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Effects of hyperthermia on DNA repair
pathways: one treatment to inhibit them all
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Abstract

The currently available arsenal of anticancer modalities includes many DNA damaging agents that can kill
malignant cells. However, efficient DNA repair mechanisms protect both healthy and cancer cells against the effects
of treatment and contribute to the development of drug resistance. Therefore, anti-cancer treatments based on
inflicting DNA damage can benefit from inhibition of DNA repair. Hyperthermia – treatment at elevated
temperature – considerably affects DNA repair, among other cellular processes, and can thus sensitize (cancer) cells
to DNA damaging agents. This effect has been known and clinically applied for many decades, but how heat
inhibits DNA repair and which pathways are targeted has not been fully elucidated. In this review we attempt to
summarize the known effects of hyperthermia on DNA repair pathways relevant in clinical treatment of cancer.
Furthermore, we outline the relationships between the effects of heat on DNA repair and sensitization of cells to
various DNA damaging agents.
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Introduction
Hyperthermia – treatment above temperatures that are
physiologically optimal – affects cells and tissues on
countless levels, by directly altering the physical properties
of cellular components and by evoking counteractive cel-
lular responses. Among other effects, heat causes DNA,
protein and membrane damage, interferes with cell cycle,
DNA and protein synthesis and may result in cell death,
either directly or by triggering apoptotic pathways [1–5].
Early research demonstrated that except for the cyto-

toxic potential, hyperthermia can sensitize cells to DNA
damaging agents. Indeed, elevated temperature, applied
in combination with various anti-cancer drugs or radi-
ation, has been shown to eradicate transformed cells
in vitro and to inhibit tumor growth in animal models
[6–13]. It was also speculated, based on results obtained
using biochemical methods, that heat may induce DNA
damage directly [14–16]. In the subsequent decades, an
extensive body of data confirmed that hyperthermia is a
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powerful sensitizer to many agents that interfere with
DNA metabolism or cause DNA damage, suggesting that
it might directly interfere with DNA repair. However,
how hyperthermia sensitizes cells to DNA damaging
agents remained unclear. This changed gradually during
the last two decades. With the introduction of advanced
fluorescence imaging and molecular biology techniques
in the 1990s came deeper understanding of DNA repair
networks that, in turn, facilitated interpretation of re-
sults. During the last decade a number of important
findings cemented the position of hyperthermia research
within the DNA repair field and first large clinical trials
clearly demonstrated the benefits of hyperthermia as ad-
juvant in clinical treatment of cancer [17–19] and stimu-
lated research and development of new treatment
approaches, such as hyperthermia-mediated drug release
[20]. Nevertheless, the effects of hyperthermia on DNA
repair are still not sufficiently understood.
It is clear that cytotoxic or sensitizing effects of

hyperthermia cannot be attributed to deactivation of a
single DNA repair mechanism, but rather to influen-
cing many pathways, on multiple levels. Although this
may hamper the interpretation of experimental data, the
pleiotropic effects of heat on DNA repair may be ex-
tremely beneficial in the clinical settings. Therefore,
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understanding how heat interacts with the DNA repair
networks will help in improving the existing and designing
novel (combination) therapies. This review attempts to
categorize the influence of hyperthermia on the known
DNA repair pathways, with special attention to those
pathways relevant in cancer treatment. Due to space and
subject limitations, the effects of hyperthermia on other
metabolic pathways or tissues and organs are not dis-
cussed, even though they might be as (or more) important
in anti-cancer treatments.
One important factor that generally confounds ana-

lysis of available literature data is that different thermal
doses are used in different studies. The thermal dose
depends on the temperature and duration of treatment
so that thermal dose equivalent at a given temperature
can in principle be calculated using Arrhenius equa-
tions. For instance, cumulative equivalent minutes at
43 °C (CEM43) can be calculated to compare results of
experiments or clinical treatments performed at differ-
ent temperatures [21]. Accordingly, except for relatively
high (>45 °C) temperatures, in principle the effects ob-
served at a given temperature can be achieved by using
a lower temperature and longer incubation time. We
therefore intentionally do not limit our review to clinic-
ally relevant temperatures (<43 °C). Such approach al-
lows inclusion of a broader spectrum of hyperthermia
effects but caution should be exercised when directly
comparing results of experiments performed at differ-
ent temperatures.

