampicillin, trimethoprim-sulfamethoxazole, fluoroquinolones, and third-generation cepha-
losporins that spread throughout the region in Pakistan and as far as the United
Kingdom. We propose that S. Typhi resistant to five antibiotics should be referred to as
“extensively drug-resistant” (XDR) according to the similar nomenclature used for
Mycobacterium tuberculosis and other bacterial pathogens (15). Whole-genome se-
quencing enabled a thorough genetic characterization of the emergent clone. The
presence of the same phylogenetic lineage in Pakistan prior to 2016 demonstrates that
it was likely not the result of importation from outside Pakistan. The evidence pre-
sented here suggests that an endemic MDR H58 clone acquired an ESBL-encoding
AMR plasmid, potentially from an E. coli strain or another enteric bacterial donor. The
resultant XDR S. Typhi then underwent a clonal expansion during its emergence and
spread. Determining the sequence of the plasmid enabled us to infer that plasmids with
similar gene structures are omnipresent in diverse geographic settings.

The emergence of this clone marks a sentinel event in the evolution of antibiotic
resistance in S. Typhi: previous reports of XDR typhoid were sporadic, isolated cases,
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whereas this was a large-scale emergence of temporally clustered cases that spread
throughout the region and was even carried to the United Kingdom. To our knowledge,
there have been 17 reports in the literature of S. Typhi with sporadic third-generation
cephalosporin resistance (see Table S3 in the supplemental material). Of those, only
four individual cases (single patients) have reported S. Typhi that was also both MDR
and fluoroquinolone resistant (16–20). These cases originated from Iraq, Bangladesh,
India, and Pakistan. The Bangladesh and Iraq isolates also harbor blaCTX-M ESBL genes,
but the Iraq isolate reportedly had an IncN plasmid, which differs from the IncY plasmid
identified in this study. A draft genome of the Pakistan case from Rawalpindi has been
released (20), and it harbors the same plasmid that we identified in the Sindh, Pakistan,
cases.

Typhoid fever is a reportable illness in the Sindh province of Pakistan. The cases
identified were reported to the Sindh health authorities with a special note to indicate
the emergence of ceftriaxone resistance. The sudden emergence and rapid spread of
resistant isolates underline the importance of AMR surveillance for typhoid and other
enteric Gram-negative bacteria and highlight the inadequacy of relying solely on
non-culture-based methods for diagnosis of typhoid (such as Widal and Typhidot tests),
which do not provide susceptibility results. In view of the emergence of ceftriaxone
resistance in S. Typhi, culture- and sensitivity-guided treatment becomes imperative
as empirical treatment with ceftriaxone is no longer reliable in the region. Following
antibiotic resistance testing, cases were effectively treated with azithromycin and
meropenem, resulting in recovery by most patients. Immediate control measures
instituted by the government included education of the public and emphasis on

FIG 3 The plasmid from XDR S. Typhi isolates from Sindh, Pakistan, is highly similar to global E. coli-associated plasmids. Plasmid p60006 was compared to
representative isolates from each study described in Table S2 using BRIG (35). The innermost circle shows GC content, and the outermost circle shows the gene
map, colored red for drug resistance or green for transfer activity.
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hygiene and food safety. However, a mass vaccination campaign could not immediately
be undertaken to prevent the spread of this highly resistant clone.

The emergence and spread of XDR S. Typhi in Sindh, Pakistan, are a startling demon-
stration of how a ubiquitous antibiotic resistance plasmid can be acquired by MDR
S. Typhi, rendering it XDR and further narrowing treatment options. The fact that this
clone reached as far as the United Kingdom showed the direct impact that regional
clones can have on the health of other countries. Antibiotics save millions of lives
annually, but the apparent ease and rapidity by which life-threatening bacteria such as
S. Typhi can develop resistance severely limit their efficacy. Our data suggest that better
strategies against typhoid are warranted, such as the introduction of preventive
measures, including vaccines and improved sanitation.

MATERIALS AND METHODS
Strains, identification, and susceptibilities. Blood cultures submitted to the Aga Khan University

clinical microbiology laboratory (November 2016 to September 2017) grew S. Typhi that demonstrated
high MICs against ceftriaxone and cefotaxime (�64 �g/ml). MICs were confirmed by two methods, Etest
and Vitek 2 (bioMérieux). The identification of S. Typhi was confirmed by the API 20E test (bioMérieux)
and agglutination with genus- and serotype-specific antisera (Salmonella poly antiserum A-I [Difco],
Salmonella O antiserum [Difco], and Salmonella Vi antiserum [Difco]).

Illumina sequencing. Extracted DNA (prepared with the Promega Wizard genomic purification kit)
was used to make multiplex libraries with a 500-bp insert size, which were prepared using unique index
tags and sequenced to generate 250-base-paired-end reads. Cluster formation, primer hybridization, and
sequencing reactions were based on reversible terminator chemistry using the Illumina HiSeq 2500
System.

Nanopore sequencing. DNA was quality checked using Qubit (Thermo Fisher) using the Broad
Range kit and the Agilent TapeStation, which registered a peak fragment size of 58 kb. Oxford nanopore
sequencing was carried out using flow cell Flo-MIN107 (R9.5 nanopore) and the rapid barcoding kit
SQK-RBK001, with the barcode NB01 chosen for this isolate. Barcoding was used to enable exclusion of
reads from this first isolate in subsequent data, in the event that this flow cell was reused for other
isolates at a later date. MinKNOW version 1.6.11 was used with local 1D base calling enabled. The
sequencing run was stopped after 23 hours as sufficient data had been obtained.

