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Information on protein subcellular localization is important to understand the cellular functions of proteins. Currently, such

information is manually curated from the literature, obtained from high-throughput microscopy-based screens and pre-

dicted from primary sequence. To get a comprehensive view of the localization of a protein, it is thus necessary to consult

multiple databases and prediction tools. To address this, we present the COMPARTMENTS resource, which integrates all

sources listed above as well as the results of automatic text mining. The resource is automatically kept up to date with

source databases, and all localization evidence is mapped onto common protein identifiers and Gene Ontology terms. We

further assign confidence scores to the localization evidence to facilitate comparison of different types and sources of

evidence. To further improve the comparability, we assign confidence scores based on the type and source of the local-

ization evidence. Finally, we visualize the unified localization evidence for a protein on a schematic cell to provide a simple

overview.

Database URL: http://compartments.jensenlab.org
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Introduction

Determining the subcellular localization of a protein is a

key step toward understanding the cellular function of a

protein. Therefore, knowledge on protein subcellular local-

ization is manually curated by UniProtKB (1) and model

organism databases such as MGI (2), SGD (3), FlyBase (4)

and WormBase (5). These databases also integrate data

from cDNA tagging projects (6–8), proteomics-based ex-

periments (9, 10) and microscopy-based high-throughput

localization studies (11–14). However, an ongoing effort

like the Human Protein Atlas (HPA) (15) is only partially

integrated in UniProtKB, and thus needs to be treated sep-

arately to obtain a comprehensive view of the currently

available experimental data on localization.

Despite the huge efforts by curators working for the

databases mentioned above, it is impossible to fully keep

up with the ever-growing literature. Thus automatic text-

mining methods can complement human curators. Several

text-mining methods have been developed to automatic-

ally extract localization information from the biomedical

abstracts (16–18).

Even if one combines curated knowledge, primary ex-

perimental data and text mining, there will still be many
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proteins with little or no information on their localization.

Fortunately, the protein sequence itself contains clues to

where the protein is localized, such as protein sorting sig-

nals, the amino acid composition and sequence homology

(19). Examples of sequence-based subcellular localization

prediction methods are BaCelLo (20), LOCtree2 (21),

PSORT (22) and YLoc (23, 24).

As these different types and sources of information are

complementary, it is important to take them all into ac-

count. However, this is not trivial. The databases and ex-

perimental data sets come in various file formats and use

different identifiers/names for the same proteins and cellu-

lar compartments. The sequence-based prediction methods

have different web interfaces, the prediction outputs con-

sist of scores that are not directly comparable and local in-

stallation of the software is generally required for genome-

wide analyses. It is thus difficult and time-intensive to col-

lect and evaluate the evidence pertaining to the subcellular

localization of a protein of interest, not to mention for a

large number of proteins.

Several databases have attempted to address this data

integration challenge. An early effort was DBSubLoc (25),

which integrated annotations from knowledge bases such

as UniProtKB and the major model organism databases.

Manual annotations were complemented by sequence-

based predictions in eSLDB (26) and further by experimen-

tal data sets in LOCATE (27), locDB (28) and SUBA3 (29). The

most recent versions of the first three of these resources

(DBSubLoc, eSLDB and LOCATE) are >5 years old, and

thus, they cannot be considered to reflect the current evi-

dence. The last two resources (locDB and SUBA3) have been

updated within the past 2 years; however, between them

these two resources cover only human and Arabidopsis

thaliana proteins. Whereas these resources are, or were,

collecting evidence from a variety of sources in a single

database, they generally do not address the challenge of

putting the different types of evidence on a common con-

fidence scale. An exception is the A. thaliana resource

SUBA3, which assigns an overall confidence score; however,

it is difficult for the user to trace these scores back to their

origin.

We have developed an automatically updated web re-

source to be able to provide up-to-date information on the

subcellular localization of proteins from the major eukary-

otic model organisms. In addition to integrating manually

curated annotations, experimental data and predictions,

we use automatic text mining to extract associations from

the biomedical literature. Unlike earlier resources, we ad-

dress the challenge of making evidence comparable across

types and sources by introducing a unified confidence scor-

ing scheme. To further shield users from the heterogeneity

of the many evidence sources, we map all localization evi-

dence onto Gene Ontology (GO) terms and visualize the

combined results on an interactive schematic of a cell. All

data are freely available for download to facilitate large-

scale analyses.

