
Acta  
Materia  
Medica

Review Article

Acta Materia Medica 2024, Volume 3, Issue 1, p. 57-71   57 
© 2024 The Authors. Creative Commons Attribution 4.0 International License

New generation estrogen receptor-targeted 
agents in breast cancer: present situation and 
future prospectives
Jian Mina,*, Xin Liua, Rouming Penga, Chun-Chi Chena,b, Wei Wangc and Rey-Ting Guoa,b,*

aNational & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis 
and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei 
University, Wuhan 430062, China
bZhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, 
Hangzhou Normal University, Hangzhou 311121, China
cDepartment of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson AZ 85721, USA

*Correspondence: jianmin@hubu.edu.cn (J. Min); guoreyting@hubu.edu.cn (R.-T. Guo)

Received: 26 January 2024; Revised: 21 February 2024; Accepted: 5 March 2024

Published online: 15 March 2024

DOI 10.15212/AMM-2024-0006

ABSTRACT

Endocrine therapy that blocks estrogen receptor signaling has been effective for decades as a primary treatment 
choice for breast cancer patients expressing the estrogen receptor. However, the issue of drug resistance poses a 
significant clinical challenge. It is therefore critically important to create new therapeutic agents that can suppress 
ERα activity, particularly in cases of ESR1 mutations. This review highlights recent efforts in drug development 
of next generation ER-targeted agents, including oral selective ER degraders, proteolysis-targeting chimera ER 
degraders, and other innovative molecules, such as complete estrogen receptor antagonists and selective estrogen 
receptor covalent antagonists. The drug design, efficacy, and clinical trials for each compound are detailed herein.
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1. INTRODUCTION

Breast cancer (BC) ranks as the leading malignant tumor 
in women and is a serious risk to women’s health [1]. 
Being a highly heterogeneous disease, BC is typically 
classified into various subtypes based on immunohis-
tochemical analysis. The classification mainly depends 
on the level of three biomarkers (estrogen receptor 
[ER], progesterone receptor [PR], and human epidermal 
growth factor receptor 2 [HER2]). Genomic sequencing 
and transcriptomic profiling have classified BC into the 
following subtypes: luminal A; luminal B; and HER2-
enriched and basal-like/triple negative (ER−/PR−/HER2−) 
[2]. The majority of luminal A and B BCs express ER, with 
approximately 70% of newly identified patients being 
ER+ (Figure 1) [3].

In patients with non-metastatic ER+ BC, endocrine 
therapy is advised as the primary treatment option 
[4]. Endocrine therapy consists of two types of drugs: 
aromatase inhibitors (AIs), which reduce the levels of 
estrogen in the body and reduce binding to the ER; 

and anti-estrogens (AE), which reduce ER signaling 
and encompass selective estrogen receptor inhibitors 
(SERMs) that block ER function by blocking estrogen 
binding to ERs, and selective estrogen receptor degrad-
ers/downregulators (SERDs) that downregulate ER levels 
through protein degradation [5, 6].

Endocrine therapy has notably enhanced the survival 
rate of ER+ BC patients, yet drug resistance occurs in up 
to 50% of patients during long-term treatment, many 
of whom have metastases and relapses [7]. Moreover, 
the metastases and recurrences are often more aggres-
sive than the primary cancer, resulting in lower survival 
and a poorer prognosis [8].

Since 2013 multiple research teams have found 
through deep gene sequencing that mutations in the 
ERα encoding gene, ESR1, are present in high levels in 
BCs that relapse and metastasize after endocrine ther-
apy and are a genomic mechanism leading to endocrine 
resistance [9-11]. The full length of ERα is made up of 
595 amino acids with a molecular weight of 66.2 kDa. As 
a typical nuclear receptor, ERα features a DNA-binding 

mailto:jianmin@hubu.edu.cn
mailto:guoreyting@hubu.edu.cn
http://doi.org/10.15212/AMM-2024-0006


Acta  
Materia  
Medica Review Article

58   Acta Materia Medica 2024, Volume 3, Issue 1, p. 57-71 
© 2024 The Authors. Creative Commons Attribution 4.0 International License

domain (DBD) that is highly conserved and a ligand-bind-
ing domain (LBD) composed of 12 helices (Figure 1) [12]. 
ESR1 mutations are predominantly ER point mutations. 
Specifically, the ER point mutations, Y537S and D538G, 
are located on C-terminal helix 12 (h12) and are the most 
common ER point mutations in 50% of cases (Figure 1) 
[13]. Post-mutation the ER signaling pathway remains 
aberrantly activated and traditional ER inhibitors do not 
respond, leading to acquired resistance [14].