Direct induction of DNA damage by hyperthermia
It is generally accepted that hyperthermia inhibits DNA
repair. However, the fundamental question whether
hyperthermia directly induces DNA damage has not
been definitively answered. Early studies showed that
hyperthermia may induce DNA breaks and chromo-
somal aberrations, either by causing protein denatur-
ation or by interfering with replication [14–16, 22–25].
Increased levels of 8-oxoguanine, apurinic sites and de-
aminated cytosines have also been detected after heat
treatment [26]. Other studies showed that hyperthermia
does not cause DNA damage in absence of additional
stimuli. However, heat seemingly increased the levels of
single strand breaks (SSBs) and double strand breaks
(DSBs) during processing of damage induced by ioniz-
ing radiation, possibly by impairing the repair of cor-
rupted bases [24, 27, 28]. Nearly a decade later it was
reported that heat (>41.5 °C) triggers focal phosphoryl-
ation of histone H2AX, similar to the formation of the
so-called ionizing radiation induced foci (IRIF) [29–31]
that are generally considered to occur in response to
DSBs [32, 33]. Moreover, this response was observed at
relatively mild temperatures and the number of foci
was proportional to thermal dose and cell killing.
Interestingly, the induction of phospho-H2AX (γH2AX)
foci was suppressed by prior heat treatment, resembling
the known phenomenon of thermotolerance [34]. The
authors suggested that the proposed induction of DSBs
by hyperthermia may not be direct, but rather a result
of nicks induced in close proximity on opposing DNA
strands [29].
Later studies confirmed the induction of γH2AX and

MDC1 foci by hyperthermia (43–45.5 °C) and showed its
dependence on DSB signaling factor ATM [30, 35–38].
However, hyperthermia-induced foci did not recapitulate
all characteristics of IRIF in that they failed to co-localize
with 53BP1 or SMC1. Importantly, neither DNA damage,
nor chromosome aberrations were detected in these stud-
ies, suggesting that heat may induce chromatin changes
that in turn trigger DNA damage responses (DDR) in the
absence of actual DNA damage [35]. Such triggering by
different stimuli has indeed been observed earlier [39–42].
Adding to the debate, Velichko and colleagues recently

reported that two different patterns of γH2AX foci can be
discerned in hyperthermia-treated cells (42–45.5 °C): the
larger IRIF-like foci in G1- and G2-phase cells and the
smaller but more numerous foci in S-phase cells [43].
Even more surprisingly, hyperthermia-induced DSBs were
detected in heated G1/G2 cells but not in S-phase cells,
while the inverse was true for SSBs. Furthermore, the au-
thors demonstrated inhibitory effects of heat on replica-
tion fork progression. The absence of DSBs in cells heated
in S-phase can be caused by suppression of replication
fork progression that might, in turn, prevent DSB forma-
tion [44]. The S-phase specific ‘protective’ foci may thus
mark sites of stalled replication forks that are not yet con-
verted to DSBs. On the other hand, the foci in non-S
phase cells could mark DSBs that were directly induced
by heat or, alternatively, persistent DSBs [45] that were
unmasked by heat-related chromatin changes. This latter
explanation may be difficult to prove since only a lim-
ited number of persistent DSBs have been observed
earlier while hyperthermia can induce a large number
of foci. Moreover, the chromatin domains containing
persistent DSBs are decorated with 53BP1 [45], in con-
trast to heat-induced foci [35].
Clearly, the question whether heat directly induces

DSBs is far from resolved. The majority of studies failed
to detect DSBs or chromosome aberrations in heated
cells by direct methods [46]. Most reports that did con-
firm induction of DSBs by heat rely on indirect assays
such as phosphorylation of H2AX or accumulation of
repair-related proteins. Some other studies confirmed
DSB induction by direct methods and showed that phos-
phorylation of H2AX correlates with cell killing and
thermotolerance. More sensitive and specific methods to
directly detect DNA DSBs and SSBs may be required to
settle the long-standing dispute.
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DNA damage signaling and cell cycle checkpoint
activation
Even though it is far from certain whether hyperthermia
can directly damage DNA, the triggered signaling resem-
bles, to some extent, the responses caused by DNA dam-
aging agents (see also previous section). In mammalian
cells, such signaling can initiate checkpoints which inter-
rupt the cycle progression to provide time for DNA repair
and are thus essential for the maintenance of genomic in-
tegrity [47]. The mammalian checkpoints started in re-
sponse to DNA damage are managed by the two master
kinases, ATM and ATR [48, 49]. ATM is thought to be ac-
tivated, with help of the the MRN (MRE11/RAD50/NBS1)
complex, by DSBs, mainly in G1-phase [47, 50]. ATR
chiefly responds to exposed single stranded DNA at stalled
replication forks in S-phase, in a manner that is at least
partly dependent on ATM [51, 52]. Both ATM and ATR, as
well as the DNA-PK kinase, phosphorylate histone H2AX
(see also previous section) and many other repair factors in
chromatin domains surrounding the damaged DNA. This,
in turn, triggers accumulation of multiple DNA repair-
related proteins at damaged chromatin, further propagation
of the damage signal and activation of the appropriate cell
cycle checkpoints via mechanisms dependent on Chk1,
Chk2, p53, CDC25a, WEE1 and other factors [47].
Mammalian cells display varying thermosensitivity, de-

