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Caffeic acid (CA) is a phenolic compound synthesized by all plant species and is present

in foods such as coffee, wine, tea, and popular medicines such as propolis. This phenolic

acid and its derivatives have antioxidant, anti-inflammatory and anticarcinogenic activity.

In vitro and in vivo studies have demonstrated the anticarcinogenic activity of this

compound against an important type of cancer, hepatocarcinoma (HCC), considered

to be of high incidence, highly aggressive and causing considerable mortality across the

world. The anticancer properties of CA are associatedwith its antioxidant and pro-oxidant

capacity, attributed to its chemical structure that has free phenolic hydroxyls, the number

and position of OH in the catechol group and the double bond in the carbonic chain.

Pharmacokinetic studies indicate that this compound is hydrolyzed by the microflora of

colonies and metabolized mainly in the intestinal mucosa through phase II enzymes,

submitted to conjugation and methylation processes, forming sulphated, glucuronic

and/or methylated conjugates by the action of sulfotransferases, UDP-glucotransferases,

and o-methyltransferases, respectively. The transmembrane flux of CA in intestinal cells

occurs through active transport mediated by monocarboxylic acid carriers. CA can

act by preventing the production of ROS (reactive oxygen species), inducing DNA

oxidation of cancer cells, as well as reducing tumor cell angiogenesis, blocking STATS

(transcription factor and signal translation 3) and suppression of MMP2 and MMP-9

(collagen IV metalloproteases). Thus, this review provides an overview of the chemical

and pharmacological parameters of CA and its derivatives, demonstrating its mechanism

of action and pharmacokinetic aspects, as well as a critical analysis of its action in the

fight against hepatocarcinoma.
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INTRODUCTION

Caffeic acid (CA) is a polyphenol produced through the secondary metabolism of vegetables,
(1–4) including olives, coffee beans, fruits, potatoes, carrots and propolis, and constitutes the main
hydroxycinnamic acid found in the diet of humans (1, 3–5). This phenolic compound is found in
the simple form (monomers) as organic acid esters, sugar esters, amides and glycosides, or in more
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complex forms such as dimers, trimers and flavonoid derivatives,
or they may also be bound to proteins and other polymers
in the cell wall of the vegetable (1, 3, 6). CA participates
in the defense mechanism of plants against predators, pests
and infections, as it has an inhibitory effect on the growth
of insects, fungi and bacteria (5) and also promote the
protection of plant leaves against ultraviolet radiation B
(UV-B) (5, 7).

In vitro and in vivo experiments have been performed, proving
innumerable physiological effects of CA and its derivatives,
such as antibacterial activity (1, 4), antiviral activity (2, 5,
8, 9), antioxidant activity (2, 4, 5, 8, 9), anti-inflammatory
activity (2, 4, 5, 8, 9), anti-atherosclerotic activity (1, 4),
immunostimulatory activity (1, 10), antidiabetic activity (5, 9),
cardioprotective activity (5, 11), antiproliferative activity (1, 12,
13), hepatoprotective activity (14, 15), anticancer activity (2, 4, 5,
8, 9), and anti-hepatocellular carcinoma activity (16–18). Among
these properties, anti-hepatocarcinoma activity is highlighted,
because hepatocarcinoma (HCC) is one of the main causes of
cancer mortality in the world (19). Therefore, further studies on
the chemical and pharmacological aspects of CA are necessary
to contribute in the future to the development of a new drug
and consequently the expansion of therapeutic possibilities (20).
Thus, this review provides an overview of the chemical and
pharmacological parameters of CA and its derivatives, reporting
its main mechanisms of action and pharmacokinetic aspects,
as well as to critically analyse its performance in the fight
against HCC.

