

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com

BMJ Open

Slow Release Oral Morphine versus Methadone for the Treatment of Opioid Use Disorder: A Systematic Review and Meta-Analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-025799
Article Type:	Research
Date Submitted by the Author:	09-Aug-2018
Complete List of Authors:	Klimas, Jan; BC Centre on Substance Use; University of British Columbia, Department of Medicine Gorfinkel, Lauren; BC Centre on Substance Use Giacommuzi, Salvatore; Universitätsklinik Innsbruck-Ambulanz für Abhängigkeitserkrankungen Ruckes, Christian; University Medical Center Mainz, Interdisciplinary Center Clinical Trials Socías, M. Eugenia; BC Centre on Substance Use; University of British Columbia, Department of Medicine Fairbairn, Nadia; BC Centre on Substance Use; University of British Columbia, Department of Medicine Wood, Evan; BC Centre on Substance Use; University of British Columbia, Department of Medicine
Keywords:	Opioid use disorder, Substance misuse < PSYCHIATRY, Substance use treatment, Oral morphine, meta-analysis
	·

SCHOLARONE™ Manuscripts

Slow Release Oral Morphine versus Methadone for the Treatment of Opioid Use Disorder: A Systematic Review and Meta-Analysis

Klimas, Jan^{1,3}, Gorfinkel, Lauren¹, Giacomuzzi, Salvatore⁵, Ruckes, Christian⁴, Socías, M. Eugenia^{1,2}, Fairbairn, Nadia^{1,2}, Wood, Evan^{1,2}

- 1. British Columbia Centre for Substance Use, 400-1045 Howe Street, Vancouver, BC, CANADA, V6Z 1Y6
- 2. Department of Medicine, University of British Columbia, St. Paul's Hospital, 608-1081 Burrard Street, Vancouver, BC, CANADA, V6Z 1Y6
- 3. School of Medicine, University College Dublin, Health Sciences Centre, Belfield, Dublin 4, Ireland
- 4. University Medical Center Mainz, Interdisciplinary Center Clinical Trials (IZKS), Langenbeckstraße 1 · D-55131 Mainz, Germany
- 5. Universitätsklinik Innsbruck-Ambulanz für Abhängigkeitserkrankungen, Anichstraße 35, 6020 Innsbruck, Austria

JK and LG contributed equally to this paper.

Send correspondence to: Jan Klimas, PhD, MSc

B.C. Centre on Substance Use University on British Columbia

400-1045 Howe Street, Vancouver, B.C., V6Z 1Y6

Canada

Tel: (778) 945-7616 **Fax:** (604) 806-9044

Email: jan.klimas@bccsu.ubc.ca

Running head: SROM for Opioid Use Disorder

Word Count: 3414

Tables: 1 Figures: 3

Revised: 8 Aug. 18

ABSTRACT

Objectives: To assess the efficacy of Slow release oral morphine (SROM) as a treatment for opioid use disorder.

Design: Systematic review and meta-analysis of randomized controlled trials.

Methods: We searched three electronic databases for randomized trials published up to May 2018 and reviewed reference lists of published studies. Data were pooled using a random-effects meta-analytic model.

Setting: All four trials were conducted in 17 outpatient secondary care centres.

Participants: Trials were included if their participants met the diagnostic criteria for opioid use disorder, with a treatment arm involving SROM.

Interventions: SROM versus Methadone

Primary and secondary outcome measures: Treatment retention, opioid use and craving.

Results: Among 1315 studies reviewed, four unique randomized trials met inclusion criteria (n = 471), and compared SROM with methadone. In the meta-analysis, we observed no significant differences between SROM and methadone in improving treatment retention (risk ratio [RR] = 0.98; 95% Confidence Interval [CI]: 0.94 - 1.02, p = 0.34), and heroin use (RR = 0.96; 95% CI: 0.61- 1.52, p = 0.86). Craving data was not amenable to meta-analysis but overall implied that SROM reduces heroin cravings to a greater extent than methadone (P < 0.0001, measured using a visual analogue scale; P = 0.010, measured using the heroin craving questionnaire). As well, results implied no significant differences between SROM and methadone on self-reported use of heroin, cocaine, or benzodiazepines. Available data implied no differences in adverse events.

Conclusions: Meta-analysis of existing randomized trials suggests SROM may be as effective in retaining patients in treatment and reducing heroin use as methadone while potentially resulting in less craving. While methadone is effective for many patients, these findings suggest SROM may provide benefits in addressing some of the limitations of methadone and the need to expand uptake and retention of individuals on opioid use disorder treatments.

Review registration: PROSPERO [CRD42018090782]

Word Count: 300

Keywords: opioid use disorder, substance use treatment, oral morphine, meta-analysis

Strengths and limitations of this study

- The first meta-analysis of slow release oral morphine.
- We included new studies that increase the validity of the study.
- We included previously unpublished data obtained from primary trials.
- A meta-analysis of craving and adverse events was not possible due to inconsistent reporting of outcome measures across trials

INTRODUCTION

Overdose is the dominant cause of untimely death among people with opioid use disorder, and in 2017, opioid ovrdose was declared a national public health emergency in the U.S. Approximately two million Americans have a diagnosed opioid use disorder,¹ and deaths due to opioid overdoses have nearly doubled since 2006, exceeding 46,000 in 2016.² In response, the past decade has witnessed an expansion of pharmaceutical interventions for OUD, including the opioid agonist therapies methadone and buprenorphine/naloxone. Opioid agonist therapy (OAT) is currently the first-line treatment for OUD recommended by the World Health Organization (WHO) and a number of federal health guidelines.³⁻⁵

While methadone and buprenorphine/naloxone are proven effective,^{6 7} they have a known limited ability to attract and retain patients in treatment. For instance, past studies have demonstrated that most individuals who overdose are not on agonist treatment at the time of death, and that, overall, agonist therapies remain sorely underutilised with only a fraction of eligible patients in U.S. accessing these therapies. While overall low rates of methadone- and buprenorphine/naloxone-use are partially due to poor access and limited service delivery, the side-effects (e.g., sweating, weight gain), and other limitations of these therapies, also result in low rates of patient retention once individuals initiate therapy. The issues of poor uptake and retention on OAT are particularly urgent in the context of elevated mortality among those not on OAT and the reported dramatic rise in mortality following OAT interruption, as well as increasing overdose rates as a result of the emergence of highly toxic fentanyl analogues in the illicit drug markets of many settings.

In light of increasing recognition that additional forms of opioid agonist therapy are necessary for some persons with OUD, interest in slow release oral morphine (SROM) as an OUD treatment agent has steadily grown.⁸ ¹³ A 2013 review by the Cochrane Collaboration reviewed the literature for SROM as treatment for OUD. However, the review was ultimately unable to draw definite conclusions regarding

effectiveness, identifying only three high quality clinical trials.¹⁴ However, some unpublished data were not included in this review, and since the time of its publication, a number of new studies investigating SROM have emerged, including a large international randomized controlled trial from Switzerland and Germany.¹⁵ In light of the known limitations of methadone and buprenorphine/naloxone, these new data on the efficacy of SROM, as well as the need to identify viable OAT options that may be more attractive to patients in the context of the current opioid-related public health emergency, the present systematic review and meta-analysis was conducted to assess the efficacy of slow-release oral morphine as a treatment for opioid use disorder as measured by treatment retention, heroin use, and opioid craving.

METHODS

Data sources and searches

In this report, we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). ¹⁶ Three electronic databases were searched to obtain relevant trials published in the past five years since the date of search of the Cochrane Collaboration review (up to April 2018): the Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE. These databases were searched by combining selected MeSH terms and free-text terms related to OUD and SROM. We also searched the following electronic registers for ongoing trials: ClinicalTrials.gov (www.clinicaltrials.gov), World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (http://apps.who.int/trialsearch/), Current Controlled Trials (www.controlled-trials.com/), EU Clinical Trials Register (www.clinicaltrialsregister.eu), the Italian Medicines (www.agenziafarmaco.gov.it/en), and Trials (www.trialsjournal.com). References of all relevant papers were reviewed to identify further studies of relevance. Authors of potentially relevant studies were contacted for further unpublished data.

Study Selection

All English-language, scientifically peer-reviewed studies were eligible for inclusion. Studies were included if they met the following criteria: 1) studies were scientifically peer-reviewed; 2) they employed RCT methods (with no requirement for blinding); 3) participants met diagnostic criteria for OUD as defined in the DSM-IV or DSM-V manuals; 4) treatment was defined as SROM with or without an accompanying psychosocial intervention; and 5) control conditions were defined as medication-only, regardless of other concurrent treatment; and 6) outcomes assessed included treatment retention, and/or efficacy (i.e., any measure of change in opioid use).

Outcome Measures

The following outcomes were assessed: 1) Treatment retention, measured using dropout rates; 2) Efficacy, defined as the number of urine drug tests positive for illicit substances (incl. metabolites 6-Monoacetylmorphine [6-MAM] and 6-acetylcodeine [6-A-cod]) during the longest follow-up period in each study (or final weeks of pre-switch phase in case of cross-over trials); 3) Craving reduction, assessed through subjective reduction of scores on opioid-craving scales specific to each study. These outcomes were often assessed multiple times throughout the study period and measured across varied time intervals ranging from 1-24 weeks, depending on study length. Other, less common outcomes, including Quality of Life measures, satisfaction, physical complaints, and mental health were also reported. The level of statistical significance to assess differences between treatment and control groups was set *a priori* at p < 0.05.

It is noteworthy that with the new terminology changes to the Diagnostic Statistical Manual (DSM-V), opioid abuse and dependence have been combined into opioid use disorder, which can be labeled as mild, moderate, or severe. Although imprecise, opioid abuse can equate to moderate or severe

OUD, while opioid dependence is similar to the mild subtype. 17 18

Data extraction

All citations identified by search were independently screened based on title and abstract by two reviewers (LG, AA). Each potentially relevant study was then reviewed in full text and assessed for all inclusion criteria. Any disagreements were resolved by discussion among reviewers (LG, AA) and additional investigators (JK, EW). Relevant data from eligible articles (i.e., socio-demographics, type of interventions, outcomes, etc.) were then extracted.

Quality Assessment

Study quality was assessed according to the criteria indicated in the Cochrane Handbook for Systematic Reviews of Interventions.¹⁶ Each study was assessed for risk of bias in random sequence generation and allocation concealment (i.e., selection bias). Blinding of participants and personnel (i.e., performance bias) and of outcome assessment (i.e., detection bias; objective and subjective outcomes were combined) were measured; however, since blinding was considered unlikely to affect study outcome in this context,¹⁴ open-label studies were included. Incomplete outcome data (i.e., attrition bias) was recorded for each eligible study. Each category of bias was assigned a rating of low, high or unclear risk using protocols from the Cochrane Handbook.

Data Synthesis and Analysis

For the meta-analysis, dichotomous outcome measures (treatment retention, continuous abstinence) were analysed by calculating the risk ratio (RR) for each trial, with uncertainty in each result expressed via 95% confidence intervals (CIs). Continuous outcomes, such as craving, were analysed by calculating the mean difference (MD) between experimental and control groups.

Information on missing data was collected where possible from study authors. If study authors were unable to supply this information, missing data were obtained or calculated from values in the primary

studies according to suggested procedures in the Cochrane Handbook for Systematic Reviews of Interventions.¹⁶

Given the expected heterogeneity of results among studies due to differences in population and intervention-type, we employed a random-effects meta-analytic model. The I-squared (I²) statistic was employed to test the presence of heterogeneity between trials, and a sensitivity analysis was undertaken to assess the impact of particular high-risk trials.

RESULTS

We considered all peer-reviewed articles and identified 1315 potentially eligible studies published since the date of search in the previous Cochrane Collaboration review. After removal of duplicates and the application of inclusion criteria (Figure 1), 993 abstracts were screened and only eight reports – out of the 13 full texts reviewed – met all inclusion criteria. Four reports were excluded due to not meeting inclusion criteria, and one was excluded because the study protocol paper did not report outcome data. Because some trials were the subject of multiple reports, only four unique studies (n = 471) were eligible for quantitative synthesis. We considered data from all available high-quality trials as well as previously unpublished data from trial authors. One study did not report data of interest for this review other than treatment retention.

All participants in the included studies met the DSM-IV or V diagnostic criteria for OUD; mean age 33.1 years; of the three studies that reported on gender, ¹⁵ ²² ²³ 24.4% were female. The mean duration of trials was 18 weeks (range 11 to 24 weeks). The mean dose of SROM provided to participants was 506.8 mg/day, and the mean dose of methadone was 67.2 mg/day. All four studies were conducted in an outpatient setting, and assessed SROM *vs.* methadone, with only one study by Giacomuzzi et al.²³

explicitly stating psychosocial support. This study also assessed buprenorphine in comparison with SROM and methadone.²³

Quality assessments for each study are presented in Table 1. Three out of four studies were found to be at low risk for selection bias – the final study's selection bias was agreed to be unclear, due to an unspecified randomization technique.²³ There was mixed-risk of bias relating to blinding of participants and outcome assessments; however, as noted by Ferri et al., objective outcomes -such as retention and urine drug screens- are unlikely to be impacted by a lack of blinding.¹⁴ Three of the four included RCTs were therefore open-label.¹⁵ ²³ ²⁴ All four studies were found to be at low risk for attrition bias. Additionally, differences in our risk of bias assessment and the previous Cochrane review were also identified.¹⁴ For the trial by Giacomuzzi et al.,²³ we assessed blinding of outcome assessment to be of high risk while the previous review assigned unclear risk. Blinding of outcome assessment was not possible because the treating physician could terminate patients if three consecutive urine tests were found positive for 6-MAMmam (data from Dr Giacomuzzi).