pending on the cell cycle phase in which they were
heated [53, 54]. In general, G1-phase cells are relatively
heat resistant and do not show any damage upon micro-
scopic examination. S-phase cells are more sensitive and
chromosomal damage is observed [55, 56]. The highest
heat sensitivity can be observed during the M-phase,
with damage of cellular mitotic apparatus leading to in-
efficient cell division and polyploidy. Hyperthermia in-
duces a ‘slow mode of cell death’ in S- and M-phase,
while cells heated during G1-phase may enter a ‘rapid
mode of death’ [54, 57]. These variations in sensitivity be-
tween the different cell cycle phases suggest diversity of
molecular mechanisms regulating cell death following
hyperthermia, which may indicate involvement of various
checkpoint mechanisms [53, 58, 59]. However, the influ-
ence of hyperthermia on cell cycle progression is not well
understood. Early studies showed increase in length of all
phases and arrest at the G1/S transition [60–62], but the
underlying mechanisms were unclear. More recent work
confirmed activation of cell cycle checkpoints by 42–46 °C
heating [63] and implicated activation of ATM and a sub-
set of its downstream targets, including p53, independ-
ently of the MRN complex [35, 64] (see also previous
section). Another study reported activation of p53 via the
thioredoxin-dependent redox state and modulation of
checkpoint regulators Gadd45a and Cdc2 at 41 °C [65]. On
the other hand, hyperthermia seems to disturb early steps
in cellular responses to radiation-induced damage, as
delayed formation of 53BP1 foci and phosphorylation of
SMC and Chk2 have been reported after treatment at 43 °
C [66]. This may be surprising, since ATM directly phos-
phorylates Chk2 in response to heat [64, 67]. Thus, while
heat treatment alone may activate cell cycle checkpoints
via the ATM kinase, it can apparently also delay signaling
triggered by exogenously induced DNA damage.
ATR and Chk1 are also activated by heat (42.5-45 °C),

reportedly to a larger extent than the ATM/Chk2 branch
of the DDR, and the ensuing signaling cascade causes
G2/M arrest which can be abrogated by inhibition of
Chk1 [67, 68]. Chk1 activation is dependent on Rad9,
Rad17, TopBP1 and Claspin, which play important roles
in activation of ATR at stalled replication forks [69].
However, similarly to heat-induced ATM signaling, not
all targets of ATR are activated as neither FancD2
monoubiquitination nor RPA32 phosphorylation were
observed [67]. Hyperthermia (43–48 °C) also influences
S-phase progression by directly inhibiting multiple pro-
cesses related to replication [70–72]. Contributing to
these effects is the release of nucleolin from the nucle-
olus which stimulates RPA-nucleolin interactions and
may thus limit RPA involvement in replication. It seems
feasible that this could, in turn, cause slowing or collapse
of replication forks and initiate ATR signaling. In the
context of S-phase, the activation of cell cycle checkpoint
might therefore be a protective response mitigating the ef-
fects of hyperthermia on replication progression. Indeed,
mammalian cells are exceptionally sensitive to heat in
S-phase and at least part of hyperthermia-related cyto-
toxicity observed in S-phase cells can be alleviated by
inhibition of replication [44]. Both ATM and ATR, as
well as DNA-PK, seem to propagate damage signaling
in response to heat by phosphorylating histone H2AX
[43], with ATM/ATR responding to the presumed heat-
induced DNA damage and DNA-PK reacting to heat-
induced replication arrest (see also previous section).
Intriguingly, the DNA-PK (but not ATR)-mediated
H2AX phosphorylation may protect replication forks
from collapse and DSB formation [43].
Based on the effects described above, it could be pre-