These acquired ESR1 mutations establish the clini-
cal need to develop a new generation of ER-targeted 
agents. Amid overwhelming clinical demand, the phar-
maceutical industry and academia have been investing 
in new-generation ER inhibitors to block the ER sign-
aling pathway. Each class operates through a unique 
mechanism of action, as depicted in Figure 2.

From this viewpoint we will review the latest discover-
ies and advances in the new generation of anti-estrogens 
and how they set a new paradigm for treating ER+ BC.

2. SERDs

SERDs are viewed as a key strategy in overcoming endo-
crine resistance [15]. SERDs function as ER antagonists 
and trigger ER degradation to effectively block ER 
 signaling [16]. Given the context of drug resistance, a 
number of oral SERDs have been identified to increase 
systemic exposure, thereby enhancing efficacy and clini-
cal potency against ESR1 mutations [17].

The current active clinical trials of new oral SERDs are 
summarized in Table 1.

2.1 Fulvestrant and its analogue
Presently, fulvestrant is as the only SERD administered 
in treating endocrine-resistant metastatic BC in the first 
and subsequent lines [18]. However, the limited solubil-
ity and absence of oral bioavailability restricts the full 
clinical potential of fulvestrant, with ER blockade of < 
75%, even with a monthly administration of 500 mg [19].

NH2 COOH

Structure of estrogen receptor `

AF-1 DBD hinge AF-2 (LBD)

aa1 180 263 302 595

Figure 1 | Structure of ERα and hot spot ESR1 mutations.

Figure 2 | Summary of the mechanism of action underlying the main classes of ER-targeted agents.
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The introduction of a boronic acid component to sub-
stitute the C3 phenol led to the creation of borestrant 
(ZB716), the purpose of which is to inhibit first-pass 
metabolism while preserving the fulvestrant pharma-
cologic profile (Figure 3) [20]. Preclinical studies have 
shown that ZB716 is an orally bioavailable selective ERα 
degrader that exhibits complete ER antagonism and 
superior characteristics when compared to fulvestrant 
[21]. ZB716 was given orally in a phase I/II ENZENO trial 
(NCT04669587) alone and combined with palbociclib for 
patients with ER+/HER2− advanced or metastatic breast 
cancer (MBC) [22].

2.2 Oral SERDs with acrylic acid side chains
In addition to borestrant, pharmaceutical efforts have uti-
lized non-steroidal scaffolds with two types of chemical 

pendent moieties (an acid or basic side chain). These side 
chains perturb the ER LBD pocket and interfere with the 
co-activator binding site to drive antagonism [23].

An acrylic acid side chain was first employed in an 
early SERD (GW5638) from Glaxo-SmithKline (GSK) in 
1994 [24]. During that period, tamoxifen had been suc-
cessfully used as a selective estrogen receptor modula-
tor (SERM) in adjuvant endocrine therapy for nearly 2 
decades. However, while tamoxifen exhibits anti-estro-
gen effects in BC cells, tamoxifen functions as a partial 
agonist in certain tissues (uterus, bones, and endome-
trium), leading to side effects and drug resistance [25]. 
There was a demand for stronger anti-estrogens to ful-
fill the unaddressed clinical requirements of tamoxifen.

GW5638 was designed based on the tamoxifen core 
structure by substituting a basic piperidine side chain 

Table 1 | Ongoing clinical trials of oral SERDs.

Oral SERD  Trial identifier  N  Study design  Patient characteristics

Borestrant 
(ZB716)

 NCT04669587 106  Monotherapy and combined with palbocilib ER+/HER2− Locally advanced or metastatic breast cancer

Rintodestrant 
(G1T48)

 NCT03455270 107  Monotherapy and combined with palbocilib ER+/HER2− Metastatic breast cancer

Taragarestrant 
(D-0502)

 NCT03471663 200  Monotherapy and combined with palbocilib ER+/HER2− Advanced or metastatic breast cancer

 CTR20190092  72  Monotherapy and combined with palbocilib ER+/HER2− Advanced or metastatic breast cancer

ZN-c5  NCT03560531 181  Monotherapy combined with palbocilib  ER+/HER2− Advanced or metastatic breast cancer