Treatment retention was assessed via the dropout rate in all studies. Unpublished data regarding treatment retention was obtained from the authors of one study.²³ With respect to measures of opioid use, the number of participants with urine drug tests positive for illicit substances was reported in two studies.^{15 24} Unpublished data on positive urine tests was obtained from one study.²³ Measures of craving using various rating scales were used in three studies,^{15 22 24} though one did not report the necessary outcome data for meta-analysis to be performed.²²

Systematic Review Results

A 2013 Cochrane review by Ferri et al. described three trials included in the present analysis.¹⁴ Clark et al.,²⁴ and Eder et al.,²² both performed crossover, randomized controlled trials, wherein participants with OUD were randomized to take either SROM or methadone for the first half of the trial period, then

subsequently switched to the other treatment for the second half of the trial period. According to the published conference abstract and M.D. thesis, Clark et al., ²⁶ conducted a 12-week open-label crossover study that required patients to be taking methadone prior to enrolling (n=9). The authors found SROM to have lower retention than methadone; however, no significant differences were found in regards to heroin use (6-Monoacetylmorphine [6-MAM]) in the last four weeks of treatment, use of other drugs over the study period, dollars spent on heroin in the final week of treatment, mental health and social functioning (as measured by the BASIS-32 Behavior and Symptom Identification Scale), self-reported days of heroin use, or heroin cravings. SROM was found to yield significantly lower scores on subjective opiate withdrawal (p < 0.001). Eder et al. conducted a 14-week double-blind crossover study that required participants not to be on any maintenance treatment prior to enrolling in the trial (n=55). No significant differences were found between SROM and methadone on retention rates or illicit drug-use. However, SROM was associated with significantly fewer physical complaints (p < 0.05), less craving for heroin, cocaine and alcohol (p < 0.05), lower depression scores (p < 0.001), and lower anxiety scores (p < 0.01). Giacomuzzi et al.,²³ conducted a 24-week, open-label, randomized controlled trial, wherein participants who had OUD and who were previously on methadone (n=120) were randomized to take either SROM, buprenorphine, or to continue methadone treatment. These participants were then compared to an equal number of patients being newly treated for OUD, and thus taking no OUD pharmacotherapy (n=120). Therefore, a total N = 240 was used for this study throughout the manuscript. Overall, Giacomuzzi et al. found SROM to be associated with significantly lower consumption of heroin (p < 0.001) and cocaine (p <0.001); however, scores on Quality of Life measures such as finances (p < 0.01), family (p < 0.05), and overall satisfaction (p < 0.05) were significantly lower than for methodone or buprenorphine. Analyses of physical complaints on each treatment yielded mixed results.

Beck et al..¹⁵ conducted a 22-week, randomized, open-label, cross-over study of patients maintained on methadone in Switzerland and Germany (n=157), disseminated via four study reports. First, a non-inferiority study found no significant differences between SROM and methadone in treatment retention (period 1: p = 0.50, period 2: p = 0.19) or incidence of adverse events (p = 0.62). The proportion of heroin-positive urine drug screens (6-Monoacetylmorphine [6-MAM] and 6-acetylcodeine [6-A-cod]) was found to be significantly higher on SROM (p < 0.001); however, this difference fell within a prespecified inferiority margin of 10%, leading the authors to confirm the non-inferiority of SROM compared to methadone. SROM was also found to have significant dose-dependent effects on the number of positive urine drug screens, with higher doses yielding fewer positive screens (p < 0.05). A second study similarly confirmed the non-inferiority of SROM to methadone;²⁷ SROM was associated with higher treatment satisfaction (p < 0.001), and fewer adverse mental symptoms (p < 0.01). No significant differences were found between number of self-reported days of heroin-, cocaine-, benzodiazepine-, and alcohol-use between SROM and methadone (p = 0.48-0.99). A third study reported that heroin-craving scores (as measured by visual analogue scale and brief craving questionnaire) were significantly lower on SROM than on methadone (p < 0.0001), and that cocaine-craving were statistically similar between the two treatments (p = 0.54). Finally, a fourth study reported on a 24-week extension phase, where all subjects in the initial cross-over trial either continued or were placed back on SROM.²⁰ This report again found that SROM was associated with fewer cravings for heroin (p < 0.01) and statistically similar selfreported drug use (p = 0.26-0.54); however, as no control group was present, data from the extension phase was not included in the analyses of this review.

Meta-analysis Results

The meta-analytic results of SROM vs. methadone are presented in Figure 2. As one included study was published as a thesis and conference abstract, and contained a small sample size (n = 24), a

sensitivity analysis was run wherein this study's data was excluded. This exclusion did not change the results (Figures 2b and 2d). It was not possible to convert all data reported on outcomes into meta-analysis due to variance in reported data. Because continuous outcomes, such as craving, were reported in less than two studies, a meta-analysis was not performed.

Treatment retention

Acceptability of treatment was measured via participant dropout. Dropouts were assessed in four studies, $^{15\,22-24}$ with 471 participants [note: unpublished data were sought and obtained from two studies]. 15 Retention was assessed for the entire duration of the trials. As shown in Figure 2c, the results of the meta-analysis suggest that the mean difference in dropouts was not statistically significant between participants in the SROM vs. methadone (RR = 0.98; 95%CI 0.94 - 1.02, p = 0.34), while low heterogeneity between studies was observed.

Efficacy of SROM

As shown in Figure 2a, a three-study meta-analysis, 15 23 24 that included data from 406 participants showed no difference in effectiveness between SROM and methadone in reducing opioid use (RR = 0.96; 95% CI: 0.61- 1.52, p = 0.86). Because other measures of SROM efficacy (i.e., craving) were not reported across all studies or were assessed using different statistical methods, they were not amenable to investigation via meta-analysis. However, two studies indicated that SROM reduces cravings for heroin more than methadone (P < 0.0001, measured using a visual analogue scale; P = 0.010, measured using the heroin craving questionnaire - brief), and that SROM produces no significant differences in self-reported use of illicit drugs. 15 19 24

DISCUSSION

The results of the present systematic review and meta-analysis indicate that current evidence suggests that SROM is as efficacious in the treatment of OUD as methadone. Building on an earlier review, ¹⁴ and with

additional data from more recent trials as well as unpublished data, we were able to pool data on two outcomes: opioid use and retention in treatment. Here, in the meta-analysis, we observed no significant differences between SROM and methadone in improving treatment retention and heroin use. While not amenable to meta-analysis, results from two studies indicated that SROM reduces cravings for heroin more than methadone. These findings are relevant to recent high-level recommendations suggesting the need to consider repurposing existing medications for the treatment of opioid use disorder.²⁸

Currently, SROM is available as an alternative to methadone in a range of European jurisdictions, ^{29 30} as well as in Canada. ⁴ Our findings concur with the new Canadian National Guidelines on the treatment of OUD, which recommend SROM as a treatment option, and with the findings from earlier systematic reviews though none of them had sufficient data for the calculation of the pooled effects for treatment retention and heroin use. ⁴ ^{13 31} In particular, our analyses considered new unpublished data that were not included in past reviews, as well as data from a new trial from Switzerland and Germany, ¹⁵ thus confirming the apparent non-inferiority of SROM compared to methadone. Although a number of gaps in our understanding of SROM persist (for instance, in the absence of mortality and detailed safety data), the current review underscores the clinical utility and potential for scaling up SROM as an agonist treatment for OUD, relevant beyond European and Canadian settings.

Limitations

The results reported in the present systematic review and meta-analysis are subject to the several limitations. First, the body of evidence regarding the efficacy of SROM in managing OUD is still relatively small. As such, additional research will help to illuminate the role that SROM can play in meeting the needs of specific patient subgroups. For instance, the relative ability of SROM to engage and retain patients with opioid use disorder in the context of the fentanyl epidemic. Second, the methodological quality of the included RCTs was low-to-moderate and the sample sizes were modest. In

terms of comparing SROM to buprenorphine/naloxone, because of the latter's improved safety profile, ¹² the recently published Canadian guideline recommends staging therapies with buprenorphine/naloxone recommended for first line therapy with methadone or SROM being offered to those unsuccessful with first line treatment.⁴ As such, head-to-head comparisons of buprenorphine to SROM may not be warranted. Third, some outcome measures were not uniformly reported across studies and, therefore, were difficult to combine in a meta-analysis. Heroin use was amenable to meta-analysis as it was reported in a consistent manner by three studies. ¹⁵ ²² ²⁴ Fourth, the analysis used some outcome data from the period before cross-over occurred in trials. Therefore, these results are based off of short durations of six to 12 weeks. Finally, with respect to quality, we identified a risk of bias related to inconsistent blinding of participants and unclear blinding of outcomes across studies. Differences in study design and duration were also present. Given these multiple potential sources of possible bias, SROM should remain an area of future study as highlighted above.

CONCLUSIONS

The present meta-analysis demonstrates the consistent pattern in clinical trials evaluating the impact of SROM. Because most OUD patients do not access agonist therapies, ¹⁰ and since poor retention in methadone has been linked to heightened mortality and other health outcomes, ¹² SROM may have a promising role in OUD treatment, especially given methadone's known side effect profile, the likely attractiveness of SROM to some patients and the apparent reduction in craving when on SROM in comparison to methadone. ⁸ ²³ Unless future trials report contradictory findings, the public health crisis presented by illicitly manufactured fentanyl, ² and the known limitations of existing agonist therapies, ¹² ³¹ these data should compel public health agencies and decision makers to support the expanded use and investigation of SROM as a therapeutic tool among people undergoing treatment for OUD.

Acknowledgments:

We thank Ahmed Adam for assistance with research.

Contributorship statement

JK and EW conceived the idea for and designed the study. JK and LG conducted the research and wrote the first draft of the manuscript. GS, CR, EMS, NF contributed to the study design, interpretation of the findings and preparation of the manuscript. All authors reviewed and approved the final version of the manuscript. Ahmed Adam screened the titles, fulltexts and assessed risk of bias in the included studies.

Competing interests

None

Funding

The study was supported by the US National Institutes of Health (R25DA037756). This research was undertaken, in part, thanks to funding from the Canada Research Chairs program through a Tier 1 Canada Research Chair in Inner City Medicine that supports Dr. Evan Wood. A European Commission grant (701698) supported Dr. Jan Klimas. The study was also supported by the Canadian Institutes of Health Research through the Canadian Research Initiative on Substance Misuse (SMN–139148) - and a Foundation Grant to Dr. Evan Wood. We thank Ahmed Adam for help with searching and screening. Dr. M. Eugenia Socías is supported by Michael Smith Foundation for Health Research (MSFHR) and Canadian Institutes of Health Research (CIHR) fellowship awards. Dr. Nadia Fairbairn is supported by a Michael Smith Foundation for Health Research/St. Paul's Foundation Scholar Award.

Data sharing statement

Not applicable.

BMJ Open Page 16 of 25

Table 1: Characteristics of included studies

Study/					Risk Rating		
Country	Design	Participants	Interventions	Outcomes	A B C D		
Clark 2002 Australia	Cross-over, Randomized controlled trial, Open-label duration: 12 weeks	N=11 Mean age: 36.5 years Use of heroin: once per week Heroin use disorder and were on methadone	(1) Morphine Flexible starting dose; increased by 50 mg per day following transfer, never exceeded 800 mg/day (2) Methadone Flexible starting dose; reduced by 12 mg per day following transfer	Retention Severity of opiate withdrawal symptoms Heroin or other substance use Severity of dependence Mental health/social functioning	• • • •		
Eder 2005 Austria	Cross-over, Randomized double blind, double-dummy duration: 14 weeks	N=64 Mean age: 28 years Male: 75% Opioid use disorder (excluded patients already receiving maintenance therapy)	(1) Morphine Starting dose 200 mg/day increased to 800 mg/day by week 1. (2) Methadone Starting dose 40 mg/day increased to 100mg/day by week 1.	Retention Use of illicit substances based on urinalysis Extent of drug cravings Withdrawal symptoms General well being Safety was assessed on the basis of adverse events and clinical and physical examination QoL measured by the Lancashire Quality of Life Profile	• • • •		
Giacomuzzi 2006 Austria	Randomized controlled trial Open-label duration: 24 weeks	N=120 Mean age: 27 years; Male: 57% Opioid use disorder and were on methadone	(1) Morphine Maintenance dose dependent on severity of withdrawal symptoms (2) Methadone Maintenance dose dependent on severity of withdrawal symptoms (3) Buprenorphine Maintenance dose dependent on severity of withdrawal symptoms	Retention (from personal correspondence) QoL measured by the Lancashire Quality of Life Profile Withdrawal symptoms measured by the Opioid Withdrawal Scale	• • • •		
Beck 2014 Switzerland and Germany	Cross-over Randomized controlled trial, Open-label, Duration: 22 weeks	N=276 Mean age: 38.1 Male: 81.5% Opioid dependence and were on methadone use disorder	(1) Methadone flexible dosing. Cross over at 11 weeks to morphine (2) Morphine flexible dosing. Cross over at 11 weeks to methadone	Retention (24 weeks) Proportion of positive urine samples per patient (12 weeks) Per treatment for co-consumption of heroin Craving heroin Craving cocaine Self-reported drug use Mental health problems (SCL-27) Positive urine samples Adverse events	• • • •		

Risk Rating Legend:

A: Random sequence generation (selection bias); B: Allocation concealment (selection bias); C: Blinding of participants and personnel (performance bias); D: Blinding of outcome assessment (detection bias); E: Incomplete outcome data (attrition bias); Amber Circle: Unclear

REFERENCES

- 1. Han B, Compton WM, Jones CM, et al. Nonmedical Prescription Opioid Use and Use Disorders Among Adults Aged 18 Through 64 Years in the United States, 2003-2013. *JAMA* 2015;314(14):1468-78. doi: 10.1001/jama.2015.11859 [published Online First: 2015/10/16]
- NIDA. Overdose Death Rates: National Institute on Drug Abuse; September 2017 [Available from: https://www.drugabuse.gov/related-topics/trends-statistics/overdose-death-rates accessed May 23, 2018.
- 3. (WHO); WHO. Guidelines for the psychosocially assisted pharmacological treatment of opioid dependence. Geneva, Switzerland, 2009.
- 4. Bruneau J, Ahamad K, Goyer M-È, et al. Management of opioid use disorders: a national clinical practice guideline. *Canadian Medical Association Journal* 2018;190(9):E247-E57. doi: 10.1503/cmaj.170958
- 5. (ASAM); ASoAM. The national practice guideline for the use of medications in the treatment of addiction involving opioid use, 2015.
- 6. Mattick RP, Breen C, Kimber J, et al. Methadone maintenance therapy versus no opioid replacement therapy for opioid dependence. *Cochrane database of systematic reviews* (Online) 2009(3):CD002209. doi: 10.1002/14651858.CD002209.pub2 [published Online First: 2009/07/10]
- 7. Mattick RP, Breen C, Kimber J, et al. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. *Cochrane database of systematic reviews*(Online) 2014;2:CD002207. doi: 10.1002/14651858.CD002207.pub4 [published Online First: 2014/02/07]

- 8. Socías M, Wood E. Evaluating slow-release oral morphine to narrow the treatment gap for opioid use disorders. *Annals of Internal Medicine* 2018;168(2):141-42. doi: 10.7326/M17-2373
- 9. Darke S, Zador D. Fatal heroin 'overdose': a review. *Addiction* 1996;91(12):1765-72. [published Online First: 1996/12/01]
- 10. Volkow ND, Frieden TR, Hyde PS, et al. Medication-assisted therapies--tackling the opioid-overdose epidemic. *The New England journal of medicine* 2014;370(22):2063-6. doi: 10.1056/NEJMp1402780 [published Online First: 2014/04/25]
- 11. Farre M, Mas A, Torrens M, et al. Retention rate and illicit opioid use during methadone maintenance interventions: a meta-analysis. *Drug Alcohol Depend* 2002;65(3):283-90. [published Online First: 2002/02/14]
- 12. Sordo L, Barrio G, Bravo MJ, et al. Mortality risk during and after opioid substitution treatment: systematic review and meta-analysis of cohort studies. *BMJ* 2017;357 doi: 10.1136/bmj.j1550
- 13. Jegu J, Gallini A, Soler P, et al. Slow-release oral morphine for opioid maintenance treatment: a systematic review. *Br J Clin Pharmacol* 2011;71(6):832-43. doi: 10.1111/j.1365-2125.2011.03923.x [published Online First: 2011/01/27]
- 14. Ferri M, Minozzi S, Bo A, et al. Slow-release oral morphine as maintenance therapy for opioid dependence. *Cochrane Database of Systematic Reviews* 2013(6) doi: 10.1002/14651858.CD009879.pub2
- 15. Beck T, Haasen C, Verthein U, et al. Maintenance treatment for opioid dependence with slow-release oral morphine: a randomized cross-over, non-inferiority study versus

- methadone. *Addiction* 2014;109(4):617-26. doi: 10.1111/add.12440 [published Online First: 2013/12/07]
- 16. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ* 2011;343:d5928. doi: 10.1136/bmj.d5928
- 17. Substance-Related and Addictive Disorders. American Psychiatry Association: American Psychiatric Publishing., 2013.
- 18. Compton WM, Dawson DA, Goldstein RB, et al. Crosswalk between DSM-IV dependence and DSM-5 substance use disorders for opioids, cannabis, cocaine and alcohol. *Drug and alcohol dependence* 2013;132(1):387-90.
- 19. Falcato L, Beck T, Reimer J, et al. Self-reported cravings for heroin and cocaine during maintenance treatment with slow-release oral morphine compared with methadone: a randomized, crossover clinical trial. *J Clin Psychopharmacol* 2015;35(2):150-7. doi: 10.1097/JCP.0000000000000088 [published Online First: 2015/02/14]
- 20. Hammig R, Kohler W, Bonorden-Kleij K, et al. Safety and tolerability of slow-release oral morphine versus methadone in the treatment of opioid dependence. *J Subst Abuse Treat* 2014;47(4):275-81. doi: 10.1016/j.jsat.2014.05.012 [published Online First: 2014/07/30]
- 21. Winklbaur B, Jagsch R, Ebner N, et al. Quality of life in patients receiving opioid maintenance therapy. A comparative study of slow-release morphine versus methadone treatment. *Eur Addict Res* 2008;14(2):99-105. doi: 10.1159/000113724 [published Online First: 2008/03/13]
- 22. Eder H, Jagsch R, Kraigher D, et al. Comparative study of the effectiveness of slow-release morphine and methadone for opioid maintenance therapy. *Addiction* 2005;100(8):1101-9. doi: 10.1111/j.1360-0443.2005.001128.x [published Online First: 2005/07/27]

- 23. Giacomuzzi S, Kemmler G, Ertl M, et al. Opioid addicts at admission vs. slow-release oral morphine, methadone, and sublingual buprenorphine maintenance treatment participants. *Subst Use Misuse* 2006;41(2):223-44. doi: 10.1080/10826080500391845 [published Online First: 2006/01/06]
- 24. Clark N KK, Lintzeris N, Ritter A, Whelan G. A randomised trial of once-daily slow-release oral morphine versus methadone for heroin dependence. Drug and Alcohol Dependence, 2002:Suppl 1:S33.
- 25. Verthein U, Beck T, Haasen C, et al. Mental symptoms and drug use in maintenance treatment with slow-release oral morphine compared to methadone: Results of a randomized crossover study. *European Addiction Research* 2015;21(2):97-104.
- 26. Clark NC. Expanding the Options for the Treatment of Heroin Dependence with Oral Supervised Opioid Substitution Therapy: LAAM, Buprenorphine and Slow Release Oral Morphine as Alternatives to Methadone. University of Melbourne, Department of Medicine, St Vincent's Hospital, 2006.
- 27. Verthein U, Beck T, Haasen C, et al. Mental symptoms and drug use in maintenance treatment with slow-release oral morphine compared to methadone: results of a randomized crossover study. *Eur Addict Res* 2015;21(2):97-104. doi: 10.1159/000368572 [published Online First: 2014/11/28]
- 28. Volkow ND, Collins FS. The Role of Science in Addressing the Opioid Crisis. *New England Journal of Medicine* 2017;377(4):391-94. doi: 10.1056/NEJMsr1706626
- 29. Cooper TE, Chen J, Wiffen PJ, et al. Morphine for chronic neuropathic pain in adults.

 *Cochrane database of systematic reviews (Online) 2017;5:CD011669. doi: 10.1002/14651858.CD011669.pub2 [published Online First: 2017/05/23]

- 30. EMCDDA. Year of introduction of methadone maintenance treatment, high-dosage buprenorphine treatment, heroin-assisted treatment, slow-realease morphine and Suboxone Lisbon: European Monitoring Centre for Drugs and Drug Addiction; 2009

 [Available from: http://www.emcdda.europa.eu/stats09/hsrtab1 accessed April 13th 2018.
- 31. Sharma A, Kelly SM, Mitchell SG, et al. Update on Barriers to Pharmacotherapy for Opioid Use Disorders. *Curr Psychiatry Rep* 2017;19(6):35. doi: 10.1007/s11920-017-0783-9 [published Online First: 2017/05/21]
- 32. Luty J, O'Gara C, Sessay M. Is methadone too dangerous for opiate addiction? *BMJ* 2005;331(7529):1352-3. doi: 10.1136/bmj.331.7529.1352 [published Online First: 2005/12/13]

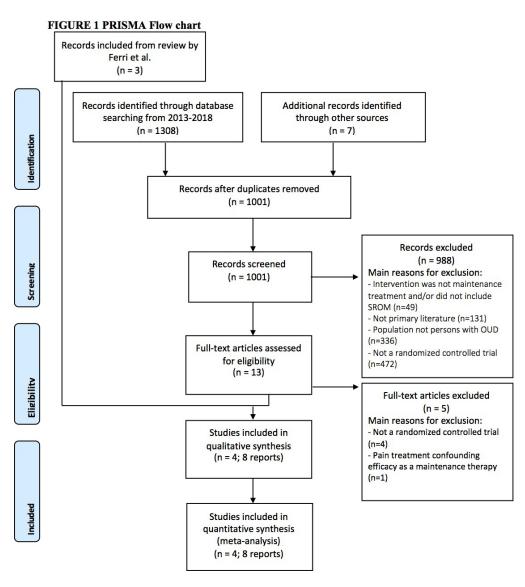
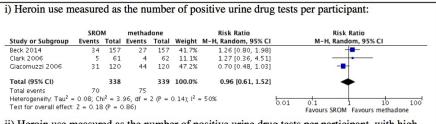



Figure 1 PRISMA Flow chart

189x208mm (150 x 150 DPI)

Figure 2a. Forest plot of the effects of slow release oral morphine (SROM) on heroin use as measured by urine drug tests among persons with opioid use disorders in randomized controlled trials; CI: confidence interval; ITT population.

ii) Heroin use measured as the number of positive urine drug tests per participant, with high-risk study excluded:

methadone

Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Beck 2014	34	157	24	157	48.0%	1.42 [0.88, 2.27]	+
Clark 2006	5	61	4	62	0.0%	1.29 [0.33, 5.07]	100 No.
Giacomuzzi 2006	31	120	44	120	52.0%	0.70 [0.48, 1.03]	-
Total (95% CI)		277		277	100.0%	0.98 [0.50, 1.96]	•
Total events	65		68				
Heterogeneity: Tau2 =	0.20; Ch	$ni^2 = 5$.	08, df =	1 (P =	0.02); 12 :	= 80%	0.01 0 1 10 100
Test for overall effect:	Z = 0.04	1 (P = 0).97)				Favours [experimental] Favours [control]

Risk Ratio

Risk Ratio

Figure 2b. Forest plot of the effects of slow release oral morphine (SROM) on retention in treatment among persons with opioid use disorders in randomized controlled trials; CI: confidence interval; ITT population.

iii) Retention in treatment at the end of the trial (or first period in case of cross-over trials):

	SRO	М	methad	lone		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Beck 2014	226	264	233	260	33.1%	0.96 [0.90, 1.02]	•
Clark 2006	9	11	10	10	1.8%	0.83 [0.60, 1.14]	-+
Eder 2005	56	61	55	59	15.8%	0.98 [0.89, 1.09]	+
Giacomuzzi 2006	40	40	40	40	49.3%	1.00 [0.95, 1.05]	•
Total (95% CI)		376		369	100.0%	0.98 [0.94, 1.02]	
Total events	331		338				
Heterogeneity: Tau2 =	0.00; Ch	$ni^2 = 3$.	66, df =	3 (P =	0.30); 12 =	= 18%	0.01 0.1 1 10 100
Test for overall effect	Z = 0.95	(P = 0	0.34)				0.01 0.1 1 10 100 Favours SROM Favours methadone

iv) Retention in treatment at the end of the trial (or first period in case of cross-over trials), with high-risk study excluded:

	SRO	M	methad	lone		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Clark 2006	9	11	10	10	0.0%	0.18 [0.01, 4.27]		
Beck 2014	226	264	233	260	32.6%	0.96 [0.90, 1.02]	•	
Eder 2005	56	61	55	59	14.2%	0.98 [0.89, 1.09]	+	
Giacomuzzi 2006	40	40	40	40	53.2%	1.00 [0.95, 1.05]	•	
Total (95% CI)		365		359	100.0%	0.98 [0.94, 1.02]		
Total events	322		328					
Heterogeneity: Tau2 =	0.00; Ch	$hi^2 = 2$.	27, df =	2 (P =	0.32); 12 =	= 12%	0.01 0.1 10	100
Test for overall effect:	Z = 0.85	(P = 0).40)				Favours [experimental] Favours [control]	100

Forest plot of the effects of slow release oral morphine (SROM)

167x225mm (150 x 150 DPI)

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4-5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	2
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	7

Page 25 of 25 **BMJ** Open

43

PRISMA 2009 Checklist

		Page 1 of 2					
Section/topic	#	# Checklist item					
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).					
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.					
RESULTS							
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8				
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Table 1				
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Table 1				
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Figure 2				
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Figure 2				
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).					
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).					
DISCUSSION							
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	12				
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	13				
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	14				
FUNDING	1						
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	15				

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 42 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

BMJ Open

Slow Release Oral Morphine versus Methadone for the Treatment of Opioid Use Disorder: A Systematic Review and Meta-Analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-025799.R1
Article Type:	Research
Date Submitted by the Author:	12-Dec-2018
Complete List of Authors:	Klimas, Jan; BC Centre on Substance Use; University of British Columbia, Department of Medicine Gorfinkel, Lauren; Columbia University Giacomuzzi, Salvatore; Universitätsklinik Innsbruck-Ambulanz für Abhängigkeitserkrankungen Ruckes, Christian; University Medical Center Mainz, Interdisciplinary Center Clinical Trials Socías, M.; BC Centre on Substance Use Fairbairn, Nadia; BC Centre on Substance Use; University of British Columbia, Department of Medicine Wood, Evan; BC Centre on Substance Use; University of British Columbia, Department of Medicine
Primary Subject Heading :	Addiction
Secondary Subject Heading:	Mental health
Keywords:	Opioid use disorder, Substance misuse < PSYCHIATRY, Substance use treatment, Oral morphine, meta-analysis

Slow Release Oral Morphine versus Methadone for the Treatment of Opioid Use Disorder: A Systematic Review and Meta-Analysis

Klimas, Jan^{1,3}, Gorfinkel, Lauren¹, Giacomuzzi, Salvatore⁵, Ruckes, Christian⁴, Socías, M. Eugenia^{1,2}, Fairbairn, Nadia^{1,2}, Wood, Evan^{1,2}

- 1. British Columbia Centre for Substance Use, 400-1045 Howe Street, Vancouver, BC, CANADA, V6Z 1Y6
- 2. Department of Medicine, University of British Columbia, St. Paul's Hospital, 608-1081 Burrard Street, Vancouver, BC, CANADA, V6Z 1Y6
- 3. School of Medicine, University College Dublin, Health Sciences Centre, Belfield, Dublin 4, Ireland
- 4. University Medical Center Mainz, Interdisciplinary Center Clinical Trials (IZKS), Langenbeckstraße 1 · D-55131 Mainz, Germany
- 5. Universitätsklinik Innsbruck-Ambulanz für Abhängigkeitserkrankungen, Anichstraße 35, 6020 Innsbruck, Austria

JK and LG contributed equally to this paper.

Send correspondence to: Jan Klimas, PhD, MSc

B.C. Centre on Substance Use University on British Columbia

400-1045 Howe Street, Vancouver, B.C., V6Z 1Y6

Canada

Tel: (778) 945-7616 **Fax:** (604) 806-9044

Email: jan.klimas@bccsu.ubc.ca

Running head: SROM for Opioid Use Disorder

Word Count: 3868

Tables: 1 Figures: 3

Revised: 8 Dec. 18

ABSTRACT

Objective To assess the efficacy of Slow release oral morphine (SROM) as a treatment for opioid use disorder.

Design Systematic review and meta-analysis of randomized controlled trials (RCT).

Data sources Three electronic databases were searched through May 1st, 2018: the Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE. We also searched the following electronic registers for ongoing trials: ClinicalTrials.gov, World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP), Current Controlled Trials, and the EU Clinical Trials Register.

Eligibility criteria for selecting studies We included RCTs of any duration, assessing the effect of SROM on measures of treatment retention, heroin use and craving in adults who met the diagnostic criteria for opioid use disorder.

Data extraction and synthesis Two independent reviewers extracted data and assessed risk of bias. Data were pooled using the random-effects model and expressed as Risk Ratios (RR) or mean differences (MDs) with 95% CIs. Heterogeneity was assessed (chi-squared statistic) and quantified (I² statistic) and a sensitivity analysis was undertaken to assess the impact of particular high-risk trials.

Results Among 1315 studies reviewed, four unique randomized trials met inclusion criteria (n = 471), and compared SROM with methadone. In the meta-analysis, we observed no significant differences between SROM and methadone in improving treatment retention (risk ratio [RR] = 0.98; 95% Confidence Interval [CI]: 0.94 - 1.02, p = 0.34), and heroin use (RR = 0.96; 95% CI: 0.61- 1.52, p = 0.86). Craving data was not amenable to meta-analysis but overall implied that SROM reduces heroin cravings to a greater extent than methadone (P < 0.0001, measured using a visual analogue scale; P = 0.010, measured using the heroin craving questionnaire). As well, results implied no significant differences between SROM and methadone on self-reported use of heroin, cocaine, or benzodiazepines. Available data implied no differences in adverse events.

Conclusions Meta-analysis of existing randomized trials suggests SROM may be generally equal to methadone in retaining patients in treatment and reducing heroin use as methadone while potentially resulting in less craving. While methadone is effective for many patients, these findings suggest SROM may provide benefits in addressing some of the limitations of methadone and the need to expand uptake and retention of individuals on opioid use disorder treatments. The methodological quality of the included RCTs was low-to-moderate.

Word Count: 377

Keywords: opioid use disorder, substance use treatment, oral morphine, meta-analysis **Review registration number:** PROSPERO [CRD42018090782]

Strengths and limitations of this study

- The first meta-analysis of slow release oral morphine.
- We included new studies that increase the validity of the study.
- We included previously unpublished data obtained from primary trials.
- A meta-analysis of craving and adverse events was not possible due to inconsistent reporting of outcome measures across trials

INTRODUCTION

Overdose is the dominant cause of untimely death among people with opioid use disorder **(OUD)**, and in 2017, opioid overdose was declared a national public health emergency in the U.S. Approximately two million Americans have a diagnosed opioid use disorder, and deaths due to opioid overdoses have nearly doubled since 2006, exceeding 46,000 in 2016. In response, the past decade has witnessed an expansion of pharmaceutical interventions for OUD, including the opioid agonist therapies methadone and buprenorphine/naloxone. Opioid agonist therapy (OAT) is currently the first-line treatment for OUD recommended by the World Health Organization (WHO) and a number of federal health guidelines.³⁻⁵

While methadone and buprenorphine/naloxone are proven effective,^{6 7} they have a known limited ability to attract and retain patients in treatment. For instance, past studies have demonstrated that most individuals who overdose are not on agonist treatment at the time of death, and that, overall, agonist therapies remain sorely underutilised with only a fraction of eligible patients in U.S. accessing these therapies.⁸⁻¹⁰ While overall low rates of methadone- and buprenorphine/naloxone-use are partially due to poor access and limited service delivery,¹⁰ the balance of medication benefits and side-effects (e.g., sweating, weight gain), and other limitations of these therapies (e.g., QTc interval prolongation, sleep disturbance, need for daily visits and supervised urine collection in some settings), also result in low rates of patient retention once individuals initiate therapy.¹¹⁻¹³ The issues of poor uptake and retention on OAT are particularly urgent in the context of elevated mortality among those not on OAT and the reported dramatic rise in mortality following OAT interruption,¹⁴ as well as increasing overdose rates as a result of the emergence of highly toxic fentanyl analogues in the illicit drug markets of many settings.

In light of increasing recognition that a range of additional forms of opioid agonist therapy are necessary for some persons with complex OUD, interest in slow release oral morphine (SROM) as an OUD treatment agent has steadily grown.⁸ ¹⁵ A 2013 review by the Cochrane Collaboration reviewed the literature

for SROM as treatment for OUD. However, the review was ultimately unable to draw definite conclusions regarding effectiveness, identifying only three high quality clinical trials. However, some unpublished data were not included in this review, and since the time of its publication, a number of new studies investigating SROM have emerged, including a large international randomized controlled trial from Switzerland and Germany. In light of the known limitations of methadone, buprenorphine/naloxone and medical heroin, these new data on the efficacy of SROM, as well as the need to identify viable OAT options that may be more attractive to patients in the context of the current opioid-related public health emergency, the present systematic review and meta-analysis was conducted to assess the efficacy of slow-release oral morphine as a treatment for opioid use disorder as measured by treatment retention, heroin use, and opioid craving.

METHODS

Data sources and searches

In this report, we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). 19 Three electronic databases were searched to obtain relevant trials published in the past five years since the date of search of the Cochrane Collaboration review (up to May 2018): the Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE. These databases were searched by combining selected MeSH terms and free-text terms related to OUD and SROM (see search strategy in Appendix). We also searched the following electronic registers for ongoing trials: ClinicalTrials.gov (www.clinicaltrials.gov), World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (http://apps.who.int/trialsearch/), Current Controlled Trials (www.controlled-trials.com/), EU Clinical Trials Register (www.clinicaltrialsregister.eu), the Italian Medicines Agency (www.agenziafarmaco.gov.it/en), and Trials (www.trialsjournal.com). References of all relevant papers

were reviewed to identify further studies of relevance. Authors of potentially relevant studies were contacted for further unpublished data.

Study Selection

All English-language, scientifically peer-reviewed studies were eligible for inclusion. Studies were included if they met the following criteria: 1) studies were published in a scientific peer-reviewed journal; 2) they employed RCT methods (with no requirement for blinding); 3) participants met diagnostic criteria for OUD as defined in the DSM-IV or DSM-V manuals; 4) treatment was defined as SROM with or without an accompanying psychosocial intervention; and 5) control conditions were defined as medication-only, regardless of other concurrent treatment; and 6) outcomes assessed included treatment retention, efficacy (i.e., any measure of change in heroin use) and opioid craving.

Outcome Measures

The following outcomes were assessed: 1) Treatment retention, measured using dropout rates; 2) Efficacy, defined as the number of urine drug tests positive for illicit substances (incl. metabolites 6-Monoacetylmorphine [6-MAM] and 6-acetylcodeine [6-A-cod]) during the longest follow-up period in each study (or final weeks of pre-switch phase in case of cross-over trials); 3) Craving reduction, assessed through subjective reduction of scores on opioid-craving scales specific to each study. These outcomes were often assessed multiple times throughout the study period and measured across varied time intervals ranging from 1-24 weeks, depending on study length. Other, less common outcomes, including Quality of Life measures, satisfaction, physical complaints, and mental health were also reported. The level of statistical significance to assess differences between treatment and control groups was set *a priori* at p < 0.05.

It is noteworthy that with the new terminology changes to the Diagnostic Statistical Manual (DSM-

V), opioid abuse and dependence have been combined into opioid use disorder, which can be labeled as mild, moderate, or severe. Although imprecise, opioid abuse can equate to moderate or severe OUD, while opioid dependence is similar to the mild subtype.²⁰ ²¹

Data extraction

All citations identified by search were independently screened based on title and abstract by two reviewers (LG, AA). Each potentially relevant study was then reviewed in full text and assessed for all inclusion criteria. Any disagreements were resolved by discussion among reviewers (LG, AA) and additional investigators (JK, EW). Relevant data from eligible articles (i.e., socio-demographics, type of interventions, outcomes, etc.) were then extracted.

Quality Assessment

Study quality was assessed according to the criteria indicated in the Cochrane Handbook for Systematic Reviews of Interventions. ¹⁹ Each study was assessed for risk of bias in random sequence generation and allocation concealment (i.e., selection bias). Blinding of participants and personnel (i.e., performance bias) and of outcome assessment (that is always possible, i.e., detection bias; objective and subjective outcomes were combined) were measured; however, since blinding was considered unlikely to affect study outcome in this context, ¹⁶ open-label studies were included. Incomplete outcome data (i.e., attrition bias) was recorded for each eligible study. Each category of bias was assigned a rating of low, high or unclear risk using protocols from the Cochrane Handbook. There was no deviation from the quality assessment criteria.

Data Synthesis and Analysis

For the meta-analysis, dichotomous outcome measures (treatment retention, continuous abstinence) were analysed by calculating the risk ratio (RR) for each trial, with uncertainty in each result expressed via 95% confidence intervals (CIs). Continuous outcomes, such as craving, were analysed by calculating the

mean difference (MD) between experimental and control groups.

Information on missing data was collected where possible from study authors. If study authors were unable to supply this information, missing data were obtained or calculated from values in the primary studies according to suggested procedures in the Cochrane Handbook for Systematic Reviews of Interventions.¹⁹

Given the expected heterogeneity of results among studies due to differences in population and intervention type, we employed a random-effects meta-analytic model. The I-squared (I²) statistic was employed to test the presence of heterogeneity between trials, and a sensitivity analysis was undertaken to assess the impact of particular high-risk trials.

Patient and public involvement: patients and public were not involved.

RESULTS

We considered all peer-reviewed articles and identified 1315 potentially eligible studies published since the date of search in the previous Cochrane Collaboration review. After removal of duplicates and the application of inclusion criteria (Figure 1), 993 abstracts were screened and only eight reports – out of the 13 full texts reviewed – met all inclusion criteria. Pour reports were excluded due to not meeting inclusion criteria, and one was excluded because the study protocol paper did not report outcome data. Because some trials were the subject of multiple reports, only four unique studies (n = 471) were eligible for quantitative synthesis. We considered data from all available high-quality trials as well as previously unpublished data from trial authors. One study did not report data of interest for this review other than treatment retention.

All participants in the included studies met the DSM-IV or V diagnostic criteria for OUD; mean age 33.1 years; of the three studies that reported on gender, ^{17 25 26} 24.4% were female. The mean duration of

trials was 18 weeks (range 11 to 24 weeks). The mean dose of SROM provided to participants was 506.8 mg/day, and the mean dose of methadone was 67.2 mg/day. All four studies were conducted in an outpatient setting, and assessed SROM *vs.* methadone, with only one study by Giacomuzzi et al.²⁶ explicitly stating psychosocial support. This study also assessed buprenorphine in comparison with SROM and methadone.²⁶

Quality assessments for each study are presented in Table 1. Three out of four studies were found to be at low risk for selection bias – the final study's selection bias was agreed to be unclear, due to an unspecified randomization technique.²⁶ There was mixed-risk of bias relating to blinding of participants and outcome assessments; however, as noted by Ferri et al., objective outcomes -such as retention and urine drug screens- are unlikely to be impacted by a lack of blinding.¹⁶ Three of the four included RCTs were therefore open-label.^{17 26 27} All four studies were found to be at low risk for attrition bias. Additionally, differences in our risk of bias assessment and the previous Cochrane review were also identified.¹⁶ For the trial by Giacomuzzi et al.,²⁶ we assessed blinding of outcome assessment to be of high risk while the previous review assigned unclear risk. Blinding of outcome assessment was not possible because the treating physician could terminate patients if three consecutive urine tests were found positive for 6-MAMmam (data from Dr Giacomuzzi).

Treatment retention was assessed via the dropout rate in all studies. Unpublished data regarding treatment retention was obtained from the authors of one study.²⁶ With respect to measures of opioid use, the number of participants with urine drug tests positive for illicit substances was reported in two studies.¹⁷ Unpublished data on positive urine tests was obtained from one study.²⁶ Measures of craving using various rating scales were used in three studies,¹⁷ though one did not report the necessary outcome data for meta-analysis to be performed.²⁵

Systematic Review Results

A 2013 Cochrane review by Ferri et al. described three trials included in the present analysis. 16 Clark et al...²⁷ and Eder et al...²⁵ both performed crossover, randomized controlled trials, wherein participants with OUD were randomized to take either SROM or methadone for the first half of the trial period, then subsequently switched to the other treatment for the second half of the trial period. According to the published conference abstract and M.D. thesis, Clark et al., 29 conducted a 12-week open-label crossover study that required patients to be taking methadone prior to enrolling (n=9). The authors found SROM to have lower retention than methadone; however, no significant differences were found in regards to heroin use (6-Monoacetylmorphine [6-MAM]) in the last four weeks of treatment, use of other drugs over the study period, dollars spent on heroin in the final week of treatment, mental health and social functioning (as measured by the BASIS-32 Behavior and Symptom Identification Scale), self-reported days of heroin use, or heroin cravings. SROM was found to yield significantly lower on subjective opiate withdrawal scale (SOWS) scores (by 1.1 on the SOWS scale [95% Confidence Interval {CI} 0.6 to 1.7] p < 0.001). Eder et al. conducted a 14-week double-blind crossover study that required participants not to be on any maintenance treatment prior to enrolling in the trial (n=55). No significant differences were found between SROM and methadone on retention rates (103 [94%] patients completed the study) or illicit drug-use (consumption of cocaine was significantly reduced to 23.3% [p = 0.0083] by day 21; additional consumption of benzodiazepines remained almost unchanged throughout the study period at approximately 40% (highest [44.7%] on day 10; lowest [32.0%] on day 20); additional consumption of amphetamines was very low, with only two positive urine specimens on day 3). However, SROM was associated with significantly fewer physical complaints (falling from a mean score of 21.7 at baseline to 12.5 at day 21 among patients treated with SROM, p < 0.05), less craving for heroin, cocaine and alcohol (data from Visual Analogue Scale presented as charts only, p < 0.05), lower depression scores (falling from a mean score of 17.84 at baseline to 10.51 at day 21 among patients treated with SROM, p < 0.001),

and lower anxiety scores (data from the State Trait Anxiety Inventory presented as charts only p < 0.01). Giacomuzzi et al.,²⁶ conducted a 24-week, open-label, randomized controlled trial, wherein participants who had OUD and who were previously on methadone (n=120) were randomized to take either SROM, buprenorphine, or to continue methadone treatment. These participants were then compared to an equal number of patients being newly treated for OUD, and thus taking no OUD pharmacotherapy (n=120). Therefore, a total N = 240 was used for this study throughout the manuscript. Overall, Giacomuzzi et al. found SROM to be associated with significantly lower consumption of opioids (unpublished data: methadone 36.7%, buprenorphine 19.2%, SROM 25.8%, p < 0.001) and cocaine (unpublished data: methadone 3.3%, buprenorphine 6%, SROM 3.3%, p < 0.001); however, scores on the Lancashire Quality of Life Profile, such as finances (methadone 4.4, buprenorphine 4.2, SROM 2.6, p < 0.001), family (methadone 5.8, buprenorphine 5.1, SROM 3.4, p < 0.05), and overall satisfaction (methadone 5.3, buprenorphine 4.9, SROM 4.1, p < 0.001), were significantly lower than for methadone or buprenorphine. Analyses of physical complaints on each treatment yielded mixed results.

Beck et al.,¹⁷ conducted a 22-week, randomized, open-label, cross-over study of patients maintained on methadone in Switzerland and Germany (n=157), disseminated via four study reports. First, a non-inferiority study found no significant differences between SROM and methadone in treatment retention (period 1: 88.7% vs. 91.1%; period 2: 82.1% vs. 88.0% for SROM vs. methadone, period 1: p = 0.50, period 2: p = 0.19) or incidence of adverse events (81% SROM vs. 79% methadone, p = 0.62). The proportion of heroin-positive urine drug screens (6-Monoacetylmorphine [6-MAM] and 6-acetylcodeine [6-A-cod]) was found to be significantly higher on SROM (0.20 \pm 0.26 SROM vs. 0.15 \pm 0.23 methadone, p < 0.001); however, this difference fell within a pre-specified inferiority margin of 10%, leading the authors to confirm the non-inferiority of SROM compared to methadone. SROM was also found to have significant dose-dependent effects on the number of positive urine drug screens, with

higher doses yielding fewer positive screens (Pearson's correlation coefficient: -0.1941 for positive 6-MAM and -0.1709 for positive 6-A-cod, p < 0.05). A second study similarly confirmed the noninferiority of SROM to methadone;³⁰ SROM was associated with higher treatment satisfaction (SROM: 7.6 ± 1.8 vs. methadone: 6.0 ± 2.2 , p < 0.001), and fewer adverse mental symptoms (SROM: 0.61 ± 0.56 vs. methadone: 0.68 ± 0.60 , p < 0.01). No significant (p = 0.48-0.99) differences were found between number of self-reported days of heroin-(SROM: 6.4 ± 11.7 vs. methadone: 6.4 ± 11.3), cocaine-(SROM: 2.4 ± 6.0 vs. methadone: 2.2 ± 6.2), benzodiazepine-, (SROM: 8.2 ± 17.4 vs. methadone: 7.4 ± 15.8) and alcohol-use (SROM: 14.5 ± 21.7 vs. methodone: 14.5 ± 20.8) between SROM and methodone. A third study reported that heroin-craving scores (as measured by visual analogue scale and brief craving questionnaire) were significantly lower on SROM than on methodone (visual analogue scale: 3.3 ± 2.4 vs. 2.5 ± 2.2 ; brief craving questionnaire 2.9 ± 1.4 vs. 2.6 ± 1.2 for methadone and SROM respectively, p < 0.0001), and that cocaine-craving were statistically similar between the two treatments (visual analogue scale: 1.6 ± 2.0 vs. 1.4 ± 1.9 ; brief craving questionnaire 2.1 ± 1.2 vs. 2.1 ± 1.2 for methadone and SROM respectively, p = 0.54). ²² Finally, a fourth study reported on a 24-week extension phase, where all subjects in the initial cross-over trial either continued or were placed back on SROM.²³ This report again found that SROM was associated with fewer cravings for heroin (visual analogue scale: 2.06 ± 2.33 vs. 2.70 ± 2.63 ; brief craving questionnaire 2.25 ± 1.30 vs. 2.50 ± 1.43 at the end and start of extension phase respectively, p < 0.01) and statistically similar self-reported drug use (Heroin: 0.08 ± 0.18 vs. 0.11 ± 0.21 ; Cocaine: 0.05 ± 0.17 vs. 0.06 ± 0.18 ; benzodiazepine: 0.15 ± 0.34 vs. 0.19 ± 0.36 ; Alcohol: 0.22 ± 0.36 vs. 0.24 ± 0.38 at the end and start of extension phase respectively, p = 0.26 - 0.54); however, as no control group was present, data from the extension phase was not included in the analyses of this review.

Meta-analysis Results

The meta-analytic results of SROM vs. methadone are presented in Figure 2. As one included study

was published as a thesis and conference abstract, and contained a small sample size (n = 24), a sensitivity analysis was run wherein this study's data was excluded. This exclusion did not change the results (Figures 2b and 2d). It was not possible to convert all data reported on outcomes into meta-analysis due to variance in reported data. Because continuous outcomes, such as craving, were reported in less than two studies, a meta-analysis was not performed.

Treatment retention

Acceptability of treatment was measured via participant dropout. Dropouts were assessed in four studies, $^{17\,25-27}$ with 471 participants [note: unpublished data were sought and obtained from two studies]. 17 Retention was assessed for the entire duration of the trials. As shown in Figure 2c, the results of the meta-analysis suggest that the mean difference in dropouts was not statistically significant between participants in the SROM vs. methadone (RR = 0.98; 95%CI 0.94 - 1.02, p = 0.34), while low (18%) heterogeneity between studies was observed.

Efficacy of SROM

As shown in Figure 2a, a three-study meta-analysis, $^{17\ 26\ 27}$ that included data from 406 participants showed no difference in effectiveness between SROM and methadone in reducing opioid use (RR = 0.96; 95% CI: 0.61- 1.52, p=0.86, $I^2=50\%$). Because other measures of SROM efficacy (i.e., craving) were not reported across all studies or were assessed using different statistical methods, they were not amenable to investigation via meta-analysis. However, two studies indicated that SROM reduces cravings for heroin more than methadone (P < 0.0001, measured using a visual analogue scale; P = 0.010, measured using the heroin craving questionnaire - brief), and that SROM produces no significant differences in self-reported use of illicit drugs. $^{17\ 22\ 27}$

DISCUSSION

The results of the present systematic review and meta-analysis indicate that current evidence suggests that SROM may be generally equal to methadone in the treatment of OUD. Building on an earlier review, ¹⁶ and with additional data from more recent trials as well as unpublished data, we were able to pool data on two outcomes: opioid use and retention in treatment. Here, in the meta-analysis, we observed no significant differences between SROM and methadone in improving treatment retention and heroin use. While not amenable to meta-analysis, results from two studies indicated that SROM reduces cravings for heroin more than methadone. These findings are relevant to recent high-level recommendations suggesting the need to consider repurposing existing medications for the treatment of opioid use disorder. ³¹

Currently, SROM is available as an alternative to methadone in a range of European jurisdictions,³² as well as in Canada.⁴ Our findings concur with the new Canadian National Guidelines on the treatment of OUD, which recommend SROM as a treatment option, and with the findings from earlier systematic reviews though none of them had sufficient data for the calculation of the pooled effects for treatment retention and heroin use.⁴ ¹⁵ ³⁴ In particular, our analyses considered new unpublished data that were not included in past reviews, as well as data from a new trial from Switzerland and Germany,¹⁷ thus confirming the apparent non-inferiority of SROM compared to methadone. Although a number of gaps in our understanding of SROM persist (for instance, in the absence of mortality and detailed safety data), the current review underscores the clinical utility and potential for scaling up SROM as an agonist treatment for OUD, relevant beyond European and Canadian settings.

Limitations

The results reported in the present systematic review and meta-analysis are subject to the several limitations. First, the body of evidence regarding the efficacy of SROM in managing OUD is still relatively small. As such, additional research will help to illuminate the role that SROM can play in meeting the needs

of specific patient subgroups. For instance, the relative ability of SROM to engage and retain patients with opioid use disorder in the context of the fentanyl epidemic. Second, the methodological quality of the included RCTs was low-to-moderate and the sample sizes were modest. In terms of comparing SROM to buprenorphine/naloxone, because of the latter's improved safety profile, 14 35 the recently published Canadian guideline recommends staging therapies with buprenorphine/naloxone recommended for first line therapy with methadone or SROM being offered to those unsuccessful with first line treatment.⁴ As such, head-to-head comparisons of buprenorphine to SROM may not be warranted. Third, some outcome measures were not uniformly reported across studies and, therefore, were difficult to combine in a metaanalysis. Heroin use was amenable to meta-analysis as it was reported in a consistent manner by three studies. 17 25 27 Fourth, the analysis used some outcome data from the period before cross-over occurred in trials. Therefore, these results are based off of short durations of six to 12 weeks. Additionally, while one abstract that met the eligibility criterion of being published in a scientific peer reviewed journal was included, the full results of the RCT were not published in a peer-reviewed journal; nevertheless, the RCT was included in a previous Cochrane systematic review. 18 Finally, with respect to quality, we identified moderate heterogeneity and a risk of bias related to inconsistent blinding of participants and unclear blinding of outcomes across studies. Differences in study design and duration were also present. Given these multiple potential sources of possible bias, SROM should remain an area of future study, where future studies should address the sources of heterogeneity (such as outcome measurement design and study duration) and consider impact on overdose and mortality, as highlighted above.

CONCLUSIONS

The present meta-analysis demonstrates the consistent pattern in clinical trials evaluating the impact of SROM. Because most OUD patients do not access agonist therapies, ¹⁰ and since poor retention in

methadone has been linked to heightened mortality and other health outcomes, 14 SROM may have a promising role in OUD treatment, especially given methadone's known side effect profile, the likely attractiveness of SROM to some patients and the apparent reduction in craving when on SROM in ss future L

ed opioids, ² and th.

e investigations of SROM comparison to methadone.⁸ ²⁶ Unless future trials report contradictory findings, the public health crisis presented by illicitly manufactured opioids,² and the known limitations of existing agonist therapies, ^{14 34} these data should inform future investigations of SROM as a therapeutic tool among people undergoing treatment for OUD.

Acknowledgments:

We thank Ahmed Adam for assistance with research.

Contributorship statement

JK and EW conceived the idea for and designed the study. JK and LG conducted the research and wrote the first draft of the manuscript. GS, CR, EMS, NF contributed to the study design, interpretation of the findings and preparation of the manuscript. All authors reviewed and approved the final version of the manuscript. Ahmed Adam screened the titles, fulltexts and assessed risk of bias in the included studies.

Competing interests

None

Funding

The study was supported by the US National Institutes of Health (R25DA037756). This research was undertaken, in part, thanks to funding from the Canada Research Chairs program through a Tier 1 Canada Research Chair in Inner City Medicine that supports Dr. Evan Wood. A European Commission grant (701698) supported Dr. Jan Klimas. The study was also supported by the Canadian Institutes of Health Research through the Canadian Research Initiative on Substance Misuse (SMN–139148) - and a Foundation Grant to Dr. Evan Wood. We thank Ahmed Adam for help with searching and screening. Dr. M. Eugenia Socías is supported by Michael Smith Foundation for Health Research (MSFHR) and Canadian Institutes of Health Research (CIHR) fellowship awards. Dr. Nadia Fairbairn is supported by a Michael Smith Foundation for Health Research/St. Paul's Foundation Scholar Award.

Data sharing statement

No additional data available.

BMJ Open Page 18 of 27

Table 1: Characteristics of included studies

Study/					Risk Rating	
Country	Design	Participants	Interventions	Outcomes	A B C D E	
Clark 2002 Australia	Cross-over, Randomized controlled trial, Open-label duration: 12 weeks N=11 Mean age: 36.5 years Use of heroin: once per week Heroin use disorder and were on methadone (1) Morphine Flexible starting dose; increased by 50 mg per day following transfer, never exceeded 800 mg/day (2) Methadone Flexible starting dose; reduced by 12 mg per day following transfer Retention Severity of opiate withdrawal symptoms Heroin or other substance use Severity of dependence Mental health/social functioning					
Eder 2005 Austria	Cross-over, Randomized double blind, double-dummy duration: 14 weeks	N=64 Mean age: 28 years Male: 75% Opioid use disorder (excluded patients already receiving maintenance therapy)	(1) Morphine Starting dose 200 mg/day increased to 800 mg/day by week 1. (2) Methadone Starting dose 40 mg/day increased to 100mg/day by week 1.	Retention Use of illicit substances based on urinalysis Extent of drug cravings Withdrawal symptoms General well being Safety was assessed on the basis of adverse events and clinical and physical examination QoL measured by the Lancashire Quality of Life Profile	• • • •	
Giacomuzzi 2006 Austria	Randomized controlled trial Open-label duration: 24 weeks	N=120 Mean age: 27 years; Male: 57% Opioid use disorder and were on methadone	(1) Morphine Maintenance dose dependent on severity of withdrawal symptoms (2) Methadone Maintenance dose dependent on severity of withdrawal symptoms (3) Buprenorphine Maintenance dose dependent on severity of withdrawal symptoms	Retention (from personal correspondence) QoL measured by the Lancashire Quality of Life Profile Withdrawal symptoms measured by the Opioid Withdrawal Scale	• • • •	
Beck 2014 Switzerland and Germany	Cross-over Randomized controlled trial, Open-label, Duration: 22 weeks N=276 Mean age: 38.1 Male: 81.5% Opioid dependence and were on methadone use disorder		(1) Methadone flexible dosing. Cross over at 11 weeks to morphine (2) Morphine flexible dosing. Cross over at 11 weeks to methadone	Retention (24 weeks) Proportion of positive urine samples per patient (12 weeks) Per treatment for co-consumption of heroin Craving heroin Craving cocaine Self-reported drug use Mental health problems (SCL-27) Positive urine samples Adverse events	• • • •	

Risk Rating Legend:

A: Random sequence generation (selection bias); B: Allocation concealment (selection bias); C: Blinding of participants and personnel (performance bias); D: Blinding of outcome assessment (detection bias); E: Incomplete outcome data (attrition bias); Amber Circle: Unclear

REFERENCES

- 1. Han B, Compton WM, Jones CM, et al. Nonmedical Prescription Opioid Use and Use Disorders Among Adults Aged 18 Through 64 Years in the United States, 2003-2013.

 **JAMA* 2015;314(14):1468-78. doi: 10.1001/jama.2015.11859 [published Online First: 2015/10/16]
- NIDA. Overdose Death Rates: National Institute on Drug Abuse; September 2017 [Available from: https://www.drugabuse.gov/related-topics/trends-statistics/overdose-death-rates accessed May 23, 2018.
- (WHO); WHO. Guidelines for the psychosocially assisted pharmacological treatment of opioid dependence. Geneva, Switzerland, 2009.
- 4. Bruneau J, Ahamad K, Goyer M-È, et al. Management of opioid use disorders: a national clinical practice guideline. *Canadian Medical Association Journal* 2018;190(9):E247-E57. doi: 10.1503/cmaj.170958
- 5. (ASAM); ASoAM. The national practice guideline for the use of medications in the treatment of addiction involving opioid use, 2015.
- 6. Mattick RP, Breen C, Kimber J, et al. Methadone maintenance therapy versus no opioid replacement therapy for opioid dependence. *Cochrane database of systematic reviews*(Online) 2009(3):CD002209. doi: 10.1002/14651858.CD002209.pub2 [published Online First: 2009/07/10]
- 7. Mattick RP, Breen C, Kimber J, et al. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. *Cochrane database of systematic reviews*(Online) 2014;2:CD002207. doi: 10.1002/14651858.CD002207.pub4 [published Online First: 2014/02/07]

- Socías M, Wood E. Evaluating slow-release oral morphine to narrow the treatment gap for opioid use disorders. *Annals of Internal Medicine* 2018;168(2):141-42. doi: 10.7326/M17-2373
- 9. Darke S, Zador D. Fatal heroin 'overdose': a review. *Addiction* 1996;91(12):1765-72. [published Online First: 1996/12/01]
- 10. Volkow ND, Frieden TR, Hyde PS, et al. Medication-assisted therapies--tackling the opioid-overdose epidemic. *The New England journal of medicine* 2014;370(22):2063-6. doi: 10.1056/NEJMp1402780 [published Online First: 2014/04/25]
- 11. Farre M, Mas A, Torrens M, et al. Retention rate and illicit opioid use during methadone maintenance interventions: a meta-analysis. *Drug Alcohol Depend* 2002;65(3):283-90. [published Online First: 2002/02/14]
- 12. White AP. The promise, problems and limitations of methadone: a clinical perspective. *J Clin Forensic Med* 1994;1(2):97-104. [published Online First: 1994/09/01]
- 13. Kheradmand A, Banazadeh N, Abedi H. Physical effects of methadone maintenance treatment from the standpoint of clients. *Addict Health* 2010;2(3-4):66-73. [published Online First: 2010/07/01]
- 14. Sordo L, Barrio G, Bravo MJ, et al. Mortality risk during and after opioid substitution treatment: systematic review and meta-analysis of cohort studies. *BMJ* 2017;357 doi: 10.1136/bmj.j1550
- 15. Jegu J, Gallini A, Soler P, et al. Slow-release oral morphine for opioid maintenance treatment: a systematic review. *Br J Clin Pharmacol* 2011;71(6):832-43. doi: 10.1111/j.1365-2125.2011.03923.x [published Online First: 2011/01/27]

- 16. Ferri M, Minozzi S, Bo A, et al. Slow-release oral morphine as maintenance therapy for opioid dependence. *Cochrane Database of Systematic Reviews* 2013(6) doi: 10.1002/14651858.CD009879.pub2
- 17. Beck T, Haasen C, Verthein U, et al. Maintenance treatment for opioid dependence with slow-release oral morphine: a randomized cross-over, non-inferiority study versus methadone. *Addiction* 2014;109(4):617-26. doi: 10.1111/add.12440 [published Online First: 2013/12/07]
- 18. Ferri M, Davoli M, Perucci CA. Heroin maintenance for chronic heroin-dependent individuals. *Cochrane database of systematic reviews (Online)* 2011(12):CD003410. doi: 10.1002/14651858.CD003410.pub4 [published Online First: 2011/12/14]
- 19. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ* 2011;343:d5928. doi: 10.1136/bmj.d5928
- 20. Substance-Related and Addictive Disorders. American Psychiatry Association: American Psychiatric Publishing., 2013.
- 21. Compton WM, Dawson DA, Goldstein RB, et al. Crosswalk between DSM-IV dependence and DSM-5 substance use disorders for opioids, cannabis, cocaine and alcohol. *Drug and alcohol dependence* 2013;132(1):387-90.
- 22. Falcato L, Beck T, Reimer J, et al. Self-reported cravings for heroin and cocaine during maintenance treatment with slow-release oral morphine compared with methadone: a randomized, crossover clinical trial. *J Clin Psychopharmacol* 2015;35(2):150-7. doi: 10.1097/JCP.0000000000000288 [published Online First: 2015/02/14]

- 23. Hammig R, Kohler W, Bonorden-Kleij K, et al. Safety and tolerability of slow-release oral morphine versus methadone in the treatment of opioid dependence. *J Subst Abuse Treat* 2014;47(4):275-81. doi: 10.1016/j.jsat.2014.05.012 [published Online First: 2014/07/30]
- 24. Winklbaur B, Jagsch R, Ebner N, et al. Quality of life in patients receiving opioid maintenance therapy. A comparative study of slow-release morphine versus methadone treatment. *Eur Addict Res* 2008;14(2):99-105. doi: 10.1159/000113724 [published Online First: 2008/03/13]
- 25. Eder H, Jagsch R, Kraigher D, et al. Comparative study of the effectiveness of slow-release morphine and methadone for opioid maintenance therapy. *Addiction* 2005;100(8):1101-9. doi: 10.1111/j.1360-0443.2005.001128.x [published Online First: 2005/07/27]
- 26. Giacomuzzi S, Kemmler G, Ertl M, et al. Opioid addicts at admission vs. slow-release oral morphine, methadone, and sublingual buprenorphine maintenance treatment participants.

 *Subst Use Misuse 2006;41(2):223-44. doi: 10.1080/10826080500391845 [published Online First: 2006/01/06]
- 27. Clark N KK, Lintzeris N, Ritter A, Whelan G. A randomised trial of once-daily slow-release oral morphine versus methadone for heroin dependence. Drug and Alcohol Dependence, 2002:Suppl 1:S33.
- 28. Verthein U, Beck T, Haasen C, et al. Mental symptoms and drug use in maintenance treatment with slow-release oral morphine compared to methadone: Results of a randomized crossover study. *European Addiction Research* 2015;21(2):97-104.
- 29. Clark NC. Expanding the Options for the Treatment of Heroin Dependence with Oral Supervised Opioid Substitution Therapy: LAAM, Buprenorphine and Slow Release Oral

- Morphine as Alternatives to Methadone. University of Melbourne, Department of Medicine, St Vincent's Hospital, 2006.
- 30. Verthein U, Beck T, Haasen C, et al. Mental symptoms and drug use in maintenance treatment with slow-release oral morphine compared to methadone: results of a randomized crossover study. *Eur Addict Res* 2015;21(2):97-104. doi: 10.1159/000368572 [published Online First: 2014/11/28]
- 31. Volkow ND, Collins FS. The Role of Science in Addressing the Opioid Crisis. *New England Journal of Medicine* 2017;377(4):391-94. doi: 10.1056/NEJMsr1706626
- 32. Cooper TE, Chen J, Wiffen PJ, et al. Morphine for chronic neuropathic pain in adults.

 *Cochrane database of systematic reviews (Online) 2017;5:CD011669. doi: 10.1002/14651858.CD011669.pub2 [published Online First: 2017/05/23]
- 33. EMCDDA. Year of introduction of methadone maintenance treatment, high-dosage buprenorphine treatment, heroin-assisted treatment, slow-realease morphine and Suboxone Lisbon: European Monitoring Centre for Drugs and Drug Addiction; 2009

 [Available from: http://www.emcdda.europa.eu/stats09/hsrtab1 accessed April 13th 2018.
- 34. Sharma A, Kelly SM, Mitchell SG, et al. Update on Barriers to Pharmacotherapy for Opioid Use Disorders. *Curr Psychiatry Rep* 2017;19(6):35. doi: 10.1007/s11920-017-0783-9 [published Online First: 2017/05/21]
- 35. Luty J, O'Gara C, Sessay M. Is methadone too dangerous for opiate addiction? *BMJ* 2005;331(7529):1352-3. doi: 10.1136/bmj.331.7529.1352 [published Online First: 2005/12/13]

Figure 2a. Forest plot of the effects of slow release oral morphine (SROM) on heroin use as measured by urine drug tests among persons with opioid use disorders in randomized controlled trials; CI: confidence interval; ITT population.

i) Heroin use measured as the number of positive urine drug tests per participant:

	SROM	methad	done		Risk Ratio	Risk Ratio
Study or Subgroup	Events T	Total Events	Total	Weight I	M-H, Random, 95% CI	M-H, Random, 95% CI
Beck 2014	34	157 27	157	41.7%	1.26 [0.80, 1.98]	
Clark 2006	5	61 4	62	11.1%	1.27 [0.36, 4.51]	- •
Giacomuzzi 2006	31	120 44	120	47.2%	0.70 [0.48, 1.03]	
Total (95% CI)		338	339	100.0%	0.96 [0.61, 1.52]	•
Total events	70	75				
Heterogeneity: $Tau^2 = 0.08$; $Chi^2 = 3.96$, $df = 2$ (P = 0.14); $I^2 = 50\%$ Test for overall effect: Z = 0.18 (P = 0.86) Test for overall effect: Z = 0.18 (P = 0.86)						

ii) Heroin use measured as the number of positive urine drug tests per participant, with high-risk study excluded:

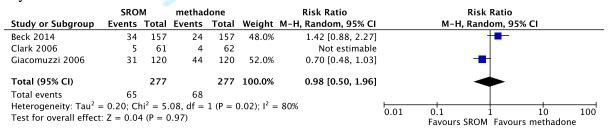
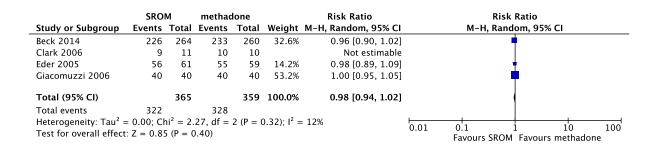



Figure 2b. Forest plot of the effects of slow release oral morphine (SROM) on retention in treatment among persons with opioid use disorders in randomized controlled trials; CI: confidence interval; ITT population.

iii) Retention in treatment at the end of the trial (or first period in case of cross-over trials):

	SRO	М	methad	lone		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Beck 2014	226	264	233	260	33.1%	0.96 [0.90, 1.02]	•
Clark 2006	9	11	10	10	1.8%	0.83 [0.60, 1.14]	-
Eder 2005	56	61	55	59	15.8%	0.98 [0.89, 1.09]	+
Giacomuzzi 2006	40	40	40	40	49.3%	1.00 [0.95, 1.05]	•
Total (95% CI)		376		369	100.0%	0.98 [0.94, 1.02]	
Total events	331		338				
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 3.66$, $df = 3$ (P = 0.30); $I^2 = 18\%$							
Test for overall effect: Z = 0.95 (P = 0.34) Test for overall effect: Z = 0.95 (P = 0.34) Favours SROM Favours methadone							

iv) Retention in treatment at the end of the trial (or first period in case of cross-over trials), with high-risk study excluded:

Slow Release Oral Morphine versus Methadone for the Treatment of Opioid Use Disorder: A Systematic Review and Meta-Analysis

Appendix. MEDLINE Search Strategy:

Data	base(s): Ovid MEDLINE(R) Epub Ahead of Print, In-Process & Other No.	n-Indexed				
	tions, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to May 1s, 2	2018				
Sear	Search Strategy: Run May 1st					
#	Searches Resu					
1	exp Opioid-Related Disorders/	22650				
2	(opiat\$ or opioid\$ or heroin\$ or narcot\$ or methadone or buprenorphine).ab,ti.	120510				
3	1 or 2	125772				
4	(withdraw\$ or abstinen\$ or abstain\$ or abuse\$ or abusing or dependen\$ or addict\$ or overdos\$ or 'over-dose' or intoxicat\$).ab,ti.	1820666				
5	3 and 4	45660				
6	exp MORPHINE/	36715				
7	morphine.ab,ti.	46588				
8	6 or 7	53469				
9	randomized controlled trial.pt.	459781				
10	controlled clinical trial.pt.	92372				
11	randomized.ab,ti.	441959				
12	drug therapy.sh.	29544				
13	randomly.ab,ti.	290465				
14	trial.ab,ti.	500960				
15	groups.ab,ti.	1815207				
16	9 or 10 or 11 or 12 or 13 or 14 or 15	2650720				
17	5 and 8 and 16	1299				
18	limit 17 to humans	613				

BMJ Open

Slow Release Oral Morphine versus Methadone for the Treatment of Opioid Use Disorder: A Systematic Review and Meta-Analysis

Journal:	BMJ Open				
Manuscript ID	bmjopen-2018-025799.R2				
Article Type:	Research				
Date Submitted by the Author:	15-Jan-2019				
Complete List of Authors:	Klimas, Jan; BC Centre on Substance Use; University of British Columbia, Department of Medicine Gorfinkel, Lauren; Columbia University Giacomuzzi, Salvatore; Universitätsklinik Innsbruck-Ambulanz für Abhängigkeitserkrankungen Ruckes, Christian; University Medical Center Mainz, Interdisciplinary Center Clinical Trials Socías, M.; BC Centre on Substance Use Fairbairn, Nadia; BC Centre on Substance Use; University of British Columbia, Department of Medicine Wood, Evan; BC Centre on Substance Use; University of British Columbia, Department of Medicine				
Primary Subject Heading :	Addiction				
Secondary Subject Heading:	Mental health				
Keywords:	Opioid use disorder, Substance misuse < PSYCHIATRY, Substance use treatment, Oral morphine, meta-analysis				

Slow Release Oral Morphine versus Methadone for the Treatment of Opioid Use Disorder: A Systematic Review and Meta-Analysis

Klimas, Jan^{1,3}, Gorfinkel, Lauren¹, Giacomuzzi, Salvatore⁵, Ruckes, Christian⁴, Socías, M. Eugenia^{1,2}, Fairbairn, Nadia^{1,2}, Wood, Evan^{1,2}

- 1. British Columbia Centre for Substance Use, 400-1045 Howe Street, Vancouver, BC, CANADA, V6Z 1Y6
- 2. Department of Medicine, University of British Columbia, St. Paul's Hospital, 608-1081 Burrard Street, Vancouver, BC, CANADA, V6Z 1Y6
- 3. School of Medicine, University College Dublin, Health Sciences Centre, Belfield, Dublin 4, Ireland
- 4. University Medical Center Mainz, Interdisciplinary Center Clinical Trials (IZKS), Langenbeckstraße 1 · D-55131 Mainz, Germany
- 5. Universitätsklinik Innsbruck-Ambulanz für Abhängigkeitserkrankungen, Anichstraße 35, 6020 Innsbruck, Austria

JK and LG contributed equally to this paper.

Send correspondence to: Jan Klimas, PhD, MSc

B.C. Centre on Substance Use University on British Columbia

400-1045 Howe Street, Vancouver, B.C., V6Z 1Y6

Canada

Tel: (778) 945-7616 Fax: (604) 806-9044

Fax: (604) 806-9044 Email: jan.klimas@bccsu.ubc.ca

Running head: SROM for Opioid Use Disorder

Word Count: 3879

Tables: 1 Figures: 3

Revised: 15 Jan. 19

ABSTRACT

Objective To assess the efficacy of Slow release oral morphine (SROM) as a treatment for opioid use disorder.

Design Systematic review and meta-analysis of randomized controlled trials (RCT).

Data sources Three electronic databases were searched through May 1st, 2018: the Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE. We also searched the following electronic registers for ongoing trials: ClinicalTrials.gov, World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP), Current Controlled Trials, and the EU Clinical Trials Register.

Eligibility criteria for selecting studies We included RCTs of any duration, assessing the effect of SROM on measures of treatment retention, heroin use and craving in adults who met the diagnostic criteria for opioid use disorder.

Data extraction and synthesis Two independent reviewers extracted data and assessed risk of bias. Data were pooled using the random-effects model and expressed as Risk Ratios (RR) or mean differences (MDs) with 95% CIs. Heterogeneity was assessed (chi-squared statistic) and quantified (I² statistic) and a sensitivity analysis was undertaken to assess the impact of particular high-risk trials.

Results Among 1315 studies reviewed, four unique randomized trials met inclusion criteria (n = 471), and compared SROM with methadone. In the meta-analysis, we observed no significant differences between SROM and methadone in improving treatment retention (risk ratio [RR] = 0.98; 95% Confidence Interval [CI]: 0.94 - 1.02, p = 0.34), and heroin use (RR = 0.96; 95% CI: 0.61- 1.52, p = 0.86). Craving data was not amenable to meta-analysis but overall implied that SROM reduces heroin cravings to a greater extent than methadone (P < 0.0001, measured using a visual analogue scale; P = 0.010, measured using the heroin craving questionnaire). As well, results implied no significant differences between SROM and methadone on self-reported use of heroin, cocaine, or benzodiazepines. Available data implied no differences in adverse events.

Conclusions Meta-analysis of existing randomized trials suggests SROM may be generally equal to methadone in retaining patients in treatment and reducing heroin use as methadone while potentially resulting in less craving. While methadone is effective for many patients, these findings suggest SROM may provide benefits in addressing some of the limitations of methadone and the need to expand uptake and retention of individuals on opioid use disorder treatments. The methodological quality of the included RCTs was low-to-moderate.

Word Count: 377

Keywords: opioid use disorder, substance use treatment, oral morphine, meta-analysis **Review registration number:** PROSPERO [CRD42018090782]

Strengths and limitations of this study

- The first meta-analysis of slow release oral morphine.
- We included new studies that increase the validity of the study.
- We included previously unpublished data obtained from primary trials.
- A meta-analysis of craving and adverse events was not possible due to inconsistent reporting of outcome measures across trials

INTRODUCTION

Overdose is the dominant cause of untimely death among people with opioid use disorder **(OUD)**, and in 2017, opioid overdose was declared a national public health emergency in the U.S. Approximately two million Americans have a diagnosed opioid use disorder,¹ and deaths due to opioid overdoses have nearly doubled since 2006, exceeding 46,000 in 2016.² In response, the past decade has witnessed an expansion of pharmaceutical interventions for OUD, including the opioid agonist therapies methadone and buprenorphine/naloxone. Opioid agonist therapy (OAT) is currently the first-line treatment for OUD recommended by the World Health Organization (WHO) and a number of federal health guidelines.³⁻⁵

While methadone and buprenorphine/naloxone are proven effective,^{6 7} they have a known limited ability to attract and retain patients in treatment. For instance, past studies have demonstrated that most individuals who overdose are not on agonist treatment at the time of death, and that, overall, agonist therapies remain sorely underutilised with only a fraction of eligible patients in U.S. accessing these therapies.⁸⁻¹⁰ While overall low rates of methadone- and buprenorphine/naloxone-use are partially due to poor access and limited service delivery,¹⁰ the balance of medication benefits and side-effects (e.g., sweating, weight gain), and other limitations of these therapies (e.g., QTc interval prolongation, sleep disturbance, need for daily visits and supervised urine collection in some settings), also result in low rates of patient retention once individuals initiate therapy.¹¹⁻¹³ The issues of poor uptake and retention on OAT are particularly urgent in the context of elevated mortality among those not on OAT and the reported dramatic rise in mortality following OAT

interruption,¹⁴ as well as increasing overdose rates as a result of the emergence of highly toxic fentanyl analogues in the illicit drug markets of many settings.

In light of increasing recognition that a range of additional forms of opioid agonist therapy are necessary for some persons with complex OUD, interest in slow release oral morphine (SROM) as an OUD treatment agent has steadily grown.⁸ ¹⁵ A 2013 review by the Cochrane Collaboration reviewed the literature for SROM as treatment for OUD. However, the review was ultimately unable to draw definite conclusions regarding effectiveness, identifying only three high quality clinical trials.¹⁶ However, some unpublished data were not included in this review, and since the time of its publication, a number of new studies investigating SROM have emerged, including a large international randomized controlled trial from Switzerland and Germany.¹⁷ In light of the known limitations of methadone, buprenorphine/naloxone and medical heroin,¹⁸ these new data on the efficacy of SROM, as well as the need to identify viable OAT options that may be more attractive to patients in the context of the current opioid-related public health emergency, the present systematic review and meta-analysis was conducted to assess the efficacy of slow-release oral morphine as a treatment for opioid use disorder as measured by treatment retention, heroin use, and opioid craving.

METHODS

Data sources and searches

In this report, we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).¹⁹ Three electronic databases were searched to obtain relevant trials published in the past five years since the date of search of the Cochrane Collaboration review (up to May 2018): the Cochrane Central

Register of Controlled Trials, MEDLINE, and EMBASE. These databases were searched by combining selected MeSH terms and free-text terms related to OUD and SROM (see MEDLINE search strategy in Appendix). We also searched the following electronic registers for ongoing trials: ClinicalTrials.gov (www.clinicaltrials.gov), World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (http://apps.who.int/trialsearch/), Current Controlled Trials (www.controlled-trials.com/), EU Clinical Trials Register (www.clinicaltrialsregister.eu), the Italian Medicines Agency (www.agenziafarmaco.gov.it/en), and Trials (www.trialsjournal.com). References of all relevant papers were reviewed to identify further studies of relevance. Authors of potentially relevant studies were contacted for further unpublished data.

Study Selection

All English-language, scientifically peer-reviewed studies were eligible for inclusion. Studies were included if they met the following criteria: 1) studies were published in a scientific peer-reviewed journal; 2) they employed RCT methods (with no requirement for blinding); 3) participants met diagnostic criteria for OUD as defined in the DSM-IV or DSM-V manuals; 4) treatment was defined as SROM with or without an accompanying psychosocial intervention; and 5) control conditions were defined as medication-only, regardless of other concurrent treatment; and 6) outcomes assessed included treatment retention, efficacy (i.e., any measure of change in heroin use) and opioid craving.

Outcome Measures

The following outcomes were assessed: 1) Treatment retention, measured using dropout rates; 2) Efficacy, defined as the number of urine drug tests positive for illicit substances (incl. metabolites 6-Monoacetylmorphine [6-MAM] and 6-acetylcodeine [6-A-cod]) during the longest follow-up period in each study (or final weeks of pre-switch phase in case of cross-over trials); 3) Craving reduction, assessed

through subjective reduction of scores on opioid-craving scales specific to each study. These outcomes were often assessed multiple times throughout the study period and measured across varied time intervals ranging from 1-24 weeks, depending on study length. Other, less common outcomes, including Quality of Life measures, satisfaction, physical complaints, and mental health were also reported. The level of statistical significance to assess differences between treatment and control groups was set *a priori* at p < 0.05.

It is noteworthy that with the new terminology changes to the Diagnostic Statistical Manual (DSM-V), opioid abuse and dependence have been combined into opioid use disorder, which can be labeled as mild, moderate, or severe. Although imprecise, opioid abuse can equate to moderate or severe OUD, while opioid dependence is similar to the mild subtype.²⁰ ²¹

Data extraction

All citations identified by search were independently screened based on title and abstract by two reviewers (LG, AA). Each potentially relevant study was then reviewed in full text and assessed for all inclusion criteria. Any disagreements were resolved by discussion among reviewers (LG, AA) and additional investigators (JK, EW). Relevant data from eligible articles (i.e., socio-demographics, type of interventions, outcomes, etc.) were then extracted.

Quality Assessment

Study quality was assessed according to the criteria indicated in the Cochrane Handbook for Systematic Reviews of Interventions.¹⁹ Each study was assessed for risk of bias in random sequence generation and allocation concealment (i.e., selection bias). Blinding of participants and personnel (i.e., performance bias) and of outcome assessment (that is always possible, i.e., detection bias; objective and subjective outcomes were combined) were measured; however, since blinding was considered unlikely to affect study outcome in this context,¹⁶ open-label studies were included. Incomplete outcome data (i.e.,

attrition bias) was recorded for each eligible study. Each category of bias was assigned a rating of low, high or unclear risk using protocols from the Cochrane Handbook. There was no deviation from the quality assessment criteria.

Data Synthesis and Analysis

For the meta-analysis, dichotomous outcome measures (treatment retention, continuous abstinence) were analysed by calculating the risk ratio (RR) for each trial, with uncertainty in each result expressed via 95% confidence intervals (CIs). Continuous outcomes, such as craving, were analysed by calculating the mean difference (MD) between experimental and control groups.

Information on missing data was collected where possible from study authors. If study authors were unable to supply this information, missing data were obtained or calculated from values in the primary studies according to suggested procedures in the Cochrane Handbook for Systematic Reviews of Interventions.¹⁹

Given the expected heterogeneity of results among studies due to differences in population and intervention type, we employed a random-effects meta-analytic model. The I-squared (I²) statistic was employed to test the presence of heterogeneity between trials, and a sensitivity analysis was undertaken to assess the impact of particular high-risk trials.

Patient and public involvement: patients and public were not involved.

RESULTS

We considered all peer-reviewed articles and identified 1315 potentially eligible studies published since the date of search in the previous Cochrane Collaboration review. After deduplication, 1001 records remained for screening based on title and abstract. Of those, 13 records were considered potentially eligible and were screened based on full-text. A total of eight reports from four distinct studies met all inclusion

criteria (Figure 1). 17 $^{22-28}$ Four reports were excluded due to not meeting inclusion criteria, and one was excluded because the study protocol paper did not report outcome data. Because some trials were the subject of multiple reports, only four unique studies (n = 471) were eligible for quantitative synthesis. We considered data from all available high-quality trials as well as previously unpublished data from trial authors. One study did not report data of interest for this review other than treatment retention. 25

All participants in the included studies met the DSM-IV or V diagnostic criteria for OUD; mean age 33.1 years; of the three studies that reported on gender, ¹⁷ ²⁵ ²⁶ 24.4% were female. The mean duration of trials was 18 weeks (range 11 to 24 weeks). The mean dose of SROM provided to participants was 506.8 mg/day, and the mean dose of methadone was 67.2 mg/day. All four studies were conducted in an outpatient setting, and assessed SROM *vs.* methadone, with only one study by Giacomuzzi et al.²⁶ explicitly stating psychosocial support. This study also assessed buprenorphine in comparison with SROM and methadone.²⁶

Quality assessments for each study are presented in Table 1. Three out of four studies were found to be at low risk for selection bias – the fourth study's selection bias was agreed to be unclear, due to an unspecified randomization technique.²⁶ There was mixed-risk of bias relating to blinding of participants and outcome assessments; however, as noted by Ferri et al., objective outcomes -such as retention and urine drug screens- are unlikely to be impacted by a lack of blinding.¹⁶ Three of the four included RCTs were therefore open-label.^{17 26 27} All four studies were found to be at low risk for attrition bias. Additionally, differences in our risk of bias assessment and the previous Cochrane review were also identified.¹⁶ For the trial by Giacomuzzi et al.,²⁶ we assessed blinding of outcome assessment to be of high risk while the previous review assigned unclear risk. Blinding of outcome assessment was not possible because the treating physician could terminate patients if three consecutive urine tests were found positive for 6-MAMmam (data from Dr Giacomuzzi).

Treatment retention was assessed via the dropout rate in all studies. Unpublished data regarding

treatment retention was obtained from the authors of one study.²⁶ With respect to measures of opioid use, the number of participants with urine drug tests positive for illicit substances was reported in two studies.¹⁷ Unpublished data on positive urine tests was obtained from one study.²⁶ Measures of craving using various rating scales were used in three studies,¹⁷ ²⁵ ²⁷ though one did not report the necessary outcome data for meta-analysis to be performed.²⁵

Systematic Review Results

A 2013 Cochrane review by Ferri et al. described three trials included in the present analysis. ¹⁶ Clark et al., ²⁷ and Eder et al., ²⁵ both performed crossover, randomized controlled trials, wherein participants with OUD were randomized to take either SROM or methadone for the first half of the trial period, then subsequently switched to the other treatment for the second half of the trial period. According to the published conference abstract and M.D. thesis, Clark et al., ²⁹ conducted a 12-week open-label crossover study that required patients to be taking methadone prior to enrolling (n=9). The authors found SROM to have lower retention than methadone; however, no significant differences were found in regards to heroin use (6-Monoacetylmorphine [6-MAM]) in the last four weeks of treatment, use of other drugs over the study period, dollars spent on heroin in the final week of treatment, mental health and social functioning (as measured by the BASIS-32 Behavior and Symptom Identification Scale), self-reported days of heroin use, or heroin cravings. SROM was found to yield significantly lower on subjective opiate withdrawal scale (SOWS) scores (by 1.1 on the SOWS scale [95% Confidence Interval ³⁰ 0.6 to 1.7] p < 0.001).

Eder et al. conducted a 14-week double-blind crossover study that required participants not to be on any maintenance treatment prior to enrolling in the trial (n=55). No significant differences were found between SROM and methadone on retention rates (103 [94%] patients completed the study) or illicit druguse (consumption of cocaine was significantly reduced to 23.3% [p = 0.0083] by day 21; additional consumption of benzodiazepines remained almost unchanged throughout the study period at approximately

40% (highest [44.7%] on day 10; lowest [32.0%] on day 20); additional consumption of amphetamines was very low, with only two positive urine specimens on day 3). However, SROM was associated with significantly fewer physical complaints (falling from a mean score of 21.7 at baseline to 12.5 at day 21 among patients treated with SROM, p < 0.05), less craving for heroin, cocaine and alcohol (data from Visual Analogue Scale presented as charts only, p < 0.05), lower depression scores (falling from a mean score of 17.84 at baseline to 10.51 at day 21 among patients treated with SROM, p < 0.001), and lower anxiety scores (data from the State Trait Anxiety Inventory presented as charts only p < 0.01).

Giacomuzzi et al., 26 conducted a 24-week, open-label, randomized controlled trial, wherein participants who had OUD and who were previously on methadone (n=120) were randomized to take either SROM, buprenorphine, or to continue methadone treatment. These participants were then compared to an equal number of patients being newly treated for OUD, and thus taking no OUD pharmacotherapy (n=120). Therefore, a total N = 240 was used for this study throughout the manuscript. Overall, Giacomuzzi et al. found SROM to be associated with significantly lower consumption of opioids (unpublished data: methadone 36.7%, buprenorphine 19.2%, SROM 25.8%, p < 0.001) and cocaine (unpublished data: methadone 3.3%, buprenorphine 6%, SROM 3.3%, p < 0.001); however, scores on the Lancashire Quality of Life Profile, such as finances (methadone 4.4, buprenorphine 4.2, SROM 2.6, p < 0.001), family (methadone 5.8, buprenorphine 5.1, SROM 3.4, p < 0.05), and overall satisfaction (methadone 5.3, buprenorphine 4.9, SROM 4.1, p < 0.001), were significantly lower than for methadone or buprenorphine. Analyses of physical complaints on each treatment yielded mixed results.

Beck et al., 17 conducted a 22-week, randomized, open-label, cross-over study of patients maintained on methadone in Switzerland and Germany (n=157), disseminated via four study reports. First, a non-inferiority study found no significant differences between SROM and methadone in treatment retention (period 1: 88.7% vs. 91.1%; period 2: 82.1% vs. 88.0% for SROM vs. methadone, period 1: p =

0.50, period 2: p = 0.19) or incidence of adverse events (81% SROM vs. 79% methadone, p = 0.62). The proportion of heroin-positive urine drug screens (6-Monoacetylmorphine [6-MAM] and 6-acetylcodeine [6-A-cod]) was found to be significantly higher on SROM (0.20 \pm 0.26 SROM vs. 0.15 \pm 0.23 methadone, p < 0.001); however, this difference fell within a pre-specified inferiority margin of 10%, leading the authors to confirm the non-inferiority of SROM compared to methadone. SROM was also found to have significant dose-dependent effects on the number of positive urine drug screens, with higher doses yielding fewer positive screens (Pearson's correlation coefficient: -0.1941 for positive 6-MAM and -0.1709 for positive 6-A-cod, p < 0.05). A second study similarly confirmed the non-inferiority of SROM to methadone;³¹ SROM was associated with higher treatment satisfaction (SROM: 7.6 ± 1.8 vs. methadone: 6.0 ± 2.2 , p <0.001), and fewer adverse mental symptoms (SROM: 0.61 ± 0.56 vs. methadone: 0.68 ± 0.60 , p < 0.01). No significant (p = 0.48-0.99) differences were found between number of self-reported days of heroin-(SROM: 6.4 ± 11.7 vs. methadone: 6.4 ± 11.3), cocaine-(SROM: 2.4 ± 6.0 vs. methadone: 2.2 ± 11.3) 6.2), benzodiazepine-, (SROM: 8.2 ± 17.4 vs. methadone: 7.4 ± 15.8) and alcohol-use (SROM: 14.5 ± 21.7 vs. methadone: 14.5 ± 20.8) between SROM and methadone. A third study reported that heroincraving scores (as measured by visual analogue scale and brief craving questionnaire) were significantly lