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Abstract

The scientific community is increasingly concerned with the proportion of published “discoveries” 

that are not replicated in subsequent studies. The field of rodent behavioral phenotyping was one 

of the first to raise this concern, and to relate it to other methodological issues: the complex 

interaction between genotype and environment; the definitions of behavioral constructs; and the 

use of laboratory mice and rats as model species for investigating human health and disease 

mechanisms. In January 2015, researchers from various disciplines gathered at Tel Aviv University 

to discuss these issues. The general consensus was that the issue is prevalent and of concern, and 

should be addressed at the statistical, methodological and policy levels, but is not so severe as to 

call into question the validity and the usefulness of model organisms as a whole. Well-organized 

community efforts, coupled with improved data and metadata sharing, have a key role in 

identifying specific problems and promoting effective solutions. Replicability is closely related to 

validity, may affect generalizability and translation of findings, and has important ethical 

implications.
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1. Introduction

In recent years the scientific community, pharmaceutical companies, and research funders 

have become increasingly concerned with the proportion of published “discoveries” that 

could not be replicated in subsequent studies, and sometimes could not even be reproduced 

in reanalysis of the original data. Such evidence is increasingly seen as a problem with the 

scientific method, impugning the credibility of science as a whole. Prominent institutions 

and journals, including the National Institutes of Health (NIH), the National Academy of 

Science (NAS), Science, and Nature, have recently reconsidered of their policies due to this 

issue. However, there is still confusion and controversy regarding the severity of the 

problem, its causes, and what should be done about it, how, and by whom.

In the field of rodent phenotyping, failure of replicability and reproducibility had been noted 

even before such concerns were widespread, and currently the NIH considers the problem to 

be especially prevalent in preclinical research. The issue seems further tied to several other 

complicated methodological challenges, such as handling the potentially complex 

interaction between genotype and environment, defining and measuring proper behavioral 

constructs, and using rodents as models for investigating human diseases and disorders. 

Reproducibility and replicability are crucial in all fields of experimental research, but even 

more so in animal research, where the lives and welfare of the animals are valuable for 

ethical reasons, and should not be wasted for inconclusive research. In January 2015, 

researchers involved in the study of reproducibility and replicability gathered at Tel Aviv 

University to discuss these issues. These researchers came from various disciplines 

including genetics, behavior genetics, behavioral neuroscience, ethology, statistics, 

bioinformatics and data science.

The present paper consists of eight sections, each dedicated to a central theme. In each 

section we attempt to summarize the consensus opinion or most widely held views on the 

topic, while also representing more controversial positions. While offering examples, 

recommendations and insights in multiple contexts, we avoid making a list of guidelines that 

would be too definitive, given the current state of knowledge and consensus. Full conference 

proceedings are available as a set of video clips (see links in the acknowledgements section). 

All authors agree that this paper reflects the complexity of replicability and reproducibility 

issues, even when restricted to a single area of research, yet it also points at practical ways to 

address some of these issues.

2. Reproducibility and replicability in general science: a crisis?

The ability to verify empirical findings wherever and whenever needed is commonly 

regarded as a required standard of modern experimental science. This standard was 

originally established in the 17th century, by Robert Boyle and other scientists of the Royal 
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Society according to their motto nullius in verba (“take nobody’s word”). These pioneers of 

experimental science regarded the ability to replicate results as an acid test differentiating 

science from one-time “miracles”. Their criterion for a scientific fact was (following a then 

common judicial dogma of two witnesses required for a valid testimony) something 

measured or observed in at least two independent studies (Agassi, 2013). In a case that may 

have been the first debate over the replicability of a scientific discovery, the Dutch scientist 

Christiaan Huygens noted a phenomenon related to vacuum in Amsterdam, and was invited 

to Boyle’s laboratory in London in order to replicate the experiment and show that the 

phenomenon was not idiosyncratic to his specific laboratory and equipment (Shapin and 

Schaffer, 1985). Ronald Fisher generalized the Royal Society criterion to more than two 

replications in his 1935 classic “The Design of Experiments”, writing: “we may say that a 

phenomenon is experimentally demonstrable when we know how to conduct an experiment 

which will rarely fail to give us statistically significant results” (Fisher, 1935, p.14). This 

quote illustrates how the common method of statistical significance, already when it was 

first conceived, was closely tied with the concept of replicating experimental results. This 

concept served science well throughout its history, but non-replicable results have surfaced 

more often in recent years, attracting much attention.

In the field of rodent phenotyping, the problem has in fact always been present, and was 

recognized in the influential study by Crabbe et al. (1999) before it was noticed in many 

other fields. However, the issue is by no means unique to rodent phenotyping. For instance, 

difficulties in replicating discoveries when dissecting the genetics of complex traits in 

humans motivated the move to far more stringent statistical threshold guidelines proposed by 

Lander and Kruglyak (1995).

Some notorious recent examples of poor credibility in general science include non-replicable 

methods of cancer prognosis (Potti et al., 2006, refuted by Baggerly and Coombes, 2009, 

and retracted), “voodoo correlations” in brain imaging (Vul et al., 2009), “p-value hacking” 

(Simmons et al., 2011) and Excel coding errors that affected global economic policies 

(Pollin, 2014). A large community effort (Open Science Collaboration, 2015) recently 

attempted to replicate the findings of 100 papers in several leading psychology journals, and 

reported that 64% of the replications did not achieve statistical significance (but see Gilbert 

et al., 2016). A similar replication project in the field of cancer research (Errington et al., 

2014) has just reported preliminary results: of 5 attempted replications, two were replicated, 

one clearly failed to replicate, and two were unclear due to technical considerations (Nosek 

and Errington, 2017). The current situation is sometimes referred to as the “credibility 

crisis”, “replicability crisis” (e.g., Savalei and Dunn, 2015), or “reproducibility crisis” (e.g., 

Peng, 2015) of recent science, and led prominent scientific journals and institutes to 

reconsider their policies (Landis et al., 2012; Nature Editorial, 2013; Collins and Tabak, 

2014; McNutt, 2014; Alberts et al., 2015). Collins and Tabak specifically mentioned 

preclinical studies as prone to reproducibility and replicability problems, and Howells et al. 

(2014) blame the recurrent failure of drug candidates in clinical trials on lack of rigor in 

preclinical trials. Yet aside of general useful recommendations such as increasing sample 

sizes, including both sexes when possible, and improving statistical education, it is not clear 

what the new policies should be.
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Ironically, there is currently no scientific consensus even over the name of the problem and 

the meaning of basic terms, confusing the discussion even further (Goodman et al., 2016). 

The terms replicable, reproducible, repeatable, confirmable, stable, generalizable, 

reviewable, auditable, verifiable and validatable have all been used; even worse, in different 

disciplines and fields of science, these terms might have orthogonal or even contradictory 

meanings (Kenett and Shmueli, 2015; Goodman et al., 2016). Following the now common 

term “Reproducible Research” in computer science (Diggle and Zeger, 2010; Stodden, 2010, 

2013), a useful distinction was offered by Peng (2011), Peng (2015) and (Leek and Peng, 

2015): “reproducibility” is concerned with reproducing, from the same original data, through 

reanalysis, the same results, figures and conclusions reported in the publication. 

“Replicability”, in comparison, is concerned with replicating outcomes of another study, in a 

similar but not necessarily identical way, for example at a different time and/or in a different 

laboratory, to arrive at similar conclusions in the same research question. We will use the 

above distinction in the remaining sections. However, note that other researchers recently 

suggested a similar distinction with the opposite terminology (Kenett and Shmueli, 2015). 

The NIH now uses the catch-all term “rigor” to denote adequacy or even goodness of 

experimental design, metadata, and analytic methods that should hopefully lead to higher 

rates of replicability and reproducibility (Lapchak et al., 2013).

Another categorization (Stodden, 2013) distinguishes between empirical reproducibility, 

computational reproducibility and statistical reproducibility. (Stodden, 2010, 2013) 

suggested that computational reproducibility is currently the most problematic. When 

viewing the objective of the scientific method as “rooting out error”, the deductive branch of 

mathematics (statistics included) has already developed its standards for mathematical proof, 

and the empirical branch (life sciences and animal phenotyping included) has already 

developed its standards for hypothesis testing and method reporting. It is computation-based 

research that has yet to develop its own standards for reproducibility, including data and 

code sharing (Stodden et al., 2013).

Ostensibly, science should not require trust in authority – it should be “show me”, not “trust 

me” (Stark, 2015). Yet in reality, most scientific publications today amount to saying “trust 

me”. The typical scientific paper does not give access to the raw data, the code, and other 

details needed to confirm the reported results – it basically asserts “I did all these carefully, 

trust my results” (Stark, 2015, 2017). Moreover, the distressing pressure to minimize the 

length of methods sections has resulted in abberviated descriptions of important procedural 

details. Alsheikh-Ali et al. (2011) found that out of 500 original research papers in high 

impact factor journals, 30% were not subject to any data availability policy, and out of those 

that were, 59% did not fully adhered to the policy. Overall only 9% of the papers in that 

study deposited full primary raw data. Soergel (2015) suggested that software errors are not 

limited to a few high-profile cases that lead to retraction, and instead estimated that “most 

scientific results are probably wrong if the data passed through a computer”. In another 

estimation of the current state of science reproducibility, ThermoML, an open data archive in 

the field of thermodynamics, found errors in about 10% of papers that otherwise would have 

been accepted (Frenkel et al., 2006). In a study of papers using microarray-based signatures 

of drug sensitivity derived from cell lines to predict patient response, Baggerly and Coombes 

(2009) found five case studies with errors that potentially put human patients at risk. 