Computing infrastructure. All of the analysis was performed on the Wellcome Trust Sanger
Institute’s computing cluster running Linux Ubuntu 12.04 on servers with 32 CPUs and 256 GB of RAM.
Only open-source software was utilized, allowing for transparent reproducibility.

Genotyping. Genotyping was done according to the framework described in reference 9 using the
genotyphi code (https://github.com/katholt/genotyphi).

Reference genome assembly. A hybrid assembly was performed using both the short- and
long-read sequencing data for BL60006 using Unicycler (v0.4.0) (21). A single circularized chromosome
and a single plasmid were assembled. As a region was shared between the plasmid and chromosome,
further sequencing using the PacBio RSII was required to create a fully circularized plasmid assembly. The
PacBio reads were assembled using the SMRT analysis pipeline (v2.3.0), followed by polishing with
Unicycler and Pilon (v1.19) (22) using the corresponding Illumina short reads. Finally, the plasmid was
circularized with Circlator (v1.4.0) (23). The final assembled chromosome consists of 4,733,003 bases, and
the plasmid consists of 84,492 bases.

Masking duplicated regions in reference genome. Variant calling using short-read sequences is
more erroneous around regions where there are duplicated sequences in the genome. Blastn (v2.6.0) (24)
is run on the reference genome against itself, and any BLAST hits where the length is greater than 300
(66% of the fragment size) with identity greater than 98% are kept. Self-matches were ignored, and
overlapping regions were resolved into contiguous blocks. These coordinates were then masked out in
subsequent analysis with N’s to avoid calling variants at these positions.

Mapping, SNP calling, and pseudogenome generation. For each sample, sequence reads were
mapped using SMALT (v0.7.4) (25) against a given reference to produce a BAM file. SMALT was used to
index the reference using a kmer size of 20 and a step size of 13, and the reads were aligned using default
parameters but with the maximum insert size (1,500) set as 3 times the mean fragment size of the
sequencing library. PCR duplicate reads were identified using Picard (v1.92) (http://broadinstitute.github
.io/picard/) and flagged as duplicates in the BAM file. Variation detection was performed using SAMtools
mpileup v0.1.19 (26) with parameters “-d 1000 -DSugBf” and bcftools v0.1.19 to produce a BCF file of all
variant sites. The option to call genotypes at variant sites was passed to the bcftools call. All bases were
filtered to remove those with uncertainty in the base call. The bcftools variant quality score was required
to be greater than 50 (quality of �50), and mapping quality had to be greater than 30 (map quality of
�30). If not all reads gave the same base call, the allele frequency, as calculated by bcftools, was required
to be either 0, for bases called the same as the reference, or 1, for bases called as an SNP (af1 of �0.95).
The majority base call was required to be present in at least 75% of reads mapping at the base (ratio of
�0.75), and the minimum mapping depth required was 4 reads, at least two of which had to map to each
strand (depth of �4, depth strand of �2). Finally, strand bias was required to be less than 0.001, map bias
was required to be less than 0.001, and tail bias was required to be less than 0.001. If any of these filters
were not met, the base was called as uncertain. A pseudogenome was constructed by placing the base
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call at each site (variant and nonvariant) in the BCF file into the reference genome as a substitute, and
any site called as uncertain was replaced with an N. Insertions with respect to the reference genome were
ignored and deletions with respect to the reference genome were filled with N’s in the pseudogenome
to keep it aligned and the same length as the reference genome used for read mapping. All of this
analysis was performed within an open-source pipeline (https://github.com/sanger-pathogens/vr
-codebase).

Recombination. Horizontal recombination must be excluded from each multiple-FASTA alignment
before building a phylogenetic tree, as it is unrelated to the phylogenetic evolution of the samples. An
alignment was provided to Gubbins (v1.4.10) (27) using default parameters. The resulting masked
alignment was then used as input for phylogenetic tree construction.

Phylogenetic tree construction. Phylogenetic trees were constructed using RAxML (v8.2.8) (28) with
multi-FASTA alignments of nucleotide sequences as input, generated as described previously. The
gamma general time reversible (GAMMAGTR) model was used in each case with 100 random bootstraps.
Trees were outputted in NEWICK format.

Antimicrobial resistance gene identification and plasmid typing. The FASTQ files for each sample
were provided to ARIBA (v2.10.0) to detect AMR genes. The CARD database (v1.1.8) (29) was utilized for
AMR detection. Point mutations in the QRDR were determined using WGSA (https://www.wgsa.net).
Plasmid replicons were identified using ARIBA and the PlasmidFinder database (30).

E. coli plasmid sequences and comparison. Fragments of the p60006 plasmid were searched
against a Coloured Bloom Graph of the entire set of bacteria in the ENA (https://github.com/Phelimb/
cbg), which identified 20 E. coli samples as potentially containing a similar plasmid sequence. The raw
reads for each were downloaded from the ENA in FASTQ format, with each corresponding to an Illumina
paired-end sequencing experiment. The raw reads were filtered with Trimmomatic (v0.32) (31) to remove
adapter sequences and low-quality bases. The p60006 plasmid was used as a reference genome for
generating a pseudogenome multiple-FASTA alignment (as described previously) with the filtered FASTQ
files. SNPs were identified using SNP-sites (v2.3.2) (32), and each variant was visually confirmed using
Artemis (v16.0.18) (33) and the associated BAM file. Individual assemblies were compared to the p60006
plasmid using BRIG with default BLAST parameters.

Accession number(s). The accession numbers for the assembled chromosome of isolate
22420_1_10_Pak60006_2016 and its plasmid are LT882486 and LT906492, respectively. Sequence data
were submitted to the European Nucleotide Archive, and accession numbers are indicated in Table S1.
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