CHEMICAL ASPECTS OF CAFFEIC ACID

AC (3,4-dihydroxycinnamic acid) is a hydroxycinnamic
acid, belonging to the phenolic acid family, which has a
phenylpropanoid (C6-C3) structure with a 3,4-dihydroxylated
aromatic ring attached to a carboxylic acid through a
transethylene wire (3, 21). The biosynthesis of this compound
in plants occurs through the endogenous shikimate pathway
that is responsible for the production of aromatic amino
acids from glucose (3, 9). The reaction starts with shikimic
acid and undergoes three enzymatic reactions: the first
is a phosphorylation mediated by the enzyme shikimato-
kinase, followed by the conjugation of a molecule of
phosphoenolpyruvate, mediated by 5-enolpyruvylshikimate-3-
phosphate (EPSP) synthase and finally by the enzyme chorismate
synthetase, reaching one of the most important intermediary
metabolites of this pathway, chorismic acid (3, 9). This is
transformed into prephenic acid through the enzyme chorismate
mutase (a precursor of L-phenylalanine). L-phenylalanine
formation is mediated by pyridoxal phosphate (PLP) as a
coenzyme in the deamination process and by nicotinamide
adenine dinucleotide (NAD) as an electron exchanger (3, 9). The
deamination of L-phenylalanine by the enzyme phenylalanine
ammonia lyase (PAL), forms cinnamic acid. It is then converted
to p-coumaric acid by the cinnamate-4-hydroxylase (C4H)
and finally to caffeic acid through the enzyme 4-coumarate
3-hydroxylase (C3H) (9) (Figure 1).

CA is obtained from plants by solvent extraction (methanol
and ethyl acetate) at high temperatures; however, its yield
is very low, requiring large quantities of botanical material
to obtain a significant yield (8, 9). An alternative to obtain
this compound in greater quantity is organic synthesis, where
chemical processes (chemical reactions) are used that allow
the formation of complex organic compounds (22). However,
the concern with the generation of residues in the production
of organic compounds has brought about the possibility of
microbial synthesis of secondary metabolites such as CA (2, 8).
Thus, genetic modifications made in microorganisms, such as
Escherichia coli strains, have allowed the production of two
enzymes: 3-hydroxylase hydroxyphenylacetate (4HPA3H) and
tyrosine ammonia lyase (TAL) that acts on L-tyrosine producing
p-coumaric acid and L-dopa, respectively. A new action of
these enzymes on the two intermediate molecules leads to the
generation of CA (2, 8, 9) (Figure 2).

PHARMACOKINETICS OF CAFFEIC ACID

CA is a very abundant phenolic acid, found in both free and
esterified forms, representing about 75 to 100% of the total
content of hydroxycinnamic acid in fruits (23). However, CA
is found in foods on its esterified form, making it difficult
to be absorbed by the body (23–25). To be absorbed, the
compound needs to be hydrolysed by colonic microflora
in the intestine, because human tissues (intestinal mucosa,
liver, stomach) and biological fluids (plasma, gastric juice,
duodenal fluid) do not have enzymes, called esterases, capable
of hydrolysing the chlorogenic acid to release CA (23–25).
Thus, the pharmacokinetic process begins with the ingestion
of CA in the bound form (esterified), arriving in the stomach,
after which a small part of this compound is absorbed (26).
In the colon the microbial esterases cleave the ester portion
of the CA and this acid, in its free form, is then absorbed
by the intestinal mucosa (most 95%) (26). The transmembrane
flow of CA into intestinal cells occurs through active transport
mediated by monocarboxylic acid transporters (MCT) (26).
The maximum plasma concentration of this compound was
observed only 1 h after ingestion of foods such as coffee
and then plasma concentration rapidly decreased, requiring
repeated doses every 2 h to maintain high concentrations (23–
25). Immediately after absorption, CA is subjected to three main
processes of enzymatic conjugation (known as detoxification):
methylation, sulphation, and glucuronidation, through the
action of sulfotransferase enzymes, UDP-glucotransferases and
catechol-o-methyltransferases, respectively. This makes the
compound more hydrophilic, thus reducing its toxicity and
facilitating its elimination (26). The excretion of CA (5.9–27%)
occurs primarily through urine (23).

ANTICARCINOGENIC PROPERTIES OF
CAFFEIC ACID

The anticarcinogenic properties of CA have attracted the
attention of the scientific community (27–30). Studies have
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FIGURE 1 | The biosynthesis of CA begins in the endogenous shikimate pathway through three enzymatic reactions mediated by shikimate kinase (KS),

5-enolpyruvyl-chiquimate-3-phosphate synthase (EPSPS) and chorismate synthase (CS), leading to chorismic acid and then converted into prephenic acid by

chorismate mutase. Prephenic acid is a precursor of l-phenylalanine and formed by pyridoxal phosphate (PLP) and nicotinamide adenine (NAD). The deamination of