Kafkafi et al. Page 4

Neurosci Biobehav Rev. Author manuscript; available in PMC 2018 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Interestingly the most common errors were simple ones, reminiscent of the summation of 

only part of an Excel column that affected global economic policies (Pollin, 2014), or the 

error in metric conversion that caused the loss of NASA Mars Surveyor space probe 

(Stephenson et al., 1999). Garijo et al. (2013) attempted to reproduce the results of a paper 

describing a computational pipeline mapping all putative FDA and European drugs to 

possible protein receptors in the proteome of Mycobacterium tuberculosis. They found it to 

be extremely difficult and time consuming. Even worse, there is good evidence of a negative 

relation between the impact factor of a journal and the likelihood of technical error, a trend 

detected in a study of over 700 recent papers in the burgeoning field of ChIP-seq (Marinov 

et al., 2014). In summary, while we may strive for perfection, the scientific process does not 

assure error-free results and even encourages speed over accuracy. What blocks progress is 

the inability to detect and correct errors in time.

If a substantial percentage of published studies are not reproducible — i.e., if it is difficult to 

regenerate the figures, tables, and scientific conclusions starting from the data used in a 

study — it is even more unlikely that results are replicable, i.e., that other researchers would 

be able to achieve matched results and conclusions starting with data generated by different 

groups in different laboratories. Within-study reproducibility (as well as within-study 

replicability) seems necessary but, as we shall argue, insufficient condition for across-study 

replicability. Ioannidis (2005) famous paper titled “Why Most Published Research Findings 

are False” highlighted the fact that the usual 0.05 significance testing increases the 

proportion of false discoveries among the discoveries made when testing many hypotheses. 

The combination of multiplicity and unadjusted testing can indeed be hazardous, as already 

argued by Soric (1987). Emphasis on the use of 0.05 level testing has led to 

counterproductive solutions, such as the New Statistics Movement (Cummings, 2014), 

which considers p-values to be the source of the problem, and advocates replacing them with 

confidence intervals. This has been followed by a statement issued by the Board of the 

Statistical Association, warning against misuse and misinterpretation of the p-value 

(Wasserstein and Lazar, 2016) and offering (indirectly) the confidence interval as possible 

replacement. However, in most cases the reported or emphasized confidence intervals are 

selected from many hypotheses, leading to the same issue of multiplicity (Benjamini and 

Hechtlinger, 2013).

An alternative to discarding p-values is to adjust them to cope with the multiplicity of 

hypotheses being tested or confidence intervals being made. The paper of Soric (1987) 

motivated the development of a formal approach to the false discovery rate (FDR) and 

methods to control it (Benjamini and Hochberg, 1995). It is easy to see how multiplicity has 

exacerbated the “credibility crisis” in science in recent years: in the past, a typical 

phenotyping experiment would test a single measure of interest, or at most several measures. 

Now, thanks to automated and computerized high-throughput strategies, testing “batteries” 

(Brown et al., 2000) and “pipelines” (Koscielny et al., 2014) used for phenotyping 

frequently record 102–103 phenotypic measures per independent variable (a mouse 

genotype), which is still far fewer than the 105–108 associations in a typical genome-wide 

association study (GWAS). There is no way to report them all in a paper, so by necessity 

only a few are highlighted (Peterson et al., 2016). If the significant ones are selected as 

discoveries, the relevant error is the number of spuriously significant differences among the 
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total number of significant differences. This ratio equals the number of false discoveries 

among the total number of discoveries, namely the FDR. Recent attempts to empirically 

estimate that the “science-wise FDR” are in the range of a rate of 15%–30% (Jager and 

Leek, 2014; Benjamini and Hechtlinger, 2013), considerably lower than Ioannidis’ warning 

of > 50%, but considerably higher than 5% (the rate expected for the most commonly used, 

if arbitrary, 0.05 significance level). These analyses also indicate that once selective 

inference is accounted for a 5% rate is indeed achievable. The Benjamini-Hochberg 

procedure of FDR is readily applicable to all varieties of phenotyping (Benjamini et al., 

2001), and using this statistical tactic, especially in high-throughput multiple measure 

studies, should go a long way to decreasing the rate of “discoveries” that do not replicate.

In summary, science is reviewing its own failures, searching for the causes of the “crisis” 

and devising better ways to address them. The old concepts of experimental science 

emphasizing replicability and reproducibility are still correct in spirit, but require updating 

experimental, computational and statistical methodologies to cope with the increasing size 

and complexity of experimental approaches. Preclinical research and phenotyping are 

similar in this sense to other fields of science, but have particular issues of their own. These 

and other rodent-specific issues are considered in the following sections.

3. Can data sharing in rodent phenotyping help with replicability?

Laboratory mice and rats are the main mammalian models currently used for high-

throughput genomic and behavior genetic research, and are employed primarily to explore 

and test gene function. This is considered by some to be “the great challenge facing 

biologists today” (Collins et al., 2007). Rodent models are used extensively as part of 

preclinical development and testing of treatments for disease in humans, in genomic 

research (Collins et al., 2007; Beckers et al., 2009), and also in research of the central 

nervous system (CNS) and behavior (e.g., Crawley, 1985; Gerlai et al. (1995); Logue et al., 

1997; Dulawa et al., 1997; Gerlai, 2002a; Gerlai et al., 2002; Musatov et al., 2006). For 

obvious reasons, the reproducibility (within the same study) and replicability (across 

studies) of phenotyping has crucial implications for their translational relevance. Similar 

issues manifest in other model animals used for high-throughput phenotyping, such as the 

zebrafish (Gerlai, 2014; MacRae and Randall, 2015), Drosophila and C. elegans (Williams 

and Auwerx, 2015). In addition to scientific and economic implications, there are also 

important ethical implications: using animals for inconclusive research undermines the 

ethical goal of reducing and refining animal experiments. Full consideration of the welfare 

and usage of animals is a critical component of experimental studies. In preclinical research, 

poor replicability and reproducibility also slows medical progress and put human patients at 

risk. The drive to publish rigorous results is thus more than a scientific necessity — it is also 

a moral obligation.

Traditionally, a main advantage of rodents and other model organisms is the ability to 

standardize genotypes using inbred strains or selected lines, consisting of genetically 

identical “clones” that are in principle precisely replicated across studies. This “genetic 

standardization” enables experimental designs that would be impossible using outbred 

animals or humans (monozygotic twins represent n = 2, a sample size that imposes serious 
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practical limitations). The BXD, HXB and the Collaborative Cross recombinant inbred 

strains, for example, can be thought of as “cloned families”, each currently including many 

reproducible “offspring” and “parents” lines (Complex Trait Consortium, 2003; Chesler et 

al., 2008; Iraqi et al., 2008; Morahan et al., 2008; Collaborative Cross Consortium, 2012; 

Welsh et al., 2012). These families, developed by community effort of several research 

centers, are routinely used in quantitative trait locus (QTL) mapping (Complex Trait 

Consortium, 2003) to localize phenotypes to segments of chromosomes within intervals of 

0.5–10.0 Mb (Koutnikova et al., 2009; Houtkooper et al., 2013; Keeley et al., 2014). In a 

parallel strategy, “knock out” technology allows the targeted mutation of the gene of choice 

in the mouse (and more recently also in the rat), with the goal of discovering the effect on 

the phenotype, and of advancing our understanding of the biological functions of the 

targeted gene. The International Mouse Phenotyping Consortium (IMPC), a community 

effort for generating and phenotyping mice with targeted knockout mutations, has a long-

term goal to knock out most of the ~20,000 mouse genes, and phenotype them on the 

background of the C57BL/6N mouse genome (Beckers et al., 2009). QTL “forward 

genetics” and knockout “reverse genetics” strategies are complementary and can 

increasingly be combined (Williams and Auwerx, 2015; Wang et al., 2016). Understanding 

phenotypic effects of genes variants is one of the core challenges of personalized medicine: 

Reference populations provide an excellent and replicable platform for precision 

experimental medicine. Many individuals of each genotype can studied under tightly 

controlled environments—an essential step in understanding complex gene-by-

environmental interactions.

It is, however, important to recognize that genetic standardization in principle is not always 

standardization in practice. Even highly curated lines such as the DBA/2J inbred mouse 

strain maintained at the Jackson Laboratory might develop spontaneous mutations that are 

carried forward in standard commercially-available stocks. Such a previously unknown 

polymorphism was recently shown to affect both methamphetamine consumption and Trace 

Amine-Associated Receptor 1 function (Harkness et al., 2015; Shi et al., 2016). Non-

replicable results sometimes reflect the naivete of our expectations, despite our best efforts 

to imagine what the “environment” is for a mouse, given their many sensory, social and 

biological differences from humans. They might also result from heterogeneity in protocol 

(Valdar et al., 2006), or from a failure to recognize the importance of potentially subtle 

differences in genetic background. For example, genetic differences might predispose some 

inbred strains, or more generally, some genetic backgrounds, to be more phenotypically 

variable than others (as illustrated in Wiltshire (2015) and considered by Rönnegård and 

Valdar (2011, 2012)). Highly homozygous genomes might have less capacity for “genetic 

buffering” against environmental variation, and some strains will be worse than others in this 

respect (but see also Crusio, 2006).

Bioinformatics is a well-established discipline in the life sciences, traditionally concerned 

primarily with DNA, RNA and protein sequence data, which are stored in public databases 

as a primary research tool. The idea that phenotypic data are also worthy of storing, 

analyzing and reanalyzing (Gerlai, 2002a) is not so widely established yet, but the value of 

phenotype data integration has been recognized methodologically and in practice (Chesler et 

al., 2003), and phenotype data standards emerged early (Grubb et al., 2004). Collaboration, 
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community efforts, data sharing, and public phenotyping databases have an important role in 

today’s field of rodent phenotyping. Among many other utilities, they also offer unique 

opportunities for researching and controlling reproducibility and replicability. These public 

databases and data sharing projects are instructive in informing replicability studies at 

different levels: from reanalyzing other researchers’ data to contributing their own data, and 

even constructing and maintaining public databases and community projects. Reanalysis of 

shared phenotyping data enhances their utility and scientific value, potentially substituting 

for additional animal studies, thus reducing animal use without compromising actual 

reproducibility and replicability.