 NCT04514159 14  Combined with abemaciclib  

LX-039  NCT04097756 44  Dose escalation and dose expansion  ER+/HER2− Locally advanced or metastatic breast cancer

Elacestrant 
(RAD1901)

 NCT05386108 106  Combined with abemaciclib  Brain metastasis due to HR+/HER2− breast cancer

Imluestrant 
(LY3484356)

 NCT04188548 500  Monotherapy and combined with 
abemaciclib/everolimus/alpelisib

 ER+ Locally advanced or metastatic breast cancer and 
other select non-breast cancers

Camizestrant 
(AZD9833)

 NCT04964934 300  Combined with CDK4/6 inhibitors vs. 
continue Al + CDK4/6 inhibitors

 HR+/HER2− Metastatic breast cancer with detectable 
ESR1 mutation

Giredestrant 
(GDC9545)

 NCT04546009 992  Combined with palbociclib vs. letrozole + 
palbociclib

 ER+/HER2− Advanced or metastatic breast cancer
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Figure 3 | Fulvestrant and its boric acid analogue, ZB716.
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with an acrylic acid side chain. According to the crystal 
structure of GW5638 complexed with the ER LBD, this 
rigid acrylic acid moiety interacts with the N-terminus 
of h12 and shifts h12 to disrupt the co-activator bind-
ing site to induce protein degradation (Figure 4a) [26]. 
This rigid and acidic side chain was utilized in numer-
ous newly developed SERDs, such as GDC-0810, G1T48, 
LSZ102, SHR9549, AZD9496, D-0502, ZN-c5, and LX-039 
(Figure 4b).

Brilanestrant (GDC-0810) was developed by Seragon 
and derived from the structural design of GW5638 [27]. 
The benzene ring of GW5638 was replaced by indazole 
to improve pharmacokinetic properties [28]. A phase II 
trial (NCT02569801) demonstrated good safety and tol-
erability of GDC-0810. GDC-0810 also exhibited desira-
ble anti-tumor potency in advanced ER+ or MBC patients 

who had undergone extensive pretreatment, regardless 
of ESR1 mutations [29]. However, further development 
was discontinued owing to commercial consideration 
in contrast to other competitors under development, 
which showed early signs of complete ER antagonism 
and enhanced potency [30].

Rintodestrant (G1T48) was developed by G1 
Therapeutics. The drug design was inspired by the typ-
ical 6-OH-benzothiophene scaffold used in arzoxifene 
and raloxifene [31, 32]. Rintodestrant acts as a potent 
oral SERD that selectively binds to the ER and inhibits 
ER signaling in endocrine-resistant tumors. A phase I 
trial (NCT03455270) of G1T48 alone and combined 
with the CDK4/6 inhibitor, palbociclib, generated excel-
lent safety/tolerability profiles and potent anti-tumor 
activity in extensively pretreated ER+/HER2− advanced 
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Figure 4 | Oral SERDs with acrylic acid side chains.
a. Design of the oral SERD, GW5638. The acrylic acid chain relocates h12 to block the co-activator binding site (PDB ID: 1R5K); b. Representative 
chemical structurers of new generation oral SERDs with acrylic acid side chains.
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BC patients, especially those harboring ESR1 variants 
[33, 34].

LSZ102 is another benzothiophene scaffold oral SERD 
developed by Novartis with an acrylic acid side chain [35]. 
A phase I/Ib study (NCT02734615) reported encourag-
ing activity of LSZ102 when combined with the CDK4/6 
inhibitor, ribociclib, and the PI3Kα inhibitor, alpelisib, 
for treating ER+ BC patients. However, Norvatis termi-
nated further clinical development due to the limited 
clinical potency of LSZ102 as a single treatment [36].

Compound SHR9549 was developed by Shanghai 
HengRui Medicine Co., Ltd. with a tetrahydroisoquin-
oline core. Rodents treated with SHR9549 revealed a 
potent (IC50 = 14 nM) ER degrader with promising phar-
macokinetic characteristics [37, 38]. A phase I trial involv-
ing SHR9549 (NCT03596658) was terminated because of 
dose-limited toxicity observed in one patient.

AZD9496 was developed by AstraZeneca based on 
a tricyclic tetrahydropiperidine core [39]. AZD9496 
achieved sub-nanomolar degradation potency equal 
to fulvestrant and excellent oral bioavailability in mice 
[40]. However, AZD9496 exhibited weaker ERα degrada-
tion and partial agonism in various ER+ BC cell lines [41]. 
Further investment of AZD9496 was halted because of 
adverse toxicity and limited clinical benefits, paving the 
path for AZD9833, a more effective and well-tolerated 
successor [42].