L-phenylalanine by the enzyme phenylalanine ammonia lyase (PAL) forms cinnamic acid; this is then converted to p-coumaric acid by cinnamate-4-hydroxylase (C4H)

and finally to caffeic acid through the enzyme 4-coumarate 3-hydroxylase (C3H). This figure was made with ChemDraw (http://www.perkinelmer.com/category/

chemdraw).

shown that the consumption of CA-rich foods leads to
a protective effect against carcinogenesis by preventing the
formation of nitro compounds (nitrosamines and nitrosamides)
that are the main inducers of this pathology (29, 31). The
anti-carcinogenic action of CA is mainly associated with its
antioxidant (21, 30, 32) and pro-oxidant capacities (33–35), and
this is attributed to its chemical structure. Firstly, the presence
of free phenolic hydroxyls (ortho-dihydroxyl) makes it possible
to reduce the enthalpy of OH-bond dissociation and increase
the transfer rate of H atoms for peroxyl radicals, as well as
their number and position on the phenyl ring (catechol group).
Also, the presence of a double bond in the carbon chain (the
unsaturated side chain 2,3 double bond) increases the stability
of the phenolic radical (21, 30, 31, 36). These chemical factors
associated with the CA molecule enable the elimination of free
radicals, preventing the production of ROS (reactive oxygen
species) as well as the induction of DNA oxidation of cancer cells
present in various types of cancer, such as HCC (3, 30).

HEPATOCARCINOMA (HCC)

Hepatocarcinoma or Hepatocellular Carcinoma (HCC) is a
dominant form of liver cancer, characterized by being a
malignant primary solid tumor, which differs from hepatocytes
(19, 37, 38), and is considered the third most common cause of
cancer death, second only to lung and stomach cancer (19). HCC
is a very aggressive disease, with approximately 782,000 new cases
per year, a high mortality (600,000 deaths/year) (19, 39, 40) and
a short survival time (on average 11 months). It is thought this
is because only a small proportion of the patients are diagnosed
at the initial stage of the disease (19, 41). HCC has several risk
factors, such as exposure to hepatitis B virus (HBV) andC (HCV),

aflatoxin B1 (AFB1), presence of cirrhosis, alcohol consumption,
diabetes mellitus and obesity (19, 38, 40, 42). These factors vary
in their frequency according to geographic location. Among the
cited causes, infection with the HBV andHCV virus is considered
the main risk factor, and it is worth noting that 80% of cases
occur in Southeast Asia and Africa while the Western world
accounts for only 20% of cases (19, 42). The high incidence of
HCC in the Asian and African continent is associated with the
HBV andHCV virus, as well as exposure to food contaminated by
AFB1, especially in rural areas where there is no strict control on
mycotoxin contamination (42–44). However, synergism among
risk factors is what makes these regions highly prevalent to HCC
(42, 45).

The mechanism of HCC pathophysiology begins with an
inflammatory process mediated by Kupffer cells in the liver or
macrophages (46, 47), both of which have immunostimulatory
activity, secreting pro-inflammatory cytokines (interleukin 6-
IL6 and TNF-α-tumor necrosis factor) and immunosuppressive
cytokines (interleukin 10-IL-10) (46, 47). The accumulation
of these immunostimulating agents around the focus of
inflammation in the liver induces a mitochondrial imbalance
in hepatocytes (increased oxygen consumption and increased
production of superoxide anions, hydroxyl radicals and nitric
oxide), leading to the production of high levels of reactive
oxygen species (ROS) (48–50). Hepatic mitochondria control the
balance between survival and cell death through the regulation
of membrane permeability, activating the intrinsic pathway
of apoptosis (release of cytochrome c protein, formation of
apoptosomes and activation of caspase 9) (49, 51). Increased
ROS production causes oxidative damage to mitochondrial
proteins (impairing ATP synthesis) and alters the induction
of mitochondrial transition permeability pore production by
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FIGURE 2 | The synthesis of CA after genetic modification in strains of E.coli

that allowed the production of two enzymes: 3-hydroxylase

hydroxyphenylacetate (4HPA3H) and tyrosine ammonia lyase (TAL) that act on

L-tyrosine producing p-coumaric acid and L-dopa, respectively. A new action

of these enzymes on the two intermediate molecules leads to production of

CA. This figure was made with ChemDraw (http://www.perkinelmer.com/

category/chemdraw).