dicted that hyperthermia sensitizes cells to agents that
interfere with cell cycle (checkpoints). Indeed, after
treatment with hyperthermia (42 °C), antimitotic drugs
like paclitaxel, nocodazole or Aurora A inhibitor showed
increased toxicity. However, this was not due to activa-
tion of cell cycle checkpoints but, surprisingly, due to
abrogation of the M checkpoint and forced mitotic exit,
resulting in mitotic catastrophe [73]. Although hyper-
thermia (at 41.5 °C) also stimulates mitotic catastrophe
in X-irradiated cells, this is accompanied by strengthen-
ing, rather than weakening, of radiation-induced S and
G2 checkpoints [74]. It is not clear what mechanisms are
responsible for the increased heat sensitivity of M-phase
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cells [75], but DNA damage repair is limited in this
phase [76], which could explain heat-sensitivity if DNA
damage is directly caused by hyperthermia.
Concluding, the effects of hyperthermia on cell cycle

progression and checkpoint activation seem to be medi-
ated, to a large extent, by ATM and ATR, the two factors
that primarily regulate checkpoints in response to DNA
damage. This could indicate that heat induces DNA
damage, which in turn activates the DDR cascade. The
preferential activation of ATR/Chk1 [67] suggests that, if
DNA lesions are indeed induced by heat, they might be
related to inhibited or corrupted replication forks. On
the other hand, the differences in patterns of signaling
initiated by heat, as compared to signaling triggered by
direct DNA damage, may suggest involvement of other
unidentified mechanisms, such as those related to chro-
matin changes [77].

Excision repair
Excision repair in mammalian cells encompasses mecha-
nisms that remove corrupted bases or nucleotides and
fix DNA mismatches. Excision repair can be subdivided
into base excision repair (BER), nucleotide excision re-
pair (NER) and mismatch repair (MMR), with BER and
NER proceeding via a SSB intermediate and thus sharing
the final steps with SSB repair mechanisms.
BER constitutes the main pathway for the repair of

DNA lesions induced by oxidizing or alkylating agents, as
well as by endogenous metabolic activities. BER is active
throughout the cell cycle and executed by a number of
proteins that include DNA glycosylases, apurinic/apyri-
midinic endonucleases, phosphatases, phosphodiester-
ases, kinases, polymerases and ligases [78]. BER is
initiated by various glycosylases which recognize and
remove the damaged bases and create abasic (AP) DNA
sites. AP endonucleases (APE1 in human cells) then
recognize and cleave AP sites and recruit DNA poly-
merases to restore the gaps, via a SSB intermediate,
where BER and SSB repair pathways converge. Tens of
thousands of damaged bases per day must be fixed in a
mammalian cell, thus BER has evolved as a fast and ef-
ficient mechanism of paramount importance for main-
taining the genomic integrity [78].
It has been suggested that BER might be the main target

of heat at temperatures above 43.0 °C [79, 80]. Indeed, a
measurable inhibition of base excision in X-irradiated cells
was observed after hyperthermia [81]. Additionally, al-
though hyperthermia treatment (43–45 °C) did not induce
DNA damage by itself, it increased the amount of dam-
aged bases and DSBs in X-irradiated cells [27], possibly by
inhibiting BER and thus indirectly stimulating conversion
of damaged bases to DSBs. Hyperthermia (>41.5 °C) has
also been shown to affect the activity of DNA Pol β, an
important BER factor [82–86]. However, the lack of
correlation between Pol β activity and hyperthermic cell
killing has also been reported [87]. In contrast to Pol β, ef-
fects of hyperthermia on its partner XRCC1 that is in-
volved in later steps of BER and in SSB repair have not
been explored, but it is intriguing that the molecular
chaperone HSP90, part of the cellular responses to heat
shock, influences DNA repair by regulating interactions
between Pol β and XRCC1 [88]. It could be speculated
that upon hyperthermia treatment HSP90 is required to
chaperone its other client proteins, which could result in
decreased mediation of XRCC1-Pol β interactions.
Recently it has been confirmed that mild hyperthermia
(42 °C) directly impairs BER, at least partially by affecting
the cellular glycosylase activities [89]. In particular, hyper-
thermia inactivates 8-oxoguanine DNA glycosylase (OGG1)
by depleting it from the nucleus and eliciting its proteasome-
mediated degradation. The inhibition of OGG1 then likely
contributes to heat-induced radio- or chemosensitization.
On the other hand, siRNA-mediated downregulation