This section reflects experience with projects collecting phenotyping data across several 

laboratories, in some cases over long time periods, frequently through collaboration with 

researchers from other institutes and disciplines, and frequently contributing phenotyping 

data to public databases and services, and/or to meta-analysis and reanalysis by other 

researchers (Crabbe et al., 1999; Chesler et al., 2002a,b; Collaborative Cross Consortium, 

2004; Wolfer et al., 2004; Kafkafi et al., 2005; Wahlsten et al., 2006; Mouse Phenotype 

Database Integration Consortium, 2007; Mandillo et al., 2008; Morgan et al., 2009; Beckers 

et al., 2009; Baker et al., 2011; Richter et al., 2011; Collaborative Cross Consortium, 2012; 

Bogue et al., 2014; Grubb et al., 2014; Heller et al., 2014; Karp et al., 2014; Koscielny et al., 

2014; Maggi et al., 2014; de Angelis et al., 2015; Bogue et al., 2016; Karp et al., 2017; 

Kafkafi et al., 2017). The projects described in the rest of this section will be used to address 

multiple issues of replicability and reproducibility in the following sections.

The Mouse Phenome Database (MPD), a data resource that emerged from a research effort 

at The Jackson Laboratory, stores primarily individual (per subject, as opposed to just group 

means and standard deviations) phenotype values, along with in-depth phenotyping protocol 

information, as contributed by researchers from all over the world (Maddatu et al., 2012; 

Grubb et al., 2014; Bogue et al., 2015, 2016). It allows for trait correlation and examination 

of trait stability across strains, data sharing, dissemination and integration, facilitating the 

discovery of convergent evidence. At the time of writing the MPD contains several hundred 

measures of widely studied behaviors collected in multiple laboratories in inbred strains and 

now also includes per subject data from genetic mapping studies in the QTL Archive. 

Several among the meeting participants contributed their results to the MPD, and data from 

the MPD were used for several studies presented in the meeting.

The GeneWeaver.org database (Baker et al., 2011) employs curated user-submitted and 

published gene sets from GWAS, QTL mapping, genome-wide gene expression analysis, 

text mining, gene co-expression, expert lists, curated annotations, and many other data 

sources drawn from major public data resources. It included at the time of the meeting 

~80,000 gene sets from 9 species including humans rats, zebrafish, drosophila and mice. 

GeneWeaver applies several algorithms to analyze the convergent evidence for relations 

among these sets of genes and behaviors or other biological constructs derived from many 

independent experimental studies. e.g., for those implicated in alcohol preference and 

withdrawal (Bubier et al., 2014; see Section 9).

Kafkafi et al. Page 8

Neurosci Biobehav Rev. Author manuscript; available in PMC 2018 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GeneNetwork is a database that enables searching for ~4000 phenotypes from multiple 

studies in the BXD, HXB, and in other recombinant inbred rodent families, as well as in 

other model organisms and even humans (Mulligan et al., 2017). GeneNetwork employed a 

somewhat different strategy than MPD in that it did not rely solely on researchers submitting 

their data. Instead the database operators extracted the data from the scientific literature and 

integrated them into a uniform format (Chesler et al., 2003). This strategy required a 

considerable effort, but also expanded the range of studies and possible forms of analysis. In 

many cases, however, per subject phenotype data were not available. GeneNetwork uses 

both routine and advanced statistical methods to extract, explore, and test relations among 

phenotypes and underlying genetic variation. It enables complex queries in real time, 

including very fast QTL mapping. Similar to MPD, GeneNetwork can also be used to 

correlate any phenotype with all other phenotypes in the database across strain means, 

within or between studies, enabling the exploration of the replicability of phenotypes, even 

before relating them to the genotype. Any new phenotype can be correlated with any 

previously documented phenotypes across multiple strains. The increasing number of 

possible combinations grows exponentially with the rate of the added data. In the future, 

these two data resources, the per strain phenotype data storage with thorough protocol 

documentation in MPD, the Rat Genome Database, and genetic analysis suite in 

GeneNetwork.org will be more closely integrated (Mulligan et al., 2017).

The public database of the International Mouse Phenotyping Consortium (IMPC) is intended 

to be “the first truly comprehensive functional catalogue of a mammalian genome” (Morgan 

et al., 2009; Koscielny et al., 2014). The IMPC is a community effort to knock out ~20,000 

genes and generate ~20,000 mutant mouse lines over the next 10 years, phenotype them 

using comprehensive and standardized high-throughput assays, and make them freely 

available to researchers over the world as animal models (De Angelis et al., 2015). At the 

time of the meeting the IMPC included ten “centers” – institutes over the world performing 

high-throughput phenotyping of mice, on the same genetic background of C57BL/6N. 

Although most lines were tested only in one center, a few mutant lines and their controls 

were tested across 3 and even 4 centers, and even more overlap between centers currently 

accumulates, enabling an extensive study of replicability across laboratories. The IMPC has 

made an effort to standardize phenotyping assay protocols across centers and typically 

records hundreds of phenotypic measures per mouse (Karp et al., 2015). Despite the 

standardization, however, there is still workflow variation among centers, as a result of local 

factors such as different policies and colony size. For example, mice from the same litter are 

typically assayed on the same day, and some centers have concurrent controls while others 

regularly sample controls (de Angelis et al., 2015). Minor protocol differences exist in some 

cases, the composition of the battery varies across centers, and of course, a litany of 

laboratory-related factors (housing, husbandry, experimenter, room dimensions, ambient 

noise, caging styles, etc.) differ across centers. Data from the IMPC database are currently 

being used for several studies of replicability (de Angelis et al., 2015; Karp et al., 2015; 

Kafkafi et al., 2017).

A large data set used to analyze replicability across laboratories (Kafkafi et al., 2017) was 

first presented in the meeting, consisting of data from multiple databases and multi-lab 

studies contributed by several researchers, including Wolfer et al. (2004), Richter et al. 
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(2011), Wahlsten and Crabbe (2003, downloaded from the MPD) and knockout data 

downloaded from the IMPC database (Morgan et al., 2009; Koscielny et al., 2014). This 

dataset records per subject results of individual animals, amounting to one of the most 

extensive reanalysis of multi-lab studies, enabling estimation of the typical replicability in 

the field (see Section 4), as well as demonstrating the random lab model (Section 6) and 

GxL-adjustment (Section 8) advocated for estimating replicability. GxL-adjustment 

explicitly relies on systematic data sharing as a proposed strategy for addressing replicability 

across laboratories in rodent phenotyping.

4. Replicability issues in mouse phenotyping – how serious are they, 

really?

This seemingly simple empirical question is not simple to answer, for several reasons: there 

is no consensus over the correct ways to analyze and estimate replicability (Open Science 

Collaboration, 2015; Gilbert et al., 2016, see also Section 6), and only a few attempts have 

been made at systematic analysis across several studies and/or laboratories with the objective 

of estimating replicability in a quantitative way (see also Sections 3 and 8). Here, using 

careful reanalysis and meta-analysis of data from the multi-lab studies and public 

phenotyping databases detailed in the previous section, we give a general assessment. Most 

of the participants in the meeting seemed to agree that there are real and serious problem of 

reproducibility and replicability in mouse phenotyping, but also that some specific 

phenotyping results are highly replicable, especially when the genotype effect size is large.

Crabbe et al. (1999) conducted the famous experiment that first led to a wider recognition of 

the replicability issue in rodent phenotyping, anticipating current concerns about 

replicability in general science (Ioannidis, 2005). This experiment compared five inbred 

strains, one F1 hybrid, and one knockout line and its inbred background strain, across three 

laboratories, by standardizing factors including equipment, protocols, and husbandry at a 

much higher level than is common in the field. This study found significant laboratory 

effects in 6 out of 8 standard phenotypic measures, and significant interaction between 

genotype and laboratory in 5 of these 8. It therefore drew the provocative conclusion: 

“experiments characterizing mutants may yield results that are idiosyncratic to a particular 

laboratory”. Additional results were published in another study across laboratories and 

across several decades of phenotyping (Wahlsten et al., 2006). On the other hand, several 

genotype differences in this study appeared replicable, especially when genotype effect sizes 

were large, e.g., the well-known C57BL/6 preference for alcohol drinking in comparison 

with DBA/2. Generally, John Crabbe estimated that the issue has been exaggerated, that the 

situation is actually not worse than it is in many other fields of science, and that efforts to 

“remediate” the problem should proceed with due caution (Crabbe, 2016). At the time a 

response paper (Pfaff, 2001) presented several effects of mutations in mice that were 

replicated.

In another study of nociception phenotyping, about 42% of the variance was found to be 

associated with the experimenter (Chesler et al., 2002a), and many other sources of 

laboratory environmental variation were found to influence phenotype alone and in sex and 
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genotype interactions (Chesler et al., 2002b). Similar effects were found for many other 

behavioral and physiological phenotypes in a heterogeneous stock population (Valdar et al., 

2006). In QTL analysis using lines of the Collaborative Cross, different cohorts might 

produce different QTLs, seemingly affected by factors such as season, time of testing in the 

circadian phase, and perhaps even geographic latitude (Iraqi et al., 2000; Iraqi, personal 

communication).

A common way to visualize the replicability across two experiments from different studies, 

even from different laboratories, is a correlation plot of the genotype means (e.g., see 

Wahlsten et al., 2006). Several speakers in the meeting presented such plots comparing 

laboratories and studies, and both the MPD and the GeneNetwork software (see Section 3) 

generate them by request, and even run a fast search in their database for phenotypes that 

correlate with any given phenotype across strains (Mulligan et al., 2017). Such plots 

frequently indicate considerable correlation between strain means across studies, indicating 

some replicability, although there is no clear criterion for how much correlation indicates 

sufficient replicability.