Results

The COMPARTMENTS web resource

COMPARTMENTS holds subcellular localization information

for 22 705 human and 6696 yeast proteins, and covers also

other eukaryotes such as fruit fly, mouse and

Caenorhabditis elegans. When querying the database for

a protein of interest, the user is presented with an inter-

active schematic of a cell. These figures are color coded

according to the confidence of the evidence supporting

each of the 11 (12 in case of plants) labeled compartments

(Figure 1). Interactive tables provide the user with more

fine-grained localization information and the source of

the underlying evidence.

To provide a unified overview as described above, we

map protein identifiers from the source databases to their

corresponding identifiers in the STRING (Search Tool for the

Retrieval of Interacting Genes) database (30), which for or-

ganisms in question come from Ensembl (31). We similarly

map all cellular compartments to their respective GO cellu-

lar component terms (32). The labeled compartments are a

subset of broad GO terms, much like GO Slims (33).

We further assign a confidence score to each piece of

evidence to reflect that not all types and sources of local-

ization information are equally reliable. To clearly signify

that these should not be over-interpreted as probabilities,

we use a scoring scheme that ranges from one star (lowest

confidence) to five stars (highest confidence). The way that

confidence scores are assigned varies between evidence

channels as explained in the next section. The confidence

scores are also the basis for the color coding of the figures

(Figure 1): the higher the confidence, the darker the shad-

ing of the compartment.

Evidence channels and sources

The evidence contained in COMPARTMENTS is logically par-

titioned into four channels of evidence. The first channel,

called knowledge, is based on annotations from UniProtKB

(1), MGI (2), SGD (3), FlyBase (4) and WormBase (5). We

assign confidence scores to these annotations based on

the associated GO evidence codes (34, 35), which encode

whether the annotation is based on a peer-reviewed pub-

lication, an experimental data set or sequence similarity

(see Methods section). The knowledge channel provides lo-

calization information on 16 864 human and 5909 yeast

proteins.

HPA (36) is an ongoing effort to experimentally validate

the tissue expression and subcellular localization for the

entire set of human proteins. The latter data are captured

by the experiments channel and currently contain
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information on 9306 human proteins. The confidence

scores of this channel are based on the antibody validation

scores provided by HPA (15) (see Methods section).

The third channel provides associations between pro-

teins and subcellular localizations derived from automatic

text mining of the abstracts in Medline. We used the dic-

tionary of protein names from STRING (30) and created a

dictionary of subcellular compartments from GO (see

Methods section). We use a confidence scoring scheme,

which is based on the fact that the more a protein and a

cellular compartment are co-mentioned, the more likely

the protein is to be localized to the compartment (see

Methods section). The text-mining channel currently con-

tains putative localizations for 15 304 human and 4144

yeast proteins.

Finally, the predictions channel contains precomputed

results from two sequence-based prediction methods,

namely the well-known WoLF PSORT (37) and the high-

resolution version of YLoc (23, 24). Published benchmarks

(21, 23) suggest that these methods are two of the best that

cover many compartments, in particular for human pro-

teins. Moreover, these and the other methods mentioned

earlier were developed on overlapping training sets, and

thus cannot be considered independent evidence. The pri-

mary reason for including only two methods is thus to not

present the user with a large number of redundant pre-

dictions. We applied both methods to 22 523 human,

23 443 mouse, 22 938 rat, 14 076 Drosophila melanogaster,

20 158 C. elegans, 6697 Saccharomyces cerevisiae and

31 280 A. thaliana protein sequences from STRING 9.1

(30). The output scores from each tool were transformed

to make them comparable with other evidence in the data-

base (see Methods section).

The number of human and yeast proteins assigned to

each of the 11 labeled compartments based on each of

these evidence channels are summarized in Tables 1 and 2,

respectively. The two sequence-based prediction tools both

provide full coverage of the proteome and are therefore

shown separately in the tables. For this reason, we also

leave out the prediction tools in Figure 2, which shows the

overlap in terms of human proteins assigned to at least one

compartment by knowledge, experiments and text mining.