of AP endonuclease (APE1), a critical BER enzyme,
failed to influence hyperthermic radiosensitization in
HeLa cells, suggesting that BER is not affected by 41.5 °C
incubation [90]. It should be noted, however, that only
about 70 % downregulation of APE1 was achieved in this
study and the residual protein levels might be sufficient to
sustain (partial) BER activities. Moreover, the contribution
of APE1 to cellular radiation responses is unclear and
while some studies show that decreased APE1 levels
correlate with increased radiosensitivity others show the
opposite effects [90, 91].
Nucleotide excision repair (NER) is involved in excision

mechanisms that remove DNA damage like pyrimidine di-
mers and (6–4)photoproducts [92]. The influence of
hyperthermia on NER has not been extensively explored,
but one study showed reduced NER-associated strand in-
cision and considerably delayed repair of thymidine di-
mers in cultured human fibroblasts and keratinocytes
heated at 43 °C. Additionally, the repair of UV-B-damaged
plasmid DNA was lower if the transfected cells were ex-
posed to heat [93].
One argument supporting the notion that hyperthermia

interferes with NER stems from studies on sensitization to
platinum-based compounds. Cisplatin and its derivatives,
used widely in clinical cancer treatment, produce DNA in-
terstrand cross-links that can be either repaired by the NER
machinery or, after conversion to DSBs, by replication-
coupled repair [94–96]. A wide body of evidence indicates
that 39–43 °C hyperthermia sensitizes cells to cisplatin
[97–100], suggesting that NER may indeed be among heat
targets. One study compared hyperthermia-mediated (40–
41 °C) sensitization to cisplatin in cells lacking the major
NER factor XPA with wild-type cells [101]. Results
showed comparable sensitization in both cell lines, leading
to suggestion that NER plays no major role in this process.
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However, cisplatin-induced DNA lesions can also be
repaired by pathways other than NER [95], which could
explain these results, although these other pathways can
also be affected by heat. Among modulatory effects of
hyperthermia on cellular responses to cross-linkers is also
suppression of cisplatin-induced XPC and XPA, as shown
in human epithelial ovarian cancer xenografts incubated
at 43 °C [102].
The effects of hyperthermia on MMR are even less

explored. It has been shown that MMR factors hMLH1
and hMSH2 translocated from the nucleus into the
cytoplasm in response to 41–42 °C heat shock [103].
This study also showed, by applying comet assay, that
hyperthermia induces DNA damage. Surprisingly, in
heat-shocked MMR-deficient cells less DNA damage
was detected than in wild-type counterparts, for up to
4 h after treatment, but the DNA repair capacity 24 h
after treatment remained unaffected. These results sug-
gest that MMR may stimulate induction (or conversion)
of DNA lesions by heat, but is not involved in repair.
The excision repair pathways interplay at restoring

DNA lesions induced by many different classes of chemo-
therapeutics, including alkylating agents and antimetabo-
lites [104–107]. Hyperthermia sensitizes cells to many of
these agents (Table 1), providing support for the hypoth-
esis that excision repair pathways are affected by heat.
However, clear interpretation of experimental and clinical
data is hampered by extensive overlap of these mecha-
nisms during repair of various lesions. For instance, DNA
Table 1 DNA damaging chemotherapeutic agents interacting with

Class Agent [with references to studies showing inter
of the agent with hyperthermia]

Alkylating agents - triazenes (temozolomide [182, 183])

- nitrogen mustard derivatives (cyclophosphami
[13, 185–191], melphalan [191–199])

- aziridine-containing (mitomycin C [10, 187, 191
200–203])

Alkylating-like platinum
compounds

- cisplatin [12, 100, 101, 191, 201, 204–210], carb
[211–214], oxaliplatin [198, 199, 209, 215]

Antimetabolites - pyrimidine analogs (5-fluorouracil [218], gemci
[161, 199, 219])

- purine analogs (2-aminopurine [222], 6-thiogua
[222])

- dihydrofolate reductase inhibitors (methotrexa
[210, 223])

Topoisomerase I poisons - camptothecin [224], B-lapachone [144, 145],
Irinotecan [199]

Topoisomerase II poisons - intercalators (doxorubicin [187, 188, 227–230])

Radiomimetics - enediynes (neocarzinostatin [10])

- bleomycin [6, 10, 12, 191, 210, 236, 237]

- mitomycin C [10, 187, 191, 200–203]

PARP inhibitors - olaparib [150, 153], PJ-34 [150]
damage caused by alkylating agents, either directly or dur-
ing processing of the initial lesions, can be repaired by
NER, BER, MMR, as well as by SSB and DSB repair path-
ways [92, 105, 108] (Table 1).