Taragarestrant (D-0502) was created by Inventis Bio. 
It was noticed that taragarestrant has a very similar 
structure to AZD9496. This SERD, which can be taken 
orally, exhibits potent efficacy across multiple BC cell 
lines expressing ER and related xenograft models [43]. A 
phase I study (NCT03471663) involving D-0502 is ongo-
ing in females with ER+/HER2− advanced BC or MBC 
[44]. D-0502 has shown good tolerability and consider-
able exposure, leading to preliminary clinical activity in 
patients when used alone and combined with palboci-
clib. Currently, D-0502 is under evaluation in a phase III 
clinical trial (CTR20190092) for patients with ER+/HER2− 
advanced BC or MBC in China [45].

ZN-c5 was developed by Zentalis with a tricyclic tet-
rahydropiperidine core similar to AZD9496 and D-0502 
[46]. ZN-c5 represents an innovative, orally bioavailable 
ER degrader with high potency in estrogen-dependent 
tumor models. Preliminary clinical results showed that 
ZN-c5 is extremely safe and tolerable when used in com-
bination with several CDK4/6 inhibitors [47]. A phase II 
trial involving ZN-c5 as monotherapy (NCT03560531) and 
a phase I trial involving ZN-c5 in combination with pal-
bociclib (NCT03560531) and abemaciclib (NCT04514159) 
are ongoing [48].

LX-039 was developed by Luoxin Pharmaceuticals 
with a C-3 chlorine indole mimicking AZD9496 [49]. 
LX-039 demonstrated favorable physicochemical prop-
erties and potent biological activities in vitro [50]. 
LX-039 exhibited potent tumor inhibition in both wild-
type and tamoxifen-resistant MCF-7 mouse xenograft 
models. The excellent pharmacokinetic profile and high 

oral exposure of LX-038 facilitated its advancement into 
clinical trials. Currently, LX-039 is undergoing a phase I 
trial (NCT04097756) treating ER+/HER2− advanced BC or 
MBC patients [51].

2.3 Oral SERDs with basic side chains
Several clinical SERMs, such as tamoxifen, raloxifene, 
and lasofoxifene, contain a basic side chain that emerges 
from the ER LBD pocket and relocates h12 from the 
agonist conformation to the antagonist conformation 
(Figure 5a) [52, 53]. Early clinical data of new SERDs fea-
turing acrylic acid side chains did not yield encouraging 
results with respect to efficacy and tolerability, leading 
to the termination of further development for most of 
these compounds [54]. Being a ligand-dependent recep-
tor, ER exhibits sensitivity to minor structural changes of 
the ligand [55]. Consequently, a range of basic function-
alities were screened in the drug design and ultimately 
utilized in oral SERDs (Figure 5b) [56].

Elacestrant (RAD-1901) was the first new generation 
oral SERD approved by US FDA under the brand name, 
Orserdu®, on 27 January 2023 [57]. Orserdu® was devel-
oped by Stemline Therapeutics, a branch of the Menarni 
Group [58]. The therapeutic indication for elacestrant is 
treatment of ER+/HER2− and ESR1-mutated advanced 
BC or MBC patients as a single agent [59]. When admin-
istered orally in a higher dose, elacestrant increases 
the receptor occupancy and triggers a conformational 
change, resulting in ER degradation and suppression of 
ER signaling pathways to prevent cancer progression 
[60]. The phase Ib/II ELECTRA trial (NCT05386108) involv-
ing elacestrant combined with abemaciclib is ongoing to 
treat patients with ER+/HER2− BC and brain metastases.

GDC-0927 was developed by Seragon Pharmaceuticals 
[61]. GDC-0927 has a chromene core with an azetidine 
base side chain and exhibits enhanced anti-tumor 
activity in vivo in two ER+ PDX models. A phase I trial 
(NCT02316509) showed that GDC-0927 consistently 
reduces ER availability regardless of the ESR1 mutation 
status [62]. Despite showing desirable features, the con-
tinued development of GDC-0927 was stopped based on 
the collective clinical data [63].

Bexirestrant (SCO-120) was developed by Sun Pharma 
[64]. Bexirestrant has a chromene core with an E-alkene 
linked to an azetidine base [65]. As a potent degrader 
in both wild-type and ESR1-mutated ER, bexirestrant 
showed notable efficacy in an MCF-7 ER-Y537S xeno-
graft model [66]. Further clinical development of SCO-
120 was terminated for commercial reasons.