making the inner membrane permeable to small molecules
that can cause ischaemia/reperfusion injury, as well as DNA
damage by activating the apoptotic intrinsic mechanism (49, 51).
This process induces recurrent cycles of cell injury, repair and
regeneration in hepatocytes leading to the formation of nodular
dysplasia (aberrant hepatocytes), which are precursor lesions
of HCC (40, 42, 52). It also leads to genetic alterations (gene
rearrangements, somatic mutations, changes in copy number,
changes in cell signaling pathways) and epigenetic changes
(DNA methylation and histone modification), which are directly
associated with tumor progression and HCC (35, 40).

Patients with this pathology are usually asymptomatic;
however, it is associated with the appearance of abdominal
pain, fever, hyperkalaemia, hypoglycaemia, nausea, weight loss,
increased ascites, spontaneous bacterial peritonitis, varicose
veins, bleeding, jaundice, and hepatic encephalopathy (53, 54).
The aggravation of liver function is due to functional liver
replacement or portal vein invasion (53, 54). Treatment for HCC
is limited due to the complex etiology of the disease and, mainly,
the toxicity of the drugs to normal cells, making it necessary to
develop new drugs for the therapy of this cancer (20, 38). Thus,
the investigation of mechanisms of action and characterization of
the hepatoprotective and anticarcinogenic action of CA can help
support the future development of new therapies to combat this
disease (20).

CAFFEIC ACID ACTION MECHANISM IN
HCC

Antioxidant Activity Prevents ROS
Production
One of the mechanisms by which CA acts in HCC is through its
potent antioxidant capacity that prevents the production of ROS,
reducing the oxidative stress that is very common in this disease
(3, 30). CA acts as a primary and secondary antioxidant (mixed
antioxidant). As a primary antioxidant it acts by interrupting
the formation of free radicals by inhibiting chain reactions
with another molecule (29, 55). This process occurs when CA
donates electrons or hydrogen to free radicals, converting them
into thermodynamically stable products. These products present
greater stability due to the electron delocalised in the aromatic
ring of the CA (resonance effect) (29). In contrast, as a secondary
antioxidant (prooxidant), it acts as a chelating agent. It forms
complexes with metals (mainly iron and copper), inhibiting
the decomposition of peroxides, reducing the formation of free
radicals and their attack on lipids, amino acids of proteins,
double bonding of polyunsaturated fatty acids and bases of
DNA, thus avoiding the formation of lesions and loss of cellular
integrity (29, 55). CA has a great potential for reducing metals
due to its structural chemical characteristics; the compound is
susceptible to auto-oxidation and also the oxidation caused by
other biological agents (29, 56). The molecular structure of CA,
containing a catechol group with an α,β-unsaturated carboxylic
acid chain, is responsible for its interaction with various types
of oxidizing radicals (29, 56). The o-dihydroxylated structure is
where the o-quinone group is produced after the donation of an
electron. The double side binding of o-quinone conjugated to the
catechol group causes a delocalisation of electrons, increasing the
stability of the o-quinone radical and the antioxidant activity of
CA (29, 56) (Figure 3).

Pro-oxidant Activity Accelerates Lipid
Peroxidation and DNA Damage
An antioxidant agent such as CA can become a pro-oxidant
through its ability to chelate metals such as copper (Cu) and thus
induce lipid peroxidation and causing damage to the DNA of
cancer cells by oxidation or formation of covalent adducts with
DNA (29, 57). CA possesses the ability to cap the endogenous
Cu (II) ions of human peripheral lymphocytes to form the CA-
Cu (II) complex (57). CA undergoes deprotonation in relation to
Cu, generating an oxygen center with high electronic density (29,
57). This complex undergoes intramolecular electron transfer
(oxygen) forming the semiquinone radical anion with Cu (I)
(29, 57). CA dissociates (deprotonation) to form a phenoxide,
where the Cu (I) ion will be bound as a bidentate linker (29,
57). At this point, the oxygen (O2) can react with Cu (I) to
form the hydrogen peroxide (H2O2), which is converted by a
Fenton reaction (reactions with H2O2 catalyzed by Fe ions) to
the hydroxyl radical (−OH) (29, 57). Alternatively, the phenoxide
bound to bidentate Cu (I) may undergo a new intramolecular
transfer giving the orthohydroxyphenoxyl radical, which must
dissociate and form ortho-semiquinone anionsz (29, 57). This
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FIGURE 3 | This process occurs when CA donates electrons or hydrogen to