Non-homologous end joining
Non-homologous end joining (NHEJ) is one of the major
pathways to repair DSBs in mammalian cells. NHEJ is ac-
tive throughout the cell cycle and rejoins the broken DNA
ends without the requirement for homology or repair tem-
plate [109]. Recently, two NHEJ subpathways have been
discerned: the classical and alternative (or backup) NHEJ
(alt-NHEJ). During the classical NHEJ (c-NHEJ), the Ku
heterodimer is among the first factors that bind DNA
ends. Upon binding, it becomes a scaffold for the subse-
quent recruitment of the end processing nucleases and li-
gases. As naturally occurring DSBs rarely result in clean
DNA ends suitable for direct ligation, they are first proc-
essed by the Artemis/DNA-PKcs complex that provides
various nucleolytic activities, and possibly by APLF and
PNK. Ligation is then performed by the XLF/XRCC4/
DNA ligase IV complex and the recently discovered XLF/
XRCC4 paralog PAXX [110]. The Ku and ligase IV-
independent alternative NHEJ may instead involve PARP1,
XRCC1 and DNA ligases I or III [111]. While c-NHEJ is
generally an accurate pathway, alt-NHEJ may be respon-
sible for improper repair and formation of chromosome
translocations in the absence of c-NHEJ [112, 113].
hyperthermia

action Type of inflicted DNA damage Pathways involved in repair
[references]

strand cross-links, adducts, DSBs
(indirect)

NER, BER, MMR, NHEJ, HR
[108, 184]

de

,

oplatin strand cross-links, DSBs (indirect) NER, BER, MMR, HR
[94, 95, 216, 217]

tabine SSBs, DSBs (indirect), oxidative
damage

HR, MMR, NER
[148, 161, 220, 221]

nine

te

SSBs BER, NER, NHEJ [225, 226]

DSBs NHEJ, HR [231–233]

SSBs, DSBs, oxidative damage,
strand cross-links

HR, NHEJ, BER,
[136, 137, 234, 235]

SSBs, DSBs (indirect) HR, BER [238–240]
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Whether NHEJ is inhibited by hyperthermia has been a
subject of long debate. The initial evidence of NHEJ in-
volvement can be found in data showing that hyperthermia
sensitizes cells to ionizing radiation in G1-and G0-phase of
the cell cycle, where mostly NHEJ mechanisms are respon-
sible for repair of DSBs, although the degree of sensitization
is increased in S- and M-phases [53, 114–116]. Later stud-
ies compared the degree of hyperthermia-mediated radio-
sensitization in wild-type and repair deficient Xrs-5 cells in
plateau phase of growth and found that these cells could no
longer be radiosensitized by hyperthermia. The rationale
behind these experiments was that if repair pathway X is an
(exclusive) target of hyperthermia, (wild-type) cells with a
proficient pathway X can be radiosensitized by hyperther-
mia. This is in contrast to cells with a defect in pathway X
which would no longer be radiosensitized. Using this logic,
it was concluded that the DNA repair pathway defective in
Xrs-5 cells is targeted by 43–45 °C hyperthermia [117, 118].
The deficiency in Xrs-5 cells was later attributed to the
absence of a functional Ku protein [119–121], indirectly
implicating NHEJ in heat-mediated radiosensitization.
However, a number of subsequent studies showed no
significant difference in sensitization of wild-type and
NHEJ-deficient cell lines at similar temperatures (42.5-
45.5 °C) [122–126]. Further, chemical inhibition of
DNA-PK activity potentiated hyperthermia-mediated
radiosensitization [127] and stimulated heat–induced
apoptosis [128]. To explain this discrepancy, it was pro-
posed that the Ku-independent alt-NHEJ pathway may
instead be targeted by heat [129]. In log-phase cells,
both c-NHEJ and alt-NHEJ pathways are active. Thus,
in log-phase c-NHEJ-deficient cells, alt-NHEJ is still op-
erational and, if this pathway is heat-sensitive, such
cells could potentially be further sensitized by hyper-
thermia. In contrast, in plateau-phase cells alt-NHEJ
seems severely compromised [130] and innate c-NHEJ de-
ficiency would render such cells resistant to further heat-
induced radiosensitization.
Although evidence of direct effects of hyperthermia on