Amcenestrant (SAR439859) was identified by Sanofi 
as a potent SERD [67]. Amcenestrant has a 6,7-dihy-
dro-5H-benzo[7]annulene core with phenol attached 
to an O-linked fluoropropyl−pyrrolidine side chain. The 
reduction in ERα levels by amcenestrant was compa-
rable to fulvestrant in vitro and amcenestrant demon-
strated potent efficacy in BC xenograft murine models 
with significant tumor shrinkage [68]. Given the encour-
aging preclinical outcomes in wild-type and mutated 
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ESR1 models, amcenestrant has undergone assessment 
alone in the AMEERA-1 phase I/II trial (NCT03284957) in 
ER+/HER2− MBC patients, followed by AMEERA-3 trial 
(NCT04059484) in which the SERD was compared to the 
endocrine therapy (ET) selected by the physician [69]. 
Further clinical development of amcenestrant was dis-
continued due to treatment-related toxicity observed 
in the AMEERA-5 (NCT04478266) and AMEERA-6 
(NCT05128773) trials [70, 71].

Imlunestrant (LY3484356) was developed by Loxo 
Oncology of the Eli Lilly Corporation [72]. The core 
scaffold of imlunestrant mimics the ABCD ring of estra-
diol with a 7β position phenyl appendant. Imlunestrant 
demonstrated potent efficacy in suppressing wild-type 
and ESR1-mutated mice xenograft BC tumor models. 
When imlunestrant was in combination treatment with 
the abemaciclib, everolimus, and alpelisib, synergistic 
effects were observed in suppressing multiple BC cell 
lines expressing ER and in corresponding xenograft 
or PDX models in vivo [73]. A phase I/II EMBER trial of 
LY3484356 (NCT04188548) is currently underway.

Camizestrant (AZD9833) was reported by AstraZeneca 
with a 3-(fluoromethyl)azetidine side chain replacing 
the acrylic acid chain of AZD9496 [74]. Among various 
ER+ BC cell lines, the maximal ERα degradation was 
similar to fulvestrant and exceeded AZD9496 [75]. The 
phase II SERENA-2 trial (NCT04214288) showed that cam-
izestrant has enhanced efficacy and suppression in PDX 
models compared to fulvestrant [76, 77]. Furthermore, 
the phase III SERENA-6 trial (NCT04964934) showed that 
camizestrant has strong and broad anti-tumor potency 
as a single agent and when combined with CDK4/6 or 
PI3K/AKT/mTOR inhibitors in fulvestrant-resistant wide-
type and ESR1-mutated PDX models [78].

Giredestrant (GDC9545) was developed by Genentech 
as a full ER antagonist and potent SERD [79]. Medicinal 
scientists from Genentech utilized the tricyclic tetrahy-
dropiperidine core with a difluoropropyl alcohol side 
chain to enhance the physicochemical properties with-
out sacrificing potency [80]. Giredestrant has potent oral 
bioavailability and superior degradation efficiency com-
pared to fulvestrant in wild-type and mutant ER-Y537S 
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Figure 5 | SERMs and oral SERDs with basic side chains.
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MCF-7 cells [81]. The phase III persevERA (NCT04546009) 
and evERA (NCT05306340) trials are ongoing to evaluate 
the efficacy and safety profiles of GDC-9545 combined 
with palbociclib and everolimus in ER+/HER2− MBC 
patients who are pretreated with CDK4/6 inhibitors and 
ET [82, 83].

3. ER PROTEOLYSIS-TARGETING CHIMERAS 
(PROTACs)

PROTAC technology has gained attention through-
out the pharmaceutical industry in recent years. The 
PROTAC complex consist of three parts: a ligand of the 
target protein at one end; an E3 ubiquitin ligase binder 
at the other end; and a suitable linker connecting the 
two ends. Theoretically, only a catalytic dose of PROTAC 
is required to degrade nearly all of the proteins in the 
cell, which makes PROTACs safe, resistant, and promis-
ing for clinical application [84]. PROTACs can be used to 
overcome resistance to traditional therapeutic drugs on 

their own, as well as a promising tool for future combi-
nation therapies. There have been numerous reports of 
ER PROTACs using the core structure of a SERM or SERD 
as an ER ligand, and von Hippel-Lindau (VHL), cerebron 
(CRBN), or inhibitors of apoptosis (IAPs) as an E3 ligase 
[85, 86].