free radicals, converting them into thermodynamically stable products. These

products present greater stability due to the electron delocalised in the

aromatic ring of CA (resonance effect). The o-dihydroxylated structure is where

the o-quinone group is produced after the donation of an electron. The double

side binding of o-quinone conjugated to the catechol group causes a

delocalisation of electrons, increasing the stability of the o-quinone radical and

the antioxidant activity of CA, adapted from: Damasceno et al. (29). This figure

was made with ChemDraw (http://www.perkinelmer.com/category/

chemdraw).

anion reacts with Cu (I), generating the final ortho-quinone
product that forms a covalent adduct with the DNA of cancer
cells (29, 57) (Figure 4).

Vascularisation Induced by VEGF
CA can also act on angioneogenesis of HCC tumor cells
by reducing the phosphorylation of JNK-1 (c-Jun N-terminal
kinases, a member of the MAPKs family), via decreasing the
activation of HIF-1α (Hypoxia Inducible Factor 1). This leads
to the reduction of vascularisation induced by VEGF (vascular
endothelial growth factor), and consequently suppressing tumor
growth (18) (Figure 5).

HCC is a highly vascularised tumor, whosemain characteristic
is angioneogenesis (the origin of new blood vessels), and its
main source of blood supply is the hepatic artery (18, 40, 58).
Although this tumor is rich in vascularisation, hypoxia (low levels
of oxygen) is very common due to the rapid proliferation of
tumor cells and consequently the formation of large solid tumor
masses, obstructing and compressing the blood vessels around it
(18, 40, 58). Tumor cells seek to adapt to hypoxia by activating a
transcription factor calledHIF-1 (Hypoxia Inducible Factor 1) via
the JNK1 signaling pathway (c-JunN-terminal kinases, amember
of the MAPKs family), which in turn, activates several pro-
angiogenic factors, such as VEGF (vascular endothelial growth
factor). When overexpressed VEGF leads to extravasation of
blood from tumor blood vessels, causing hepatic bleeding (18,

FIGURE 4 | CA undergoes deprotonation in relation to Cu, generating an

oxygen center with high electronic density. This complex undergoes

intramolecular electron transfer (oxygen) forming the semiquinone radical anion

with Cu (I). CA dissociates (deprotonation) to form a phenoxide, where the Cu

(I) ion will be bound as a bidentate linker. At this point, oxygen (O2) can react

with Cu (I) to form hydrogen peroxide (H2O2), which is converted by a Fenton

reaction (reactions with H2O2 catalyzed by Fe ions) to the hydroxyl radical

(H2OH) or the phenoxide bound to bidentate Cu (I) may undergo a new

intramolecular transfer giving the orthohydroxyphenoxyl radical, which must

dissociate and form ortho-semiquinone anions. This anion reacts with Cu (I),

generating the final ortho-quinone product that forms a covalent adduct with

the DNA of cancer cells. Adapted from: Damasceno et al. (29). This figure was

made with ChemDraw (http://www.perkinelmer.com/category/chemdraw).

59). This growth factor is also one of the main factors responsible
for the formation of new blood vessels that support the oxygen
supply of tumor cells, an important factor for tumor survival
(18, 40, 58, 59).

Suppression of MMP-2 and MMP-9
Expression
Anothermechanism of action proposed for CA is the suppression
of the expression of MMP-2 and MMP-9 (metalloproteases 2
and 9, respectively) in HCC. MMP-2 and MMP-9 are matrix
metalloproteases expressed in tumor cells, which degrade the
extracellular matrix (ECM) type IV collagen of the basement
membrane during cancer invasion and metastasis (16, 60, 61).
PMA is a structural analog of diacylglycerol (a cellular mediator)
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FIGURE 5 | CA acts on the angioneogenesis of HCC tumor cells by reducing

the phosphorylation of JNK-1, thus decreasing the activation of HIF-1α

(Hypoxia Inducible Factor 1), causing the reduction of the intense

vascularisation induced by VEGF (endothelial growth factor vascular). This

figure used elements from Servier Medical Art (www.servier.com).