alt-NHEJ is lacking, effects on c-NHEJ factors have been
observed by several groups. Studies showed heat-mediated
inactivation of DNA binding by Ku and decreased activity
of DNA-PK complex that correlated with the degree of
radiosensitization, at temperatures of 44–45 °C [131–133].
Additionally, incubation at 44.5 °C induced aggregation of
Ku in nuclei of human cells [134]. A recent study con-
firmed reversible repression of DNA-PK activity by 44 °C
hyperthermia and reported considerable decrease in KU70
and KU80 protein levels, along with a more modest
decrease in levels of BRCA1 and 53BP1 [135].
Hyperthermia (>41.5 °C) sensitizes cells to radiomimetic

drugs such as bleomycin and neocarzinostatin that induce
DSBs repaired by NHEJ mechanisms [6, 12, 136–139]
(Table 1). One caveat in the interpretation of these
experiments is that such drugs also induce SSBs and oxida-
tive damage that may be repaired by other mechanisms or
converted to DSBs and repaired by homologous recombin-
ation (see next paragraph) in the ensuing S/G2-phase of the
cell cycle. Interestingly, even though DSBs indirectly in-
duced by inhibitors of Topoisomerase II are primarily
repaired by NHEJ [140], heat not only fails to sensitize cells
to Topoisomerase II inhibitor etoposide, but exerts protect-
ive effects [141]. It has been suggested that hyperther-
mia may prevent formation of Topoisomerase II
cleavage complexes after etoposide treatment, thereby
reducing the DSB burden in treated cells [141]. This is
in contrast to Topoisomerase I and II inhibitor β-
lapachone [142, 143], whose cytotoxicity is potentiated
by 42 °C hyperthermia [144, 145].
Thus, although indirect genetic studies do not confirm

NHEJ as an exclusive target of hyperthermia, other re-
sults clearly support the notion that NHEJ is among the
affected DNA repair mechanisms.

Homologous recombination
Homologous recombination (HR) is the second DSB re-
pair pathway of major importance in mammalian cells.
HR requires a homology template, usually the sister chro-
matid, and is thus only active during S- and G2-phases.
The first step in HR is the generation of 3’ single-stranded
DNA overhangs, driven by the MRN complex. RPA
quickly coats the exposed single-stranded DNA but is
later replaced by RAD51 with help of BRCA2. The
RAD51 nucleoprotein filaments are crucial for the search
for the homologous duplex DNA, strand invasion, and the
formation of the so-called Holliday junctions. The invad-
ing strand is extended by DNA polymerases, which copy
the missing DNA sequence from the homologous tem-
plate DNA, and, after dissolution of the Holliday junc-
tions, the ends are ligated together [146].
Similarly to NHEJ, the involvement of HR in hyperther-

mic radiosensitization has been debated. Early studies in-
directly excluded HR as a sole target of 42–45 °C
hyperthermia [147], since rodent cell lines defective in
XRCC2 and XRCC3, important HR factors, were normally
radiosensitized by hyperthermia (43 °C) [80, 148], as were
HR-deficient chicken DT40 cells (44 °C) [147, 149]. How-
ever, more direct readouts of HR later showed that hyper-
thermia (>41 °C) does inhibit HR, in human and mouse
cells [150]. In particular, heat delays formation of IRIF by
key HR proteins RAD51 and BRCA2 and inhibits HR-
mediated gene targeting in mouse ES cells, possibly by in-
ducing robust but temporary degradation of BRCA2
[150–152]. This hyperthermia-induced HR deficiency is
enhanced by concomitant inhibition of HSP90 and can be
used to sensitize cells to inhibitors of Poly (ADP-ribose)
polymerase (PARP) [150, 153]. Heat (>41 °C) also inacti-
vates RPA [154], reduces the levels of nuclear MRE11



Fig. 1 Schematic overview of the effects of hyperthermia on DNA
repair factors BRCA1 [135, 160], BRCA2 [150], MRN complex [30, 37,
155–158], RPA [71, 154], ATM [35, 36, 43], ATR [67, 68], DNA-PK
[43, 133, 135], Ku70/80 [131, 132, 134, 135], H2AX [31, 37, 38], MDC1
[35] and 53BP1 [135]
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protein and disrupts the interactions between the mem-
bers of the MRN complex [155–158], which may be of
consequence for initiation and progression of HR [159].
Interestingly, a reduction of BRCA1 protein levels is also
seen upon heat exposure (42–44 °C) [135, 160] and
BRCA1 seems to protect cells from effects of heat, such
that overexpression of wild-type BRCA1 in cells decreases
their heat sensitivity and mutant BRCA1 cells are more
sensitive to treatment at 42 °C [160]. Additionally, the
temperature of 42.5 °C may inhibit the recruitment of
RAD51 to stalled replication forks [161].
Further evidence of targeting HR by hyperthermia

can be found in studies of hyperthermic sensitization to
various chemotherapeutic drugs. Nucleoside analogue
gemcitabine is incorporated into the DNA during
replication, leading to collapse of replication forks and
generation of DSBs that are mostly restored by HR
[148, 161, 162]. Hyperthermia (42.5 °C) inhibits the re-
cruitment of RAD51 and impairs HR repair at stalled
replication forks, thereby sensitizing cells to gemcita-
bine [161] (Table 1). HR is also involved in repair of
SSBs and DSBs induced by ionizing radiation and other
types of DNA damage, including cross-links induced by
platinum compounds or mitomycin C, and hyperther-
mia can sensitize cells to all these agents (Table 1).
However, multiple other pathways participate in repair
of these lesions (Table 1), obscuring the importance of
HR in the process.

Clinical perspective
The potential of hyperthermia to sensitize (cancer) cells
to DNA damaging agents (Table 1) has been obvious
for many decades. However, clear clinical benefits could
only be demonstrated much later, perhaps due to tech-
nical challenges related to the development of reliable
hyperthermia applicators, treatment planning and ad-
equate dosimetry [163–165]. The effectivity of hyper-
thermia combined with radiation has been demonstrated
in several randomized phase II/III trials for melanoma,
cervix, breast, head and neck cancer, showing a significant
enhancement in radiation effectivity without a significant
increase in toxicity [166–170]. Also, the combination of
hyperthermia and cisplatin or similar agents has been
tested in a number of phase II and some phase III trials.
Hyperthermia enhanced the effectiveness of mitomycin C
in phase III trials for bladder cancer [171, 172] and of eto-
poside, ifosfamide and doxorubicin for soft tissue sarco-
mas [173]. A review on Hyperthermic IntraPEritoneal
Chemotherapy (HIPEC) treatment for ovarian cancer
showed no increase of toxicity due to hyperthermia [174].
Reviews summarizing about 30 randomized hyperthermia
trials are given in [175–177]. An overview of the clinical
effectivity and toxicity of trimodality treatment schedules
comprising hyperthermia, radiation and cisplatin or
oxaliplatin was given by [178], listing 13 nonrandomized
phase I/II trials for breast, head and neck, cervix and
oesophagus cancer. Results showed that this form of tri-
modality treatment is feasible and effective with only
moderate toxicity. Also, multiple studies in recurrent cer-
vical cancer show that hyperthermia enhanced the uptake
and cytotoxicity of cisplatin without additional side effects
[19, 179–181]. Summarizing, hyperthermia has shown
very significant enhancement of the effectivity of both
radiotherapy and chemotherapy without increasing tox-
icity in various multi-modality settings. The multitude of
drug combinations and treatment modalities that show
positive effects in combination with hyperthermia seems
to reflect the multitude of DNA repair and other pathways
that are affected by heat.

Conclusions
Hyperthermia has been subject of investigations for nearly
half a century, yet its numerous effects on cells and tissues
still remain unclear. In particular, it is not well known
how heat interacts with DNA repair pathways, which is
highly relevant in clinical cancer treatment. It is apparent
from studies reviewed here that in the early years of
hyperthermia research many of major effects of hyperther-
mia on cells were observed, but mechanistic insight was
lacking due to limited understanding of cellular pathways,
including DDR. As this understanding deepened and new
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molecular biology tools became available in the 1990s and
2000s, the search for proteins and pathways targeted by
hyperthermia intensified. Major contributions were made
by studies that analysed hyperthermic sensitization in
DNA repair-deficient cells. However, results of these stud-
ies were generally interpreted under assumption that one
major pathway is responsible for the effects of heat on
DNA repair, leading to multiple conflicting hypotheses.
We now only begin to see how many facets of DDR are
disturbed, including direct effects on major DNA repair
factors (Fig. 1), damage signaling, checkpoints, cell cycle
progression and apoptosis.
Although difficult to study, these effects are highly bene-

ficial in clinical practice. By disturbing multiple DNA re-
pair pathways, hyperthermia sensitizes cells to a broad
range of DNA-damaging agents. Recent clinical trials
clearly demonstrated the benefits and safety of treatments
involving hyperthermia. Although much remains to be
discovered, hyperthermia is no longer the black box it
once was and it is bound, in the near future, to take more
central stage in clinical cancer treatment.
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