The pioneering ER PROTAC, ARV-471 (vepdegestrant), 
was collaboratively developed by Pfizer and Arvinas. 
By targeting ERα and CRBN, vepdegestrant forms a 
heterobifunctional PROTAC that degrades wild-type 
and mutant ER (Figure 6). According to phase I/II trial 
data, ARV-471 was well-tolerated and clinically effec-
tive in extensively pretreated ER+/HER2− advanced 
BC or MBC patients [87]. The phase III VERITAC-2 trial 
(NCT05654623) is under assessment to compare vepde-
gestrant with fulvestrant. The phase III VERITAC-3 trial 
(NCT05909397), which involves vepdegestrant combined 
with palbociclib, is ongoing (Table 2) [88]. Other com-
bination therapy studies with abemaciclib, ribociclib, 
samuraciclib, everolimus, and Pfizer’s innovative CDK4 
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Figure 6 | Chemical structure of oral the ER-PROTAC, ARV-471.

Table 2 | Ongoing clinical trials of ER PROTACs, CERAN, and SERCA.

Drug name  Trial identifier  N  Study design  Patient characteristics

Vepdegestrant (ARV-471) NCT05654623 560  Monotherapy vs. fulvestrant  ER+/HER2− Advanced or metastatic breast cancer

 NCT05909397 1180  Combined with palbocilib vs. letrozole 
+ palbociclib

 

AC0682  NCT05489679 6  Safety, tolerability, PK, and preliminary 
anti-tumor activity alone

 ER+/HER2− Advanced or metastatic breast cancer

 NCT05080842 30  Side effects and effectiveness  

Palazestrant (OP-1250)  NCT05266105 30  Combined with palbociclib  ER+/HER2− Advanced or metastatic

 NCT05508906 90  Combined with ribociclib and alpelisib  

H3B-6545  NCT04288089 36  Combined with palbociclib  ER+/HER2− Locally advanced or metastatic breast 
cancer
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inhibitor, PF-07220060, are also currently under assess-
ment. On 6 February 2024, the US FDA approved a fast-
track designation for vepdegestrant as monotherapy for 
treating ER+/HER2− MBC patients who were pretreated 
with ET. Granting fast-track designation underscores 
the promise of vepdegestrant as an innovative clinical 
choice for ER+ BC patients.

The other ER PROTAC undergoing clinical trial is 
AC0682. This oral chimeric ER degrader was created 
by Accutar Biotech on the basis of its artificial intelli-
gence-empowered drug discovery platform using ACCU-
Degron technology. The chemical structure of AC0682 
has not been disclosed. Preclinical data showed that 
AC0682 degrades ER in wild-type and ERα Y537S/D538G 
MCF-7 cell lines with a sub-nanomolar DC50 [89]. The 
synergistic effect of AC0682 combined with palbociclib 
was evident in estradiol-dependent and tamoxifen-re-
sistant MCF-7 models. AC0682 is ongoing in phase I 
clinical trials (NCT05489679 and NCT05080842) to assess 
its safety, tolerability, PK, and effectiveness for treating 
ER+/HER2− advanced BC or MBC patients (Table 2).

ERD-3111 was reported to be an orally efficacious 
ER PROTAC by Wang et al. [90] in 2023. This chimera 
has a tricyclic indazole core scaffold with a new CRBN 
ligand (TX-16) as an E3 ligase ligand (Figure 7). ERD-
3111 showed tumor regression and completely inhibited 
tumor growth in the wild-type and two ESR1-mutated 
(Y537S and D538G) MCF-7 xenograft models. A signif-
icant reduction in ERα protein levels was also noted 

in tumor tissues. Importantly, an in vivo murine study 
showed there was no animal weight loss or other tox-
icity with ERD-311 treatment. These preclinical find-
ings showed ERD-3111 to be a highly potent oral ERα 
PROTAC for further development.