capable of activating PKC (kinase C protein), which, once
activated, promotes the induction of proinflammatory cytokines
such as IL-6 (interleukin 6) and TNF-α (tumor necrosis factor
α) (62). These pro-inflammatory agents promote the activation
of growth factors, such as NFκB (nuclear factor kappa-B)
through the c-Src (subfamily kinases)/ERK (Extracellular Signal-
Regulated Protein Kinase)/NIK (NSP-interacting kinases)/IKK (I
kappa B kinase) (14, 31, 63). NFkB generates increased expression
of MMP-2 and MMP-9 leading to invasion and metastasis of
hepatic cells via degradation of ECM (16, 60, 61). The suppressive
effect of CA on MMP-2 and MMP-9 is associated with blockade
of the activation of NFkB, as reported in liver cancer cells
stimulated by PMA (activating protein 1), leading to a decrease
in tumor growth and invasiveness (16, 60) (Figure 6).

IN VITRO AND IN VIVO STUDIES OF
CAFFEIC ACID IN HEPATOCARCINOMA

In vitro
Dilshara et al. showed that CAPE (Caffeic acid phenethyl ester,
50µM) significantly increased apoptosis (cell death) mediated by
TRAIL (tumor necrosis factor-related apoptosis ligand inducer,
50 ng/ml) by positive regulation of DR5 (death receptor 5)
mediated by CHOP (C / EBP family transcription factor) in
Hep3B HCC cells. TRAIL is a ligand with anticancer properties
capable of inducing apoptosis in cancer cells (64, 65). This action
occurs through its binding to DR5 (extrinsic pathway), which

FIGURE 6 | CA, along with its caffeic acid phenyl ester (CAPE), can act on

HCC by suppressing the expression of MMP-2 and MMP-9

(metalloproteinases 2 and 9, respectively), which in turn block the activation of

NFκB (Nuclear factor kappa-β) induced by PMA (activating protein 1) in liver

cancer cells, decreasing tumor growth and invasiveness. This figure used

elements from Servier Medical Art (www.servier.com).

in turn interacts with Fas (membrane protein) by recruiting
caspases 8 and caspase 3 (cysteine proteases) and promoting
apoptosis (65, 66). In this study, CAPE, a derivative of CA
present in the bee propolis extract, potentiated TRAIL-mediated
cell death, stimulating the expression of the CHOP protein,
responsible for the DR5 positive regulation (65).

In another experiment developed by Kim et al., the CAPE
(30µg/ml) potentiated TRAIL-induced apoptosis (30 ng/ml)
through the positive regulation of DR5 via p38 (mitogen-
activated protein kinases) and suppression of JNK (c-Jun N-
terminal kinases) in SK-Hep1 cells of HCC (14, 63).

The combination of CAPE and TRAIL was able to generate
cell death both via intrinsic pathway (via mitochondria) and
via the extrinsic pathway (via death receptors) (14). In the
intrinsic CAPE and TRAIL pathway, mitochondrial membrane
depolarisation stimuli were increased, resulting in the release of
cytochrome c (internal membrane protein from mitochondria)
and formation of the apoptosome (protein complex), and also
resulting in the activation of apoptosis-inducing caspase 9 (14,
67). On the other hand, through the extrinsic pathway, CAPE
and TRAIL promoted the activation of p38 by increasing the
expression of apoptosis-inducing DR5, as well as inhibiting the
phosphorylation of JNK that contributes to TRAIL resistance
and, consequently, decreased DR5 expression (14, 68).

Wilkins et al., in their experiments, observed that CA (1mM)
blocked cell proliferation in HCC cells extracted from marmots.
The action of this compound is associated with its involvement in
the loss of mitochondrial integrity (intrinsic pathway), resulting
in cytochrome c release, apoptosome formation, caspase 9
activation and cell death (69).
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Lee et al. showed that CAPE (12.5µM) inhibited the invasion
and expression of MMP-2 and MMP-9 (enzymes responsible for
extracellular matrix degradation and development of metastasis)
in HCC cells (SK-Hep1) blockade of NFkB (protein complex
responsible for the regulation of MMP-2 and MMP-9) (16). In
other studies, Guerriero et al., the CA (200 µg / ml) inhibited
tumor invasion and regression in HCC cells (HepG2 and Huh7)
by decreasing pro inflammatory cytokines such as TNF-α, IL-1β,
and IL-8 and anti-inflammatory cytokines, such as IL-10 (70).

Li et al. showed that the conjugated CA and its
precursor’s cinnamic acid and p-coumaric acid to TPP cations
(triphenylphosphonium) protected the hepatic mitochondria
(key organelle in the control of apoptosis) against lipid
peroxidation, also acting in the decrease of levels of hydrogen
peroxide and the regulation of antioxidant enzymes. These same
compounds were tested on HCC cells (HepG2), showing high
toxicity against this cell line. Studies on CA and its effects on
HCC are abundant in the literature, however, the same is not
true for the action of CA and p-COA on HCC (71).

In vivo
Zhang et al. investigated the action of CA (100 mg/kg) on
structural changes caused by HCC in the rat microbiota,
demonstrating that this compound reduces the changes
in markers of liver injury during HCC, such as alanine,
transaminase, aspartate aminotransferase, alkaline phosphatase,
total bile acid and total cholesterol. The probable mechanism by
which CA acts is related to inhibition of the growth of malefic
bacteria (Rumincoccaceae UCG-004) (20, 72) and induction of
the growth of microbiota-beneficial bacteria (Lachnospiraceae
incertae sedis and Prevotella 9) during HCC (20, 73). CA has
antioxidant properties, being able to eliminate oxygen radicals
and facilitating the survival of beneficial bacteria that are
anaerobic and grow very well without oxygen (20, 74). However,
this same compound also has antimicrobial activity eliminating
malefic bacteria of the microbiota, favoring the control of
markers of liver damage (20, 75).

In studies conducted by Wilkins et al., the CA (1mM)
improved the efficacy of transarterial embolisation (TAE) in rats
with HCC. TAE is a therapeutic procedure used in patients
with HCC to promote ischemia due to occlusion of the
arterial blood supply, resulting in the blockage of oxygen and
nutrients for the tumor (69, 76). One of the main nutrients
for HCC is lactate produced through glycolytic metabolism
and is responsible for increasing the expression of vascular
growth factors in vasculogenesis (69, 77). However, if lactate
levels become excessively high, a cycle of negative feedback on
glycolysis occurs, which stops tumor growth (69, 77, 78). CA
used in association with TAE reduced tumor burden by 70–85%,
compared to TAE only with embolic agents (69). This effect is
possible due to the antitumor, anti-inflammatory, antioxidant
and anticancer properties of this phenolic compound, which is
capable of generating ROS and fragmenting DNA, causing cell
death in cancer cells (69). CA may also activate the intrinsic
pathway of apoptosis by altering the membrane potential of
mitochondria (69, 79).

Chung et al. in experimental animal studies (rats) treated with
CA and CAPE (5 mg/kg subcutaneous or 20 mg/kg oral), showed
that these compounds promoted suppression of tumor growth
in HCC cells (HepG2) as well as reduction of tumor invasion
at a metastatic site in the liver. The authors suggest that both
CA and CAPE inhibit and block the enzymatic activity of MMP-
9 (causing invasion and cell metastasis), by inhibiting NFkB
function (MMP-9 regulator) (60).

Macías-Pérez et al. demonstrated the chemoprotective effect
of CAPE and its analogs LQM717 and LQM706 (20mg / kg)
on necrosis, lipid peroxidation, cell proliferation, p56 activation
(protein tyrosine kinase, tumor suppressor) and alteration of
hepatic tumors (HCC) in rats. The effects of these compounds
on lipid peroxidation are attributed to the direct antioxidant
activity (chelating properties and ROS decrease) of CAPE and
the indirect antioxidant activity (inhibition of the metabolism or
induction of the antioxidant system in the cells) of their analogs.
In addition, the three compounds act by decreasing the activation
of p53, NFkB activator (apoptosis-related transcription factor,
proliferation and cell cycle) (80).

CA is a highly versatile compound with multiple
biological activities impacting human health (antioxidant,
hepatoprotection, antitumor, anti-inflammatory, antimicrobial)
(1, 4, 5, 8, 9, 14, 15). This fact seems to favor its action in the
HCC, since in vitro and in vivo studies already demonstrated its
performance through several mechanisms of action in the fight
against this disease, such as: ROS prevention (3, 30), prooxidant
action (29, 57), angiogenesis (18), suppression of MMP-2 and
MMP-9, (18, 60), justifying the differences in the results found.

Overall, in vitro and in vivo studies have shown that CA and its
derivatives exerted their anti-hepatocarcinoma effect, dependent
on various mechanisms such as apoptosis by induction of
TRAIL pathway and caspase 9 activation, loss of integrity and
depolarization of mitochondria, release of cytochrome c, and
formation of the apoptosome. However, these mechanisms and
the parameters evaluated varied greatly in vitro and in vivo
studies, such as different concentrations and doses (30µg/ml,
200µg/ml 12.5µM, 1mM, 50µM, 100 mg/kg, 20 mg/kg),
different HCC cell lines (Hep3, SK-Hep1, HepG2), as well as
different routes of administration used in vivo model (e.g., oral
and subcutaneous). Although, in vitro and in vivo data have
reaffirmed the promising role of this compound in HCC therapy,
confirming the antitumor, anti-inflammatory, antioxidant, and
anticancer properties of CA and its derivatives, but studies
are needed to better elucidate the mechanisms and pathways
involved in the performance of this compound. Accordingly,
preclinical studies of pharmacokinetics and adverse reactions
are required to determine the therapeutic index of CA prior
to human testing in order to validate the benefits of using this
compound in the control of HCC.

CONCLUSION

HCC is one of the most lethal types of cancer in the world,
so the focus on the research of new natural agents capable
of containing proliferation and metastasis in this pathological
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process represents an important strategy for the prevention
and treatment of this disease. This study sought to elucidate
knowledge about the chemical and pharmacological aspects of
CA as well as its effects on HCC. This compound demonstrates
activity against HCC, preventing the exaggerated formation
of ROS and assisting in the killing of tumor cells through
DNA oxidation, as well as angioneogenesis by acting to
reduce VEGF-induced vascularisation and suppression of MMP-
2 and MMP expression−9. The anticancer activity of CA
seems to be associated with its potent antioxidant and pro-
oxidant activity attributed to its chemical structure with free
phenolic hydroxyls, the number and position of OH in the
catechol group and the double bond in the carbonic chain.
Although these data demonstrate CA anti-hepatocarcinoma
activity, further studies are needed to explain aspects of toxicity,
interactions and efficacy that demonstrate safety in the use
of this phenolic compound as a possible candidate in the
treatment of HCC.

Therefore, we critically analyze and suggest that CA
demonstrate an anti-hepatocarcinoma action; however, the HCC
can change multiple pathways, and then, there is a need that
the CA to act simultaneously for crosstalk between inhibitory
and regulatory pathways to provide improvements in the
development and progression of HCC. In addition, caution
is required in therapies with natural products, as CA and
resveratrol, due to the lack of studies have addressed the efficacy
of CA in hepatocarcinoma in humans and animals model,
making it difficult to obtain concrete evidence of the effect of
this antioxidant. Thereby, these outcomes are limited by lack of
standardization in the design and duration of treatment, and the
lack of agreement on the effective and tolerated dose, intrinsic
aspects of the patient, environmental factors, and characteristics
of the compound studied are important for efficacy and
therapeutic success. In addition, the major limitation currently

facing is the lack of information from clinical studies that is
weak and largely inconclusive. Thus, clinical trials are mainly
conducted with volunteers, not reflecting the target population,
the participants’ age is quite broad, sample size is rarely
calculated.as reported by our group in previous work (81, 82).
Thus, we conclude that, to date, evidence based on in vivo studies
in human and animals model are still insufficient, contradictory,
and inconclusive, so we recommend that more studies and
clinical trials should be performed to fully elucidate the beneficial
effects of caffeic acid supplementation on hepatocarcinoma and
in the body, as well as its toxic effects on human health. However,
we emphasize that caffeic acid is promising in health promotion,
not only for its antioxidant activities but also for its preventing
the angioneogenesis and MMP-2 and MMP-9 expression.
Thereby, further studies assessing other routes of administration
or pharmaceutical formulations (i.e., nanoencapsulation) are
required to improve the tissue-targeting concentration and allow
caffeic acid to exert its biological activities in HCC.
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