The heterogenization experiment of Richter et al. (2011, see Section 8 for more detail) was 

orchestrated across six laboratories, more than in any other multi-lab experiment in the field 

of rodent phenotyping. It concluded that these laboratories, while still much fewer than all 

potential phenotyping laboratories over the world, already contribute a large component of 

variation, apparently considerably larger than the variation introduced by systematic 

heterogenization of two factors (test age and cage enrichment). This study therefore 

concluded that “differences between labs are considerable and unavoidable”.

There are many potential confounders in studying genetically modified mice that are 

difficult to control (Schellinck et al., 2010) and they are likely to differ across laboratories 

and studies. Studies utilizing phenotyping data from several knockout lines and associated 

controls across research centers of the IMPC were presented in the meeting. These studies 

found that test day at each phenotyping institute was a considerable source of variation and 

encompassed multiple variance sources (e.g. human operator, litter, cage, reagents etc., see 

also Karp et al., 2014, de Angelis et al., 2015). Spreading testing across time functions as a 

form of heterogenization. It is not clear yet to what extent a multi-batch workflow (Karp et 

al., 2014) captures the interaction of genotype with the laboratory, which is a different effect.

In a recent large dataset comprised of multiple previous studies, each including several 

genotypes measured across several laboratories (Kafkafi et al., 2017, see Section 3), cases 

were demonstrated that may be termed “opposite significant”, i.e., there is a crossover 

interaction with genotype and laboratory such that one genotype produces significantly 

higher mean of an outcome measure in one laboratory while significantly lower in another 

laboratory (see Fig. 1 right for a conceptual illustration, assuming environments E1 and E3 

represent two different laboratories). In other words, these laboratories would have reported 

opposite discoveries. Opposite significant cases are not rare: examples were found in most 

of the multi-lab datasets in the study, although as expected they are more common in 

datasets that include a larger number of laboratories. However, in most multi-lab datasets 

(specifically all 8 but one) the majority of genotype effects were replicable when using the 
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random lab model criterion for a replicable genotype effect (see Section 6). In these same 

datasets, the proportion of “non-replicable positives”, i.e., genotype differences that were 

found significant within a single laboratory (using the typical t-test at the level of α = 0.05) 

but did not replicate across all laboratories (using the random lab model) ranged between 

19% and 41% (Kafkafi et al., 2017). This result can be regarded as an estimation of the 

proportion of non-replicable “discoveries” in single-lab studies in the field. It could be 

argued that the true value is higher, since the general standardization level in the field is 

probably lower than the standardization level in the multi-lab studies used to derive the 

above proportion (but see Section 7).

In summary, there is wide agreement that the proportion of non-replicable results in 

phenotyping is considerably higher than the sometimes assumed (or hoped) 5%. Yet it 

appears that this proportion is not so high as to make the whole field worthless, as might be 

concluded from as Ioannidis’ estimation of > 50%, and can be considerably improved using 

several approaches (see Sections 7, 8 and 9).

5. Replicability of behavior: a special case?

An interesting empirical question is whether behavioral phenotypes are less replicable than 

physiological phenotypes. The recent concern in the scientific community regarding 

replicability and reproducibility of experimental results is by no means limited to behavioral 

studies, and Ioannidis’ (2005) famous claim that “most published scientific results are false” 

does not single them out. While psychology is frequently mentioned as a field that might 

suffer from a high percentage of non-replicable discoveries (Asendorpf et al., 2013; Open 

Science Collaboration, 2015), so are other fields, such as preclinical (Collins and Tabak, 

2014; Haibe-Kains et al., 2013) and clinical pharmacology (Jager and Leek, 2014), cancer 

research (Baggerly and Coombes, 2009; Errington et al., 2014), epidemiology (Belbasis et 

al., 2015), brain imaging (Eklund et al., 2016) and GWAS (Siontis et al., 2010; Chabris et 

al., 2012).

A general consensus in the meeting seemed to be that behavioral phenotypes need not be 

less replicable. In a study across several laboratories and many decades, Wahlsten et al. 

(2006) showed that some behavioral phenotypes (including locomotor activity) were as 

replicable as classic anatomical phenotypes such as brain size, whereas other behavioral 

phenotypes (e.g., anxiety-related behavior on the elevated plus maze) were considerably less 

replicable. Proekt et al. (2012) demonstrated that motor activity in home cages can be highly 

reliable, as much as physical variables in exact mathematical models, providing some 

conditions were met. Valdar et al. (2006), in a study of 2448 genetically heterogeneous mice 

descended from 8 common inbred strain, actually found that the interactions between the 

genotype and multiple environmental covariates, such as experimenter, cage density, litter, 

test time and test order, tended to be smaller in the behavioral tests, such as the open field, 

fear potentiated startle and context freezing, than in many physiological tests such as glucose 

tolerance, hematology tests, immunology tests, biochemistry tests, and body weight. Valdar 

et al. (2006) explained this tendency by the automation of their behavioral battery, 

specifically predesigned to minimize the role of the experimenter to placing the animal in 

the apparatus. In contrast the physiological tests were less automated, e.g., large 
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experimenter effects were found in the glucose tolerance tests, in which the intraperitoneal 

glucose was administered manually.

However, some behavioral phenotypes are indeed problematic to measure, understand and 

interpret (Gomez-Marin et al., 2014; Krakauer et al., 2017), which probably does not 

contribute to their replicability, a problem appreciated in research with a spectrum of species 

including the laboratory mouse (e.g., Gerlai and Clayton, 1999; Gerlai, 2001, 2002a,b; 

Martin and Bateson, 2007; Benjamini et al., 2010; Hurst and West, 2010; Wahlsten, 2011; 

Crabbe, 2016) as well as fish (Gerlai and Csányi, 1990; Gerlai and Crusio, 1995) and 

humans (Eilam, 2014); Behavioral phenotypes tend to be susceptible to many environmental 

parameters affecting the animal’s performance, particularly demonstrated in investigations 

of the emotional state in short-lasting anxiety tests (Hurst and West, 2010), as illustrated also 

in zebrafish (Gerlai, 2014). Such issues might actually get worse in the high-throughput 

procedures common in phenotyping, since they are frequently designed for the human 

experimenter’s convenience and efficiency, rather than to minimize animal’s stress. Several 

researchers therefore emphasized that high-throughput automation should be developed only 

on the basis of careful prior observation and thorough understanding of the animals’ 

behavior (Wahlsten et al., 2003; Crabbe and Morris, 2004; Gerlai, 2015).

However, such understanding might not be easy to achieve, considering that the mouse’s and 

rat’s umwelt (in the sense of von Uexküll, 1957, the world from the perspective of their 

point of view) differs considerably from that of human. It is dominated by smell and has 

preference to some bitter tastes (Latham and Mason, 2004). A recent study suggests how 

strikingly important olfactory cues may be for murine behavior (Smith et al., 2016). Mouse 

and rat vision relies less on color perception and visual acuity is comparatively low 

(especially in albino stocks). However, mice and rats are more sensitive to near ultraviolet 

and are also highly sensitive to movement and changes in light intensity. Rodents in general 

are able to hear and communicate in the ultrasound range. Such differences may hinder 

experimenters from detecting subtle environmental effects impacting on behavior (Latham 

and Mason, 2004; Burn, 2008). Individual differences is an issue that was especially noted to 

affect behavioral phenotypes, potentially obscuring experiment results and impugning 

replicability. For example, the two-compartment DualCage setup (Hager et al., 2014), while 

sensitive enough to differentiate the behavior of the two closely-related mouse substrains 

C57BL/6J and C57BL/6N, also revealed large interindividual differences with some mice 

showing post-traumatic stress disorder (PTSD)-like persistent avoidance performance. 

Performance differences in cognitive tests between mouse strains and/or mutants might 

emerge due to the differential impact of specific and unspecific stressors, emotional 

(anxiety) differences and other involved motivational aspects (Youn et al., 2012), particularly 

in complex tasks involving higher cortical functions, thereby following the arousal-

performance relation of the Yerkes-Dodson law (reviewed by Diamond et al., 2007) that has 

been known for more than 100 years. In contrast, other behavioral measures such as 

locomotor activity are highly correlated over successive days in the DualCage, indicating 

high stability and therefore probably better replicability as well (Hager et al., 2014). 

Individual differences may be conceived as a disturbance increasing variability of the test 

cohort thereby reducing statistical power. It is useful to check for specific subpopulations of 
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performers (rather than rare statistical outliers), e.g. attributable to different coping styles 

(De Boer et al., 2017).

On the other hand, it has also been argued that adopting a reaction norm perspective, instead 

of trying to spirit biological variation away, such individual variability is fundamental for 

improving the external validity and hence the replicability of research findings (Vöelkl and 

Würbel, 2016).

In summary, we propose that well-understood, well-validated and properly measured 

behavioral phenotypes are not inherently less replicable than physiological phenotypes, but 

unfortunately many behavioral phenotypes, even those in common use, do not fit these 

criteria. This issue is closely connected with the issues of genotype-environment interactions 

(see Section 6) and the validity of behavioral measures (see Section 9).

6. Genotype-environment interaction – how should it be handled?

A problem inherent to the field of phenotyping is that the final phenotype depends not only 

on the genotype and the environment, but also on an interaction between the genotype and 

environment (commonly abbreviated GxE). Furthermore, the effect of the environment on 

animals is cumulative, with phenotypic measures often depending on ontogenetic 

development and experience of an animal. For example, in cross-fostering experiments of 

mouse inbred strains, raising BALB/cByJ pups by a C57BL/6ByJ dam reduced excessive 

stress-elicited hypothalamic-pituitary-adrenal (HPA) activity and behavioral impairments, 

but no effect was found in the opposite case of C57BL/6ByJ pups raised by a BALB/cByJ 

dam (Anisman et al., 1998). These interactions may take place over many levels of RNA, 

protein, cells, circuits, tissues, whole-organisms and ontogenetic development. In the case of 

brain and behavioral phenotypes there are the additional levels of neurons, CNS organization 

and activity, as well as their complex interaction with the environment. The physicist PW 

Anderson (1972) was quoted in the meeting: “surely there are more levels of organization 

between human ethology and DNA than there are between DNA and quantum 

electrodynamics, and each level can require a whole new conceptual structure”. This 

understanding of GxE effects is commonly regarded in current life sciences to be the answer 

to the old “nature vs nurture” debate, and is closely connected with the ecological concepts 

of phenotypic plasticity and reaction norms (Lewontin, 1974; Wahlsten, 1990; Pigliucci, 

2001; Voelkl and Würbel, 2016) as well as the psychological concept of G-E correlations 

(Homberg et al., 2016).

Empirically, this biological interaction does not necessarily have to result in large statistical 

interaction between genotype and environment, but in many cases it does. The most obvious 

case of statistical GxE occurs when a certain genotype (e.g., a knockout inbred line) scores a 

higher phenotypic mean than another genotype (e.g., the wild-type inbred strain) in certain 

environmental conditions, yet lower in other environmental conditions (Fig. 1 right). Typical 

examples of different environmental conditions may be different laboratories, different test 

days at the same laboratory, or even different laboratory technicians (Chesler et al., 2002a, 

Chesler et al., 2002b; Valdar et al., 2006). The sources of interaction are frequently 

unknown, multiple and very difficult to control, especially in light of the differences between 
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rodent and humans in their sensory ranges (Latham and Mason, 2004; Burn, 2008). An 

intuitive illustration would be to test whether bull terriers are more aggressive than poodles. 

While in one clinic such a conclusion may indeed result from a standardized stranger-

direction aggression test (Blackshaw, 1991), in another clinic the local technician might 

unknowingly wear a perfume that annoys only the poodles, leading to an opposite result that 

might prove difficult to “debug”. Indeed, Mogil and colleagues engaged in just such an 

exercise, ultimately identifying pheromonal effects on laboratory mice tested by different 

experimenters (Sorge et al., 2014). Such opposite results are quite common in actual 

phenotyping (“opposite significant”, see Kafkafi et al., 2017), and are actually more 

impressive than the hypothetical dog breed example, since C57BL/6 mice, unlike bull 

terriers, are (near perfectly) genetically identical. A large interaction effect is usually 

considered the mark of a true non-replicable genotype effect (Crabbe et al., 1999; Kafkafi et 

al., 2005, 2017). Note that an environment effect alone (Fig. 1, left) is not a serious 

hindrance to replicability since, by definition, it affects all genotypes to the same amount, 

and therefore can be controlled by having measurements on control animals (e.g., the 

C57BL/6J as a reference genotype). An interaction effect, in contrast, cannot be corrected 

this way because it is by definition unique to the specific combination of both genotype and 

environment.

What can and should be done about the statistical GxE interaction? This depends on the 

research question (Kafkafi et al., 2005). In many cases the source of the interaction, once 

recognized, might be itself of interest, and lead to uncovering an important biological or 

behavioral mechanism. However, when testing the very common type of hypothesis 

suggesting that a certain genotype has a certain phenotypic effect, the interaction is at least a 

confounding factor (Fig. 1 right) that must be taken into consideration and handled, and is 

even considered by some to be a fundamental property of living organisms. As illustrated 

and discussed in the meeting, careful observation of the animals’ response to the rearing 

conditions and/or experimental setup may sometimes locate and eliminate the cause of some 

of the interaction (Gerlai and Clayton, 1999; van der Staay and Steckler, 2001; Lad et al., 

2010). Moreover, certain phenotypic measures might be much less sensitive to GxE than 

other measures, especially if they are more robust to environmental disturbances and more 

faithfully represent the true state of the animal (Wahlsten et al., 2003; Benjamini et al., 

2010). A systematic way of decreasing the interaction was demonstrated by explicitly 

changing and improving the measure used for phenotyping (Benjamini et al., 2010).

In many cases, however, a certain portion of the statistical interaction effect does not 

disappear even after carefully redesigning the experiment or improving the analysis, and 

remains large and significant. Large GxE interaction effects may still be highly replicable if 

they depend on well-known environmental condition that can be equated (such as the 

dependence of body size in drosophila strains on temperature) but often they do not. In such 

cases the common statistical approach in the field brands the genotype effect as non-

replicable, being idiosyncratic to unknown sources and conditions. However, according to 

the newly developed “random lab model” (Kafkafi et al., 2005; see Section 8), such a 

genotype effect may still be demonstrated as replicable, providing it is large enough to be 

statistically significant even over the background of the large interaction. The random lab 

model treats the genotype as a fixed factor that can be precisely standardized and replicated, 
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but models the environment with random variables. This approach gives up on the 

unrealistic hope of precisely standardized and replicated laboratories, and instead models 

them as randomly sampled out of the population of all phenotyping laboratories. The 

immediate implication is that the interaction of the genotype with the laboratory (GxL) has a 

similar role to that of the individual animal noise (within-group effect). Similar to the 

individual animal noise, it should be decreased as much as possible, but in real life it would 

never disappear completely. Instead the model adds it to the within-group variability as the 

yardstick against which the genotype effect is compared. This generates a higher benchmark 

for showing a significant genotype effect – the price paid for ensuring that this effect is 

likely to remain significant if tested in another laboratory.

It is rarely appreciated that the most common criterion in the field for assessing replicability 

across several laboratories – the significance of the GxL interaction effect in the traditional 

analysis of variance (ANOVA) that treats the genotype effect as fixed – often results in 

misleading and even paradoxical conclusions (Kafkafi et al., 2005). Perhaps the worst is that 

using low-quality and noisy measurement may render the interaction non-significant. 

Alternatively, the same consequence can be “achieved” by using samples that are too small. 

In both cases a semblance of replicability is created. The reason is that this standard model 

has lower intrinsic power to detect interaction effects than to detect the main effects 

(Wahlsten et al., 2006), and thus any degradation of power is likely to eliminate GxL 

significance before it eliminates the genotype significance. This seeming paradox can be 

resolved by treating the environment effect as random, using the random lab model instead 

of fixed model ANOVA. With this model, the criterion for a true genotype difference and the 

criterion for a replicable genotype difference are one and the same – the significance of the 

genotype effect. It is therefore impossible to “improve” replicability by degrading the power 

(Kafkafi et al., 2005).

Replicability issues in the same laboratory across time is a similar problem arising as a result 

from “workflow” – the timing of individual mouse testing, either knockout mutants or 

background controls. In IMPC centers, each mouse passes through a phenotyping “pipeline” 

– a series of phenotypic tests in a predetermined order and defined age of the mouse. Due to 

fecundity and fertility problems, there are typically multiple small batches of knockouts with 

different birth dates and therefore testing dates, and the control mice (which are typically 

much larger in number) might not be concurrent. Moreover, depending on institutional 

resources and throughput, different institutes can have different workflow. Karp et al., 2014 

preferred moving to a design and analysis which embraces this variation across time, rather 

than changing to a highly standardized design. They proposed a mixed model in which time 

(batch) is a random variable.

Handling GxE interaction of various kinds thus depends on the objective and the context of 

research. While GxE can be understood and decreased by careful observation of the animals, 

and by redesigning housing and testing conditions, it can rarely be completely eliminated. 

Especially when testing a hypothesis of a genotype effect, ignoring or mishandling potential 

GxE is likely to result in replicability issues and other severe methodological issues.
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7. Standardization and heterogenization: why and when should they be 

used?

When discoveries of preclinical studies fail to replicate despite the near-perfect 

standardization of the genotypes, there is a natural tendency to assume that the problem is 

the lack of standardization of housing and testing conditions. Standardization aims to 

document the important properties of the environment and then keep them constant. A 

commonly held ideal is that every animal will be treated identically, so there are no sources 

of variation other than the controlled variable used as experimental treatment. This common 

dogma is usually invoked in the context of the “internal validity” within one study in one 

laboratory. In this role standardization is seen as means to minimize the variability of results, 

avoiding bias by unwanted sources of variation, and increasing sensitivity and precision. It is 

typically assumed that standardization lowers the noise level, thereby increasing the 

statistical power to detect differences between the experimental and control groups, and 

decreasing the number of animals required to detect such differences (Beynen et al., 2003; 

Festing, 2004). However, it should be noted that such standardization necessarily limits the 

generalizability of the study to the narrow range of conditions in which it was performed, 

thereby hampering replicability (Würbel, 2000; Richter et al., 2009; Voelkl and Würbel, 

2016). As an additional strategy to facilitate comparison with published results and thus to 

assess replicability, an anonymous reviewer suggested using positive controls based on 

known effects of drugs or other relevant treatments in any experiment.

Several participants in the meeting invested considerable effort devising behavioral assays in 

which the animals are tested for a long time (24 h and more) in a home cage, sometimes 

with additional space to explore, with minimal or no contact with a human experimenter, but 

potentially with computer-controlled experimental manipulations and feedback to increase 

standardization. Proekt et al. (2012) developed a high-throughput assay including multiple 

computer-controlled units, in which the mice are completely isolated from outside sound and 

vibration, and require human experimenters touch them only once per week. Tactile, 

olfactory and vestibular stimuli can be programmed, and the animal movement is tracked 

using infrared beams. Fonio et al. (2009) video-tracked mice and Cohen et al. (2015) fruit 

flies in assays comprised of a small home cage connected through a narrow doorway with a 

much larger arena, which the animals gradually and systematically inhabit over several 

hours to several days, of their own volition with no apparent incentive other than 

exploration. Tucci’s laboratory (Maggi et al., 2014) developed automated home-cage testing 

(www.phenoscale.org), consisting of computer-controlled holes and hoppers, in which 

circadian rhythms, sleep-wake and related cognitive processes can be automatically recorded 

and studied for many days. Tucci’s team has also developed user-friendly software platforms 

that can work with raw data, and has made the software available to the community to 

improve data sharing and to coordinate multiple testing across different laboratories. Hager 

et al. (2014) developed a two-compartment home cage-based assay with video-tracking to 

monitor fear learning, avoidance and risk assessment over two days without human 

interference. Here individual variability in exploring a test compartment was detectable in 

the absence of the experimenter (see Section 5) as a potentially confounding factor, 
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indicating that the assumption that standardization may help lower variation may not apply 

to all behavioral measures (see Section 6 and above).

Standardization is employed for another objective: increasing reproducibility across 

replicates of an experiment, either across time within the lab or across multiple labs. Crabbe 

et al. (1999) made an exceptional effort to standardize their phenotyping experiment across 

three different laboratories, and the EUMORPHIA project standardized the IMPC pipelines 

of tests across the IMPC centers (Mandillo et al., 2008). Both reported that careful 

improvement of conditions and testing increased replicability, yet both reported issues of 

replicability despite standardization.

Richter et al. (2009, 2010, 2011) maintain that the idea to improve replicability through 

standardization is based on the true finding that experimental results can differ depending on 

environmental conditions (i.e., phenotypic plasticity, Lewontin, 1974; Wahlsten, 1990; 

Pigliucci, 2001; Voelkl and Würbel, 2016), and on the false belief that these conditions are 

fully known so standardization will ‘spirit away’ such differences between experimental 

conditions, which they refer to as “the standardization fallacy” (Würbel, 2000, 2002). On the 

contrary, they proposed that “heterogenization” – systematic variation of conditions – may 

improve reproducibility and attenuate spurious results. The rationale is that different 

laboratories will always standardize to different local conditions, because many lab-specific 

factors are either unknown or cannot realistically be standardized, such as personnel. 

Consequently, the results might be valid only for these narrow conditions, and may not 

necessarily generalize to the conditions of other laboratories. In the last of several proof-of-

concept studies, Richter et al. (2011) ran heterogenized and standardized batches in each of 

six laboratories. In this study, heterogenization of study populations through systematically 

varying animal age and cage enrichment did indeed improve replicability, but only by a very 

small extent. It appears that this simple form of heterogenization introduced only a fraction 

of the variation that existed among the six laboratories.

It is also notable that too strict standardization may be a possible reason why preclinical 

studies often find drug efficacy while phase 2 or phase 3 human clinical trials of the same 

drug fail. Human populations are variable, genetically and environmentally, while animal 

populations are often genetically highly homogeneous and are tested under strict 

environmental control. These discrepancies have been discussed and the question of how to 

resolve them has been debated in the pharmaceutical industry and academia alike (Howells 

et al., 2014).

A related issue is cage environmental enrichment, which is frequently asserted to improve 

animal welfare, and depending on the type of enrichment may have profound effects on 

brain function, behavior and physiology compared to barren standard housing conditions 

(e.g. van Praag et al., 2000; Nithianantharajah and Hannan, 2006). More generally, Poole 

(1997) maintained that “happy animals make good science”. However, enrichment was long 

considered to compromise standardization, as more complex environments were thought to 

increase variation in the results, and even identical enrichment elements might be arranged 

differently in each cage, thereby impeding both the precision and replicability of 

experimental results. Conversely, Wolfer et al. (2004) tested two inbred lines and their F1 
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hybrid across three different laboratories, with and without enrichment, and concluded that 

enrichment did neither decrease the precision, nor the replicability of behavioral phenotypes. 

A reanalysis (Kafkafi et al., 2017) using laboratory as a random variable (instead of a fixed 

variable as in the original study) even found that the type-I error was actually lower in the 

enriched animals (33.3%) compared to the non-enriched animals (40.7%). This result 

suggests that enrichment might actually improve replicability, although the reason for this 

remains elusive.

The heterogenization concept was not received with outright rejection in the meeting, 

perhaps surprisingly in light of the importance usually prescribed to standardization. 

Notably, it was argued that strict “universal” standardization of laboratory and test 

environment is unfeasible, and that widespread adoption of few standard protocols, 

apparatuses and test environments diminishes, rather than enriches, understanding of the 

assayed behavior. Any attempt to repeat an experiment can never perfectly replicate the 

original conditions, but this is probably a good thing since it will increase generalizability of 

findings. Phenotyping databases (e.g., the MPD) may enable investigators to integrate 

information across these related experiments through multivariate analysis, meta-analysis 

and other approaches to find consistency and convergence of evidence across the range of 

experimental conditions in which a study is employed. Spreading mutant testing across time, 

as is done in the IMPC centers (Karp et al., 2014), or simply dose-dependent drug testing, 

may be regarded as forms of environmental heterogenization, and may lead to approaches 

that “embrace the variation” instead of standardizing it away. Heterogenization may also be 

viewed as a way to simulate multi-laboratory studies within a single laboratory, a similar 

approach to artificially increasing the variability in single-lab studies by adding the GxL 

interaction noise as measured in previous multi-lab studies (Kafkafi et al., 2017). While 

automated home-cage systems will increase costs considerably, this is not the case for 

within-lab heterogenization. If a heterogenization factor is assigned at the level of cage, 

treating cage as a random factor (a useful procedure even if cages were not specifically 

heterogenized), no further degrees of freedom are lost, and thus heterogenization increases 

neither the number of animals needed nor the costs of the research.

8. Replicability across laboratories: can it be ensured?

The issue of replicability across laboratories, an immediate form of GxE, is one of the most 

critical in mouse phenotyping, because modern science does not normally accept 

experimental results that are idiosyncratic to a certain location, even if they are replicable 

within this location. This is why the results and conclusions of the Crabbe et al. (1999) 

report were disturbing for many researchers in the field, and in other fields as well. As 

previously discussed in Section 6 there is currently no consensus even over the proper 

criteria to evaluate replicability across laboratories. Studies on the subject are few because 

they typically require collaboration of several laboratories and institutions, although they are 

becoming more and more common, thanks to data sharing and community efforts (Section 

3). Therefore, credible and practical solutions to the issue at the methodological and 

statistical levels are urgently needed. Several strategies were discussed in the meeting, 

including the following proposals.
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Ideally, discoveries should be replicated in at least one other laboratory. In the simplest case 

of testing the same hypotheses of difference between two genotypes – e.g., a knockout and 

its wildtype control – the criterion for a replicated discovery may be statistical significance 

(e.g., using a 0.05 level t-test) in each of two laboratories. Such a criterion concurs with the 

old Royal Society rule, as well as with Ronald Fisher’s view (see Section 2). Unfortunately, 

this criterion is not directly applicable when considering p-values from multiple phenotypic 

measures, as is typical for high-throughput rodent phenotyping, due to the issue of multiple 

comparisons. That is, if enough hypotheses are tested this way, some of them will be found 

“replicable” just by coincidence. Heller et al. (2014) therefore generalized the criterion to 

multiple comparisons situations, and proposed a novel statistic for this purpose, the “r-
value”. In the simplest case above the r-value equals the larger of the p-values in the two 

labs, but when multiple hypotheses are tested in each lab, the r-value computation can be 

adapted to take care of the multiple comparisons. Reporting the r-values can thus give 

credibility to the replicability claims: by declaring as replicable all findings with r-value less 

than, say, level 0.05, the expected fraction of false replicability claims among the 

replicability claims made is kept to this level. This FDR of replicability property is good 

enough assurance and is more powerful than its family-wise counterpart.

While the ultimate demonstration of replicability is to observe the experimental effect in 

multiple laboratories, in practice most phenotyping experiments are performed in a single 

laboratory, and results from other laboratories are usually not immediately available. This 

raises an unavoidable question: what should researchers do about a significant discovery in 

their own laboratory? How can they know whether it is likely to replicate in other 

laboratories? Should they publish it, or seek first to validate it in additional laboratories? 

And how would other researchers know if they are likely to replicate the effect in their own 

laboratories? All solutions discussed at the meeting have the effect of increasing the standard 

error of the effect size, and many exciting findings that depend on exceeding the standard p 
< 0.05 threshold will not survive them. A practical solution to these questions (Kafkafi et al., 

2017) employs an extension of the random lab model (Section 6), termed “GxL-adjustment”, 

which can be applied by researchers to phenotyping results in their own lab, providing a 

previous estimation of the interaction is available. The genotypic effect in the single 

laboratory is compared, as in the usual t-test, to the within-group variation, but this time 

“adjusted” by the addition of the multi-lab interaction variation. This addition of the 

interaction, as in the application of the random lab model to a multi-lab analysis, raises the 

benchmark for showing a significant genotype effect, ensuring that only effects that are 

likely to replicate in other laboratories will be significant. GxL-adjustment can be 

demonstrated to decrease the proportion of false discoveries that are not really replicable to 

the range of the traditional 0.05, for a price of modest reduction in the statistical power 

(Kafkafi et al., 2017).

Several important insights can be gained from the random lab model and from GxL-

adjustment (Kafkafi et al., 2005, 2017). First, the empirical size of the interaction variability 

sets its own limit for detection of replicable results. Increasing the number of the animals 

within a single lab has therefore only a limited benefit for replicability, since it does not 

affect the interaction with the laboratory. For the same reason, decreasing the individual 

animal noise also has a limited benefit for replicability. A phenotypic measure with smaller 
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interaction is therefore “better” in the specific sense that it is more powerful to detect true 

replicable genotype effects, but not necessarily in other contexts. Consequently, we should 

search for phenotypic measures having smaller interaction, but keep in mind that 

replicability is still a property of a result, not of a phenotypic measure. That is, true 

replicable genotype differences may be apparent even over a large interaction, providing 

they are large enough, while true replicable genotype differences that are small will be 

difficult to replicate even over a smaller interaction.

An extensive effort of standardization, as reported by Crabbe et al. (1999), is likely to 

succeed in reducing individual noise, yet fail to eliminate all unknown and unavoidable 

interaction sources, especially in light of the previously-mentioned differences between the 

sensory ranges of mice, rats and humans (Latham and Mason, 2004). If individual noise is 

decreased but the interaction remains the same, the usual ANOVA model (with fixed lab 

effects) will paradoxically detect more significant interaction terms, giving a false 

impression of reduced replicability. The random lab model in the same situation will give the 

correct impression: replicability (as seen in the number of significant genotype differences) 

will in fact improve, but only to a point. Beyond this point, further improvement of 

replicability must be achieved by decreasing the interaction (Kafkafi et al., 2005).

The random lab model does set a higher level for detecting significant effects in single-lab 

studies. This is not necessarily a drawback, however, in the sense that it is a way to weed out 

non-replicable differences (Fonio et al., 2012). It is an important incentive to invest time and 

effort in reducing interaction. The interaction can be methodically reduced by improving 

analysis methods, e.g., robust smoothing (Benjamini et al., 2010). However, while 

interaction variability should be reduced, it will never be completely eliminated (much like 

the individual animal noise) and therefore should never be ignored. Unknown sources of 

interaction are unavoidable (e.g., Würbel, 2002).

How can the interaction with the laboratory be estimated? One possibility is using as a 

surrogate the variability across time within a single laboratory (Karp et al., 2014) or 

heterogenization (Section 7). However, controlled heterogenization uses effects we know 

about, while true interaction with laboratory might involve factors we are not aware of at all. 

Another proposal (Kafkafi et al., 2017) is to make use of multi-lab data from large and 

evolving phenotyping databases, such as the MPD and the IMPC. Such a database can 

calculate the interaction and publish it for use by scientists running phenotyping experiments 

in their own laboratories. This calculation has to be repeated for each phenotypic measure 

separately. A website was demonstrated in which any researchers conducting a phenotyping 

experiment can upload their results, get an updated estimate of the interaction for the 

relevant phenotypic measure, perform a GxL-adjustment and get an adjusted p-value. The 

researchers are then given an option to leave their data in the database, thus enriching it and 

providing a better estimate, based on more laboratories, for future users. As in other file-

sharing and community-effort strategies, GxL-adjustment has ethical implications: by 

employing previous data of the same phenotypes from other laboratories and other research 

questions, instead of replicating the experimental study, it may eventually reduce the number 

of experimental animals without compromising replicability.
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Ultimately, the replicability of a phenotyping discovery can be guaranteed only by testing it 

in additional laboratories. Even in these simple cases, ways to quantify replicability, such as 

the “r-value”, are still in need of development and acceptance by the scientific community. 

In cases when testing was performed in a single lab only, it may still be possible to enhance 

replicability, or estimate its prospects in a better way. Several directions were proposed: 

heterogenizing the experimental setup, splitting the duration of the experiments to different 

time units, and using external estimates of the interaction from phenotyping database. All 

these may serve to get more realistic estimates of the replicability standard deviation, and 

better (not too optimistic) estimates of the relevant standard errors.

9. Replicability and validity: what is the relation between them?

Several researchers stress the importance of validity of research in preclinical phenotyping, 

especially behavioral phenotyping, and its probable close connection with replicability (e.g., 

Bailoo et al., 2014; Crusio, 2015). Some other researchers, while not necessarily using the 

term “validity”, share the view that the issue of replicability may be a byproduct of more 

fundamental methodological issues with behavioral phenotyping (e.g., Wahlsten et al., 2003; 

Benjamini et al., 2010; Gomez-Marin et al., 2014; Krakauer et al., 2017). There is no clear 

consensus over the nature of these methodological issues, nor over the practical ways to 

address them, but generally these researchers seem to share a similar dissatisfaction with the 

current credibility of phenotyping and especially behavioral phenotyping. They also seem to 

share the hope that, once phenotypes are properly validated, the issue of replicability will 

turn out to be considerably less grave as well.

In psychology, “internal validity” of an experiment refers to the justification for concluding 

the effect of the specific experimental treatment on the specific outcome measure, while 

“external validity” refers to the generalizability of this effect (Richter et al., 2009; Bailoo et 

al., 2014; Voelkl and Würbel, 2016). While internal validity is a required condition for 

concluding an effect, it is usually of little scientific value without external validity. 

Replication of the same experiment results across laboratories is the least requirement for 

external validity, but replication also across different designs, housing and testing conditions 

is better, and results that have the best external validity are those that generalized across 

strains and even species, e.g., translation to humans. The low replicability of certain 

phenotypic measures across laboratories may therefore indicate their poor prospects as 

animal models (Bailoo et al., 2014). Translation validity issues are outside the scope of the 

present review, but obviously they might result from poor reproducibility and replicability 

already in the preclinical phase. Pharma companies often complain that they cannot replicate 

preclinical effects reported in the academia, and yet recent reviews of translation issues (e.g., 

Mak et al., 2014; McGonigle and Ruggeri, 2014) tend to devote little attention to 

reproducibility and replicability within the same species of laboratory animals.

Assays for many common behavioral constructs, such as “anxiety” and “behavioral despair”, 

are not well-validated, and understanding of what it is that they measure is insufficient 

(Fonio et al., 2012; Crusio, 2015). For example, the Porsolt Forced Swim Test and the Tail 

Suspension Test are both thought to measure “behavioral despair” using a similar variable: 

the latency to stop trying to escape from an unpleasant situation; yet some mice treated with 
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a random stress procedure reacted oppositely in these two tests. While researchers assume 

that these tests measure a similar construct, the mice apparently disagree (Crusio, 2015). The 

Morris Water Maze is frequently considered to be a “gold-standard” for memory testing in 

rodents, and yet factor analysis of behavior data from 1400 mice revealed that only about 

13% of the variance in this test is explained by memory, while most of it is explained by 

behaviors such as wall hugging (thigmotaxis) and passive floating, which are thought to 

represent emotional and motivation aspects (Wolfer et al., 1998). This issue is probably 

because the Morris Water Maze was designed for rats and then used “as is” with the house 

mouse, a species considerably less adapted to wet environments and swimming. Crusio 

(2015) therefore concluded that validating and refining behavioral constructs should be an 

absolute priority for psychiatry and behavioral neuroscience.

GeneNetwork.org (see Section 3) can correlate different phenotypic assays as well as 

mapping QTLs in many recombinant inbred lines (Mulligan et al., 2017). A high correlation 

between two phenotypic measures across many strains means suggests that these phenotypes 

measure a similar construct, even when they originate in different studies, and measured in 

different tests and different conditions. Such correlated phenotypic measures may be viewed 

as different ways to measure the same trait that has been essentially replicated. Moreover, if 

both phenotypic measures reveal the same strong QTL, the correlation implies a similar 

causal connection, since the central dogma assures us that it is the genotype that determines 

the phenotype rather than the other way around. Thus, construct validity (Willner, 1984, 

1986; Belzung and Lemoine, 2011; van der Staay, 2006; van der Staay et al., 2009) in the 

genetic level is often gained as well.

A strategy of integrative bioinformatics was suggested as a way to discover validated and 

replicable relations among a variety of phenotypes through the shared association to 

common genomic features (Baker et al., 2011). In a demonstration of this strategy, 

GeneWeaver (see Section 3) was used to study the relationship between alcohol preference 

and alcohol withdrawal in gene sets from multiple publications and public data resources, 

including mouse QTL and humans (Bubier et al., 2014). Combinatorial integration of these 

gene sets revealed a single QTL positional candidate gene common to both preference and 

withdrawal. This QTL seems to have a replicable phenotypic effect – it was confirmed by a 

validation study in knockout mice mutated for this locus. Since discoveries in this strategy 

can be based on multiple studies across laboratories, species, and phenotyping protocols, 

they have a better chance to be replicable, generalizable, and translatable. However, the 

complex integration of multiple data sets in this strategy makes it difficult to construct 

statistical models for estimating how much the replicability may be improved.

Addressing validity issues might be critical when deciding how to share and integrate 

behavioral data, e.g., when constructing “controlled vocabularies” and “ontologies” used for 

querying and searching phenotyping databases. Semantics raises many challenging 

questions regarding how behaviors are structurally related to one another, and should they be 

labeled by the supposed meaning of the assay, or only by what can be observed. For 

example, “immobility” is an objective description of motor behavior free of the context of 

ascribed behavioral meaning. Mice become immobile in a variety of apparatuses for a 

variety of reasons and in response to a variety of treatments. Should an “immobility” label 
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be used rather than labels such as “anxiety”, “fear,” “learning” and “behavioral despair? 

Efforts such as the Neurobehavioral Ontology (Gkoutos et al., 2012), the Vertebrate Trait 

Ontology (Park et al., 2013) and the Mammalian Phenotype Ontology (Smith and Eppig, 

2012) have each taken different approaches to this issue based in large part on their unique 

applications. In databases storing multiple phenotypic measures from multiple studies and 

laboratories, the implications of these approaches for replicability and reproducibility may 

for the first time be methodically investigated.

It was further suggested to consider replicability as a “gold standard”, and use behavioral 

data across several laboratories in order to explicitly redesign behavioral constructs and 

ontologies for increased replicability (Benjamini et al., 2010). In this strategy, the issue of 

replicability in behavioral results is turned into an asset rather than a liability – it enables 

researchers to methodically improve the definition of key behavioral constructs by using the 

statistical level of replicability as a benchmark, filtering out behavioral results and 

representations that are less replicable (Kafkafi et al., 2003; Lipkind et al., 2004). Another 

type of validity that is highly relevant to preclinical testing is “predictive validity” (Willner, 

1984, 1986) or “pharmacological validity” – a response of the phenotypic measure to 

multiple psychiatric drugs that predicts the response of human disorders and syndromes to 

the same drugs. Here too it is possible to use behavioral databases in order to explicitly 

design behavioral measures for high predictive validity, as well as for replicability across 

laboratories (Kafkafi et al., 2014). A requirement for such a strategy, however, is storing 

detailed and high-quality low-level data, e.g., locomotor path coordinates in the above 

examples, rather than merely animal final means.

A potentially even more powerful approach may be to explicitly design behavioral measures 

and constructs to increase generality across species and taxonomic groups. That is, to search 

for biological homologies not just in the genetics, anatomy and physiology levels, but also in 

the behavioral level. Such homologies have been a central goal of classical ethologists, but 

mere similarity of form between behavior patterns across taxonomic groups proved 

untenable as a criterion for establishing behavioral homology (Beer, 1980; Gomez-Marin et 

al., 2016a). Establishing homology requires careful animal-centric low-level descriptions of 

movement and behavior in species from different phyla, as remote as mice (Fonio et al., 

2009) and fruit flies (Cohen et al., 2015; Gomez-Marin et al., 2016a). Once the common 

frame of reference and common origins used by organisms are identified, homology may be 

apparent in an invariable temporal and spatial order of movement components (Golani, 

2012). For example, the study of rotational velocities at the trajectory level has shown that 

both worms and flies modulate their navigation via the local bearing angles within sensory 

gradients (Gomez-Marin and Louis, 2014; Gomez-Marin et al., 2016b). More generally, 

when behavior is treated as the control of perception (Powers, 1973; Golani, 1981) rather 

than the production of motor actions per se, then what appears as output noise (deemed as 

variability, and so a corresponding hurdle to replicability) may actually be revealed as the 

means of the organism to maintain its perception at a set reference (Golani, 1976; Bell, 

2014). Such an animal-centric perspective (Gomez-Marin and Mainen, 2016) is apt to reveal 

homologues behaviors. Similarly, homologous bones, despite dramatic variation in their 

shape and function across different vertebrate orders and classes, can readily be identified by 
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their common relative position in the skeleton. Viewed through these concepts, validity of 

behavioral phenotypes measures may be obvious as it is in comparative anatomy.

In summary, reproducibility, replicability, generalizability, and validity, in their various 

forms and levels, are all criteria for assessing the value of scientific results. There are 

multiple opinions regarding the exact semantic definitions of these terms in different fields, 

their relative importance, the proper methods to estimate them and the best ways to ensure 

them. But in general there seems to be wide agreement that they are all important and useful 

in certain levels and situations. There are obviously close and complex relations between 

these criteria, so that problems with assessing one of them are likely to complicate the 

proper assessment of the other, and improvements with assessing one are likely to assist with 

the proper assessment of the other. It is possible to utilize stored phenotyping results, 

especially when they are detailed, high-quality and well-organized in accessible databases, 

to estimate one or even several of these criteria at once in order to improve the value of 

preclinical research.

9.1. ■ Overall summary

Modern science is reviewing its own problems of credibility, searching for causes and ways 

to address them. The original foundation of experimental science, emphasizing replicability 

and reproducibility, is still correct in spirit, but experimental, computational, and statistical 

methodologies require updating to cope with the increasing size and complexity of current 

research. Preclinical research and rodent phenotyping are similar in this regard to many 

other fields of experimental science, while also requiring the consideration of ethical issues 

surrounding the use of animals. They enjoy special technical advantages of their own, such 

as the ability to standardize genomes and manipulate them in a precise manner; but they also 

encounter special challenges, such as a potential interaction between genotype and 

environment, and the difficulty of defining and measuring behavioral phenotypes. Any 

proposed solutions, therefore, should likely be tailored to the particularities of the field. 

Phenotypic databases, community efforts and other methods of data sharing play important 

roles, as they can be employed to efficiently assess the severity of the issue, as well as the 

performances of different proposed solutions.

Correct handling of the genotype-environment interaction (GxE) is a key to proper 

methodology, and depends on the context and objective of the research. GxE can typically 

be understood and decreased through careful observation of the animals, redesigning the 

rearing and testing conditions to eliminate adverse effects of irrelevant confounding factors. 

Especially when testing a hypothesis of a genotype effect, ignoring or mishandling the 

relevant form of GxE is likely to result in replicability issues and other severe 

methodological issues. Extreme standardization of rearing and testing conditions is probably 

not by itself feasible or helpful as a strategy to eliminate GxE, and might limit the 

generalizability of any conclusions.

Ultimately, the replicability and generalizability of any phenotyping discovery can be 

guaranteed only by replicating it across additional studies, laboratories and experimental 

conditions. Even when studies are repeated, there is no single well-established method to 

quantify the replicability of the results, but large and consistent genotype effect sizes can 
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usually be agreed upon as replicable. In the more common situation where results are 

available from only one study, it may still be possible to enhance replicability, or estimate its 

prospects in a better way. Several directions were proposed and discussed at the meeting, 

including heterogenizing the experimental setup, splitting the duration of the experiments to 

different time units, and employing external estimates of the interaction from phenotyping 

database, effectively suggesting an expansion of the field of experimental design.

Linked with the issues of replicability are those relating to how phenotypes are defined and 

measured, especially for behavioral phenotypes. Regardless of the problems with replicating 

across laboratories, issues of generalizability and validity remain worth addressing. Insight 

and solutions resulting from attention given to the methodological issue of replicability may 

directly help with generalizability, and also help in addressing the more general issue of 

validity, by freeing investigators from rigid reliance on standardization, and rather promoting 

approaches to generalizable and replicable science. These observations first emerged from 

behavioral characterization of model organisms bear on other areas of biological inquiry and 

experimental science in general.
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12. Neri Kafkafi: “The Random Lab Model for Assessing the Replicability of Phenotyping Results Across 
Laboratories” https://www.youtube.com/watch?v=XsQawSBA6Vc&list=PLNiWLB_wsOg74GlfLNyAcTo-
TshyAcdLP&index=12.

13. George Nicholson & Hugh Morgan:”The Empirical Reproducibility of High-Throughput Mouse Phenotyping” 
https://www.youtube.com/watch?v=KzrrP6_F8r8&index=18&list=PLNiWLB_wsOg74GlfLNyAcTo-TshyAcdLP.

14. Donald W. Pfaff: “Application of Strict Methodology and Applied Mathematical Statistics to Mouse Behavioral 
Data” https://www.youtube.com/watch?v=hB0FnO9evbY&index=8&list=PLNiWLB_wsOg74GlfLNyAcTo-
TshyAcdLP.

15. Philip B. Stark: “Preproducibility for Research, Teaching, Collaboration, and Publishing” https://
www.youtube.com/watch?v=wHryMtEBkB4&list=PLNiWLB_wsOg74GlfLNyAcTo-TshyAcdLP&index=13.

16. Oliver Stiedl: “Individuality of Avoidance Behavior of Mice in an Automated Home Cage Environment” https://
www.youtube.com/watch?v=gUIgRW51uZY&list=PLNiWLB_wsOg74GlfLNyAcTo-TshyAcdLP&index=24.

17. Victoria Stodden:“Computational and Statistical Reproducibility” https://www.youtube.com/watch?
v=GzrOcqz8TVY&index=14&list=PLNiWLB_wsOg74GlfLNyAcTo-TshyAcdLP.

18. Valter Tucci: “Phenotyping Behaviour Across Laboratories and Across Mouse Strains” https://
www.youtube.com/watch?v=iTlsFaj62oQ&index=22&list=PLNiWLB_wsOg74GlfLNyAcTo-TshyAcdLP.

19. William Valdar & Lisa M. Tarantino: “The Effect of Genetic Background on Behavioral Variability: 
Implications for Replicability?” https://www.youtube.com/watch?
v=63sgLO4Hd04&list=PLNiWLB_wsOg74GlfLNyAcTo-TshyAcdLP&index=5.

20. Robert W. Williams: “Data Rescue for Replication: Finding, Annotating, and Reusing Data for the BXD Mouse 
Cohort” https://www.youtube.com/watch?v=goocssSA33g&index=19&list=PLNiWLB_wsOg74GlfLNyAcTo-
TshyAcdLP.

21. Hanno Würbel & S. Helene Richter: “On Standardization and Other Fallacies in Animal Phenotyping” https://
www.youtube.com/watch?v=tfW35740q3k&index=11&list=PLNiWLB_wsOg74GlfLNyAcTo-TshyAcdLP.
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Fig. 1. 
Comparing two genotypes G1 and G2, using two phenotypic measures 1 and 2, in three 

environments E1, E2 and E3. In the case of phenotype 1 (left) there is almost no interaction 

between genotype and environment (GxE). Note that the environment effect is large, but 

since it affects both genotypes in the same way it can be controlled using the same genotype 

as a reference for all other genotypes within the same environment. In the case of Phenotype 

2 (right), there is a strong GxE effect, to the point that in E1, G1 is significantly larger than 

G2, while in E3, G1 is significantly smaller than G2 (“opposite significant”) and E2 does not 

have any effect. In this case an issue with replicability ensues, since the genotype effect is 

idiosyncratic to the specific combination of genotype and environment. and statistical 

reproducibility

Kafkafi et al. Page 37

Neurosci Biobehav Rev. Author manuscript; available in PMC 2018 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Reproducibility and replicability in general science: a crisis?
	Can data sharing in rodent phenotyping help with replicability?
	Replicability issues in mouse phenotyping – how serious are they,
really?
	Replicability of behavior: a special case?
	Genotype-environment interaction – how should it be handled?
	Standardization and heterogenization: why and when should they be used?
	Replicability across laboratories: can it be ensured?
	Replicability and validity: what is the relation between them?
	■ Overall summary

	References
	Fig. 1.