In addition to CRBN ligands, the VHL tumor suppres-
sor ligand is widely used as an E3 ligase in the devel-
opment of ER PROTACs [91]. The ER PROTACs, ERD-308 
and ERD-148, were also developed by Wang et al. Both 
PROTACs used a raloxifene core scaffold for ER ligands 
and compound 11 for the VHL ligand (Figure 7) [92, 93]. 
ERD-308 was first reported to show excellent inhibitory 
efficacy in suppressing MCF-7 and T47D BC cells and 
led to a more thorough ER degradation than fulves-
trant. In the subsequent structure activity relationship 
(SAR) studies involving ERD-308, compound ERD-148 
was shown to exhibit excellent ER degrading potency. 
The difference between ERD-308 and ERD-148 was the 
linker composition. Specifically, ERD-148 has a hydro-
phobic alkyl linker, while ERD-308 has an ether embed-
ded in the linker. Preclinical data showed that ERD-148 
suppresses the growth of estrogen-dependent wild-
type and estrogen-independent ESR1-mutated (Y537S 
and D538G) MCF-7 cells. ERD-148 was more potent than 
fulvestrant in downregulating wild-type and mutant 
ERα expression in cell lines. Moreover, ERD-148 signif-
icantly downregulated the expression of an essential 
ER-regulated gene (GREB1) at 10 nM in various wild-
type and mutant MCF-7 cell lines.
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Compound ZD12 was reported by Zhou et al. [94] in 
2023. Compound ZD12 was designed using a 7-oxabi-
cyclo[2.2.1]heptane sulfonamide scaffold for ER, then 
attached to the VHL ligand through a five-carbon alkyl 
linker (Figure 7). In tamoxifen-sensitive and -resistant BC 
murine tumor models, compound ZD12 exhibited supe-
rior anti-tumor activity and ERα degradation potency 
than fulvestrant.

4. COMPLETE ESTROGEN RECEPTOR 
ANTAGONISTS (CERANs)

As shown in Figure 8a, the ER consists of two independ-
ent transcriptional activation function domains (AF1 and 
AF2). AF2 is located in the C-terminal of the ER-LBD and 
is activated by an endogenous estrogen. Unlike AF2, AF1 
is located in the N-terminal A/B domain and activated by 
signaling pathways, such as mTOR, PI3K, and MAPK [95]. 
Activating AF1 and AF2 leads to gene transcription and 
cellular proliferation [96]. Traditional SERMs, such as 
tamoxifen, inhibit AF2 while not impacting AF1 agonist 
signaling pathways. It has been  suggested that incom-
plete blockade of AF1 may be associated with endo-
crine resistance. Unlike SERMs, CERANs were developed 
to completely turn off both AF1 and AF2 (Figure 8b). 
Consequently, CERANs have been designated as com-
plete ER antagonists.

OP-1250 (palazestrant) was developed by Olema 
and is the only orally bioavailable CERAN in a clinical 
trial [97]. Additionally, palazestrant serves as a SERD 
for ER protein degradation. Preclinical trials revealed 
that OP-1250 effectively blocks wild-type and mutant 
ER and showed potent suppression in estrogen-stim-
ulated BC cell lines. A phase I/II trial (NCT04505826) 
involving OP-1250 as monotherapy revealed acceptable 
safety, good tolerability, and a once-daily oral dosing 
PK profile in ER+/HER2− advanced BC or MBC patients. 
Combination therapy of OP-1250 with CDK4/6 inhibi-
tors (palbociclib, ribociclib, and alpelisib) is also being 
assessed in phase I/II clinical trials (NCT05266105 and 
NCT05508906; Table 2) [98].

5. SELECTIVE ESTROGEN RECEPTOR COVALENT 
ANTAGONISTS (SERCAs)

Use of covalent inhibitors is a potent tactic to counteract 
drug resistance stemming from mutations in the gene 
encoding the target protein. In this metastatic setting, 
SERCAs have been designed by covalently interacting 
with a cysteine (C530) in the ER-LBD via an electrophilic 
warhead.

Compound H3B-6545 was developed by Eisai Co., Ltd. 
using a structure-based drug design strategy. A crystal-
lography study involving H3B-6545 with the ER LBD 
confirmed that the covalent bond formed between the 
unique cysteine (C530) and the acrylamide warhead, as 
shown in Figure 9a [99]. A preclinical study revealed that 
H3B-6545 has beneficial drug-like characteristics and 
nanomolar anti-proliferation potency in wild-type and 
multiple clinically relevant ERα mutant MCF-7 cell lines. 
H3B-6545 also showed superior anti-tumor activity over 
fulvestrant in wild-type and mutant ERα BC tumor mod-
els. The encouraging outcomes led H3B-6545 into a phase 
I/II trial (NCT03250676) as a single agent and a phase I 
trial (NCT04288089) combined with palbociclib for the 
treatment of ER+/HER2− BC patients (Table 2) [100].