This shows that integrating experimental and text-mining

evidence increases the coverage by 11% additional human

proteins. Even when more than one channel covers the

same protein, this is not necessarily redundant information.

Firstly, the same protein can localize to multiple compart-

ments, and the two evidence channels may not provide sup-

port for the same localization. Secondly, when two channels

support the same localization of a protein, they typically

provide complementary evidence of interest to the user.

This is also why full coverage of the sequence-based predic-

tion tools does not make the other evidence channels re-

dundant; if a protein is predicted to have a certain

localization, it is still of interest to the user if this also is

supported by experiments or literature.

Benchmark of the text-mining pipeline

To assess the quality of the pairs extracted by text mining,

we compared them against a benchmark set of 9764

human and 3834 yeast proteins having 12 232 and 4530

high-confidence localization annotations, respectively.

Figure 1. Visualization of localization evidence. When querying the database for a protein, its localization is visualized on a
schematic of a cell. When the user hovers the cursor over a compartment, we also graphically summarize the types of evidence
supporting this localization. The confidence of the evidence is color coded, ranging from light green for low confidence to dark
green for high confidence. White indicates an absence of localization evidence.
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The benchmark set is derived from the evidence in the

knowledge channel (see Methods section). This shows

that the method works well on the majority of the com-

partments (Figure 3). The exceptions include the nucleus

and—in case of human—the plasma membrane. The false

positives for these compartments are predominantly be-

cause of functional associations captured by co-

mentioning. For example, a protein involved in signal trans-

duction can easily be functionally associated with both the

plasma membrane and the nucleus without being localized

to either. The method also shows poor performance for the

cytosol because of the experimental difficulty to distinguish

proteins in the cytosol from those in, for example, vesicles.

Consequently, many cytosolic proteins are conservatively

annotated to the cytoplasm instead of the cytosol.

Linking compartments by overrepresentation of
shared proteins

To illustrate the usefulness of COMPARTMENTS for large-

scale studies, we identified pairs of compartments that

share a statistically significant number of human proteins

(Figure 4 and see Methods section). Notably, there were no

borderline cases–all pairs of compartments were either

highly significant after controlling for multiple testing or

they were not even significant before correction. The two

compartments that share the most proteins are the cytosol

and the nucleus, both of which also share many proteins

with the cytoskeleton. Most of the remaining intracellular

compartments form a highly connected network, except

the extracellular space, the mitochondria and the

peroxisomes.

Discussion

The COMPARTMENTS resource unifies complementary evi-

dence on protein localization from curated knowledge,

high-throughput experiments, text mining and sequence-

based prediction methods. We go beyond merely integrat-

ing many sources of evidence into a single database by

mapping all pieces of evidence onto the same set of iden-

tifiers and carefully assigning them comparable confidence

scores. We derived these through a combination of manual

inspection of each evidence source, a previous study of the

reliabilities of GO evidence codes (38), the benchmark

Table 1. Overview of the localization evidence for human
proteins

Compartment Knowledge Experi

ments

Text

mining

PSORT YLoc

Nucleus 6082 5848 2288 9600 5335

Cytosol 2538 4872 577 9128 4630

Cytoskeleton 1843 1215 1257 134 –

Peroxisome 124 – 240 315 262

Lysosome 386 – 262 5 120

Endoplasmic reticulum 1382 151 656 281 178

Golgi apparatus 1250 814 348 64 313

Plasma membrane 4440 1271 1515 3681 3815

Endosome 170 – 88 – –

Extracellular space 2267 – 1528 4331 1625

Mitochondrion 1156 924 793 2008 871

We counted protein–compartment associations separately for

each of the 11 labeled compartments and for each evidence

channel. The only exception is the predictions channel, for

which we show the results from the two sequence-based methods

(PSORT and YLoc) separately. Dashes denote compartments for

which a channel or prediction method cannot provide evidence.

Table 2. Overview of the localization evidence for yeast
proteins

Compartment Knowledge Text

mining

PSORT YLoc

Nucleus 2194 211 3870 1476

Cytosol 422 42 3242 1533

Cytoskeleton 231 108 44 –

Peroxisome 69 65 20 127

Vacuole 268 88 0 23

Endoplasmic reticulum 486 129 42 38

Golgi apparatus 236 75 12 57

Plasma membrane 457 135 775 350

Endosome 16 18 – –

Extracellular space 94 69 302 624

Mitochondrion 1118 162 1486 422

For details refer to the footnote of Table 1.

Figure 2. Overlap between the knowledge, experimental and
text-mining evidence for human proteins. The Venn diagram
shows the number of proteins with localization evidence from
one or more of the three types of evidence. The two
sequence-based prediction methods are not included as they
are able to provide a prediction for any protein sequence.
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results for the text-mining pipeline and score distributions

for the sequence-based prediction methods.

The primary aim of COMPARTMENTS web interface is to

provide the user with a simple overview of the localization

of a protein of interest without losing the connection to

the underlying evidence. The overview is provided through

a schematic of a cell, which is color coded based on the

strongest evidence supporting each compartment. This

visualization is interactive and allows the user to see

which evidence channels support a particular compartment

and how strongly it supports. This directly informs the user

about which of the tables below contain further details

about the origin of the evidence. For the knowledge and

experiments channels, the tables link out to the external

databases from which the evidence was obtained. For

text mining, the table gives access to an abstract viewer

that shows the abstracts in which the protein and localiza-

tion are co-mentioned, highlighting the terms that were

recognized.

Demonstrating the usefulness of COMPARTMENTS for

large-scale analyses, we derived a network of compart-

ments, which is highly consistent with established know-

ledge on protein trafficking. The strong association

between the cytosol and the nucleus is unsurprising, as

nucleocytosolic protein transport is a well-established regu-

latory mechanism (39). Both compartments also share many

proteins with the cytoskeleton, most of which are involved

in processes such as centrosome organization, chromosome

segregation and nuclear division, which is consistent with

the highly dynamic interplay between these compartments

during mitosis (40). We further found that peroxisomes are

related to the endoplasmic reticulum and to the mitochon-

dria by proteins mainly involved in fatty acid metabolic and

lipid biosynthetic processes. In contrast to the well-studied

metabolic cooperation between the peroxisomes and the

endoplasmic reticulum (41, 42), the connection to mito-

chondria was only recently discovered (43, 44), and the

underlying mechanistic link is not yet fully understood

(45). Proteins shared between the plasma membrane, endo-

somes and lysosomes, and those shared between lysosomes

and the extracellular matrix are mainly involved in immune

response and phagocytosis, which are related to the endo-

cytic trafficking pathway (46, 47). The links between the

endoplasmic reticulum, Golgi apparatus and plasma mem-

brane reflect the exocytotic pathway (48). Lastly, cross talk

between these major trafficking pathways between intra-

cellular organelles (49) is captured by the connections

between the Golgi apparatus, endosomes and lysosomes.

Because COMPARTMENTS uses the same protein identifiers

as the STRING database (30), it also facilitates large-scale

analysis of protein localization in the context of interaction

networks.

COMPARTMENTS is the first resource to integrate subcel-

lular localization evidence from manually curated

Figure 3. Benchmark of text-mining results. The performance of the text-mining pipeline on human and yeast proteins is shown
as receiver operating characteristics (ROC) curves for each of 11 compartments. The curves do not intercept sensitivity = 1.0 and
FPR = 1.0 because many of the protein–compartment pairs in the benchmark set are never found mentioned together in Medline,
for which reason they have no text-mining score.
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annotations, high-throughput screens and sequence-based

predictions with automatic text mining for all major model

organisms. To avoid the common problem of bioinfor-

matics databases not being maintained, we have from the

beginning designed the resource to be automatically kept

up-to-date with the constant changes in source databases

and literature. We address the challenge of making it easy

for users to comprehend the heterogeneous evidence by

projecting it onto a common reference both in terms of

protein and compartment identifiers and in terms of reli-

ability scores. This is complemented by the web interface,

which provides an intuitive, interactive graphical overview

of the unified evidence and simple tables with more de-

tailed information, including links to the original sources.

We also make the unified evidence available as bulk down-

load files to facilitate large-scale computational studies of

protein localization and integration with omics data sets.

Materials and Methods

Visualization of protein subcellular localization

For visualization purposes, we selected a set of commonly

used localizations, including the cytosol and all major

organelles. Each of these represents a GO term, and all

evidence for more fine-grained localizations is projected

onto these through is_a and part_of relationships. In case

of multiple lines of evidence for the same localization, we

always select the strongest. We subsequently present the

evidence by color coding a schematic of a cell. We have

developed separate figures for animal, fungal and plant

cells to account for differences in their cell structure; for

example, animal cells have no cell wall, and only plants

have chloroplasts.

Assembly of the knowledge and experiments channels

We imported subcellular localization annotations from

comments and database cross-reference fields of

UniProtKB. We map these to the corresponding Ensembl

identifiers using the STRING alias file (30) and GO terms

using the UniProtKB controlled vocabulary of subcellular

localizations. For S. cerevisiae, C. elegans, D. melanogaster

and Mus musculus, we imported cellular component GO

annotations from their respective model organism data-

base (2–5).

For the knowledge channel, we assigned the highest

score of four stars for annotations with the following evi-

dence codes: CURATED, IDA, TAS and NAS. We assigned

three stars to the evidence codes PROBABLE, EXP, IPI,

IMP, IGI, IEP, ISS, ISO, ISA, ISM, IBA, IBD, IKR, IMR, IRD and

IC. We assigned two stars to the less reliable evidence codes

POTENTIAL, IGC and IEA, while BY SIMILARITY, RCA and NR

are assigned only one star. Because we consider some

sources to be more reliable than others, we upgraded

annotations from UniProtKB and the model organism data-

bases by one star, resulting in a maximum score of five stars

for the knowledge channel.

We also imported subcellular localization data from the

Human Protein Atlas (HPA) (15, 50), which uses Ensembl

identifiers, and manually mapped their locations to the

corresponding GO terms. HPA uses two scoring schemes

Figure 4. Compartment relationships derived from shared pro-
teins. Illustrating the usefulness of COMPARTMENTS for global
analysis of protein localization, we studied relationships be-
tween compartments. Each node represents a single compart-
ment, which is highlighted in green. The number of proteins
in the compartment is shown in parenthesis. We show an
edge between two compartments whenever they share
more proteins than expected at random (false discovery rate
<0.1%). The number of proteins co-localized to the two com-
partments is shown next to the edge.
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to classify the quality of its data. When a protein has been

stained using two or more antibodies, HPA provides a

reliability score based on the similarity of the staining

patterns obtained with the different antibodies and the

agreement with published literature. This scale has four

levels of reliability: high (four stars), medium (three stars),

low (two stars) and very low (one star). When only a single

antibody has been used for staining, we instead make use

of the validation score provided by HPA. This scale has

three levels: supportive (three stars), uncertain (one star)

and non-supportive (not imported).

Text mining of Medline abstracts

We used the protein dictionary from STRING 9.1 (30) and

created a dictionary of names of subcellular localizations

from the cellular component terms of the GO (32). To im-

prove the protein dictionary, we discarded protein names

that conflict with names of GO terms. Furthermore, we

blocked frequently occurring ambiguous names, such as

acronyms, thereby greatly improving the precision. This

was done through manual inspection of all protein and

localization names giving rise to >2000 matches in Medline.

We matched these dictionaries against all Medline

abstracts using an efficient named entity recognition

engine described elsewhere (51). To score the co-occurring

proteins and localizations, we used the text-mining scoring

scheme of STRING 9.1 (30), which is a weighted count

[C P,Lð Þ] for each pair of protein P and for localization L:

C P,Lð Þ ¼
Xn

k¼1

ws�sk P,Lð Þ þwa�ak P,Lð Þ

where n is the number of abstracts, ws ¼ 0:2 and wa ¼ 3 are

the weights for co-occurrence within the same sentence

and within the same abstract, respectively. If P and L are

mentioned together in a sentence or in abstract k, the delta

functions �ak P,Lð Þ and �sk P,Lð Þ are 1, and 0 otherwise. Thus,

an abstract that mentions P and L in the same sentence will

give a score contribution of ws þwa, whereas an abstract

that mentions them in different sentences will give a score

contribution of wa only. The co-occurrence score [S P,Lð Þ] is

defined as follows:

S P,Lð Þ ¼ C P,Lð Þ
� C P,Lð ÞC �,�ð Þ

C P,�ð ÞC �,Lð Þ

� �1��

where C P,�ð Þ, C �,Lð Þ and C �,�ð Þ are the sums over localiza-

tions paired with protein P, over all proteins from the same

organism paired with localization L and over all pairs of

proteins from the same organism and localizations, respect-

ively. The weighting factor � is 0.6. All parameters in the

scoring scheme (ws, wa and �) were optimized to maximize

the agreement between protein–protein co-occurrence

scores and KEGG pathways (30).

The text-mining score depends on number of pairs iden-

tified in Medline abstracts, which changes as Medline

grows. We, therefore, convert the scores into z-scores

[Z P,Lð Þ] to get a more robust measure. The observed distri-

bution is a mixture of two, one from low-scoring random

pairs and second from high-scoring biologically meaningful

pairs. The former is modeled as a Gaussian where the mean

is equal to the mode of the observed distribution, which

empirically coincides with the 40th percentile. The variance

of the background is estimated from the difference be-

tween the 20th and the 40th percentiles. The final confi-

dence score, stars, is the z-score/2, limited to a maximum of

four.

Construction of text-mining benchmark set

We constructed a high-quality benchmark set based on the

knowledge channel. The positive examples are pairs of pro-

teins and compartments supported by five-star evidence.

The negative examples are pairs of proteins and compart-

ments for which there is no evidence suggesting that the

protein is in the compartment and five-star evidence for

the protein being in a different compartment. The com-

partments considered for the benchmark set are the 11

subcellular localizations used in the overview figure, and

all evidence for more specific localizations have been back-

tracked to this level. The benchmark set is available for

download from the COMPARTMENTS web resource.

Scoring of sequence-based predictions

The WoLF PSORT and YLoc-HighRes methods were selected

for prediction of subcellular localization. We precomputed

predictions for the entire set of protein sequences for

human, mouse, rat, D. melanogaster, C. elegans, S. cerevi-

siae and A. thaliana in STRING 9.1. We converted all scores

to stars to make them comparable with other evidence

types; the maximum number of stars that can be assigned

to a sequence-based prediction is three. This ensures that

prediction scores cannot exceed the scores of reliable

manual annotations, experiments or text mining.

PSORT (37) predicts localization based on various se-

quence-derived features such as sorting signals, binding do-

mains and amino acid composition. These are used by a

weighted k-nearest neighbor classifier. The output scores

ðnÞ roughly correspond to the number of the k nearest

neighbors from the training set that are annotated with

each localization. We convert these scores to stars ðsPSORT Þ

using the following formula:

sPSORT ¼ 3
n

k

YLoc (23) is a naı̈ve Bayes classifier that uses features

similar to those of PSORT combined with GO annotations

of close homologs. We found that most of the posterior

probabilities from YLoc are close to either 0 or 1.

To differentiate between the probabilities close to 1

.............................................................................................................................................................................................................................................................................................
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when converting them to stars, we transform them using

the following heuristic function:

sYLoc ¼ 3 1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� P

4
p� �

where sYLoc is the stars derived from a YLoc prediction, P is

the prediction probability that the protein is localized in

the given compartment. (P < 0:2 is ignored). This formula

ensures that probabilities close to 1 become distinguishable

when converted to stars: P ¼ 0:8! 1 star, P ¼ 0:99! 2

stars, P ¼ 0:999! 2:5 stars and P ¼ 1:0! 3 stars.

Statistical analysis of compartments sharing proteins

From the unified data set, we extracted localization infor-

mation on human proteins with more than two stars to

disregard weak text-mining and prediction evidence. The

retrieved data set comprised 18 692 unique human proteins

with 29 493 links to compartments: 20 021 were supported

by curated knowledge, 4841 by high-throughput experi-

mental evidence, 1468 by text mining and 15 788 by

sequence-based predictions. We counted the number of

proteins shared between any two compartments. To

assess if this is higher than expected, we compared the

counts to a null model that assumed no correlation

between any compartments. To this end, we generated

1 000 000 random data sets in which links between proteins

and compartments were permuted, thereby preserving the

number of links per protein and per compartment. We

computed a P-value for each pair of compartments as the

fraction of random data sets resulting in a count greater

than or equal to the observed count. Finally, we defined

the statistically significant compartment pairs by imposing

a false discovery rate of 0.1% using the Benjamini–

Hochberg method (52).
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