While H3B-6545 enforces an antagonist conforma-
tion without degrading ERα, compound 29c disrupts 
ERα protein homeostasis by covalently targeting C530. 
The covalent bond formation was verified by crystallog-
raphy and intact mass spectrometry. A crystallography 
study also suggested that compound 29c has a strong 
hydrophobic interaction with helix 11, which promotes 
ERα degradation (Figure 9b) [101]. An in vitro study 
involving compound 29c showed promising anti-tumor 
activity and ERα degradation potency in wild-type MCF-
7, T47-D, and ESR1-mutated T47-D cell lines. An in vivo 
study involving compound 29c in MCF-7 BC tumor xeno-
graft models showed complete tumor growth inhibition 
comparable to fulvestrant with low toxicity.

6. CONCLUSIONS AND PERSPECTIVE

Reliance on ER signaling in ER+ BC is vital, establishing 
ER-targeted treatments as the cornerstone for this type 

a

b

Figure 8 | Mechanism of action underlying the CERAN, 
OP-1250.
a. Estrogen activates both AF1 and AF2 domains to promote ER sig-
naling; b. OP-1250 completely turns off both AF1 and AF2 transcrip-
tional activation functions of ERα.
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of tumor. A major contributor to acquired resistance is 
the ESR1 mutation, suggesting that ER dependency per-
sists through tumor progression. Therefore, tremendous 
efforts have been invested in identifying and develop-
ing new generations of ER-targeted agents, including 
new generation oral SERDs and other innovative agents, 
such as PROTACs, CERANs, and SERCAs [102]. Rigorous 
evaluations are underway for these new generation 
ER-targeted agents with multiple preclinical and clinical 
trials ongoing in primary and advanced BC cases.

The clinical outcomes of oral SERDs have been var-
ied. Clinical developments of several new SERDs, such as 
GDC-0810, AZD9496, LSZ102, GDC-0927, SHR9549, and 
SAR439859, have been suspended for various reasons. 
Some oral SERDs, such as D-0502, LY3484356, AZD9833, 
and GDC9495, are presently being assessed in phase III 
trials for treating advanced BC or MBC patients alone or 
in combination therapy with CDK4/6, mTOR, and PI3K 
inhibitors. Importantly, the US FDA approval of elaces-
trant in 2023 delivered on its promise to provide an 

effective endocrine blockade and verified the capacity 
of SERDs to counteract endocrine-resistant BC patients 
with ESR1 mutations. Current clinical data suggest that 
using SERDs alone has not been shown to offer pro-
longed and notable benefits following treatment with 
CDK4/6 inhibitors [103]. Improved clinical outcomes are 
expected when SERDs are used as a backbone in combi-
nation therapies [104].

In addition to orally administered SERDs, two ER 
PROTACs (ARV-471 and AC0682) have advanced to clini-
cal trials. The early clinical observations of ARV-471 have 
shown favorable safety, desirable exposure, and clinical 
benefits for patients. The recent fast-track designation 
of ARV-471 from the US FDA are solidifying clinical 
proof of concept for PROTACs, demonstrating its abil-
ity to effectively degrade and remove target proteins 
by the ubiquitin-proteasome system [105]. Additional 
novel ER-targeted agents, such as CERANs and SERCAs, 
also hold considerable promise and are currently in the 
initial stages of clinical assessment.
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Despite the design and advancement of the new 
generation ER-targeted molecules tackling estrogen-in-
dependent ESR1 mutations, a critical question remains: 
Will these ER-targeted agents favor new ER reactivation 
mechanism or will they completely skew tumors towards 
ER independence? As primary or acquired resistance to 
therapy remains a major challenge, regimens that inte-
grate ER-targeted therapy in combination with CDK4/6, 
PI3K, mTOR, and immunotherapy may have implications 
for ER+ BC treatment in the metastatic setting. The 
pharmaceutical and scientific communities await the 
results of current ongoing clinical trials, as well as the 
full analyses of tumor biopsies. Molecular tumor profil-
ing and predictive biomarkers of response to therapy 
are expected to be crucial to adopt a more precision 
medicine strategy in the management of ER+ BC [106].

In conclusion, the development of new generation 
ER-targeted agents signifies a promising progression in 
drug discovery for BC. We hope these new molecules 
will eventually offer ER+ BC patients more effective and 
safer treatment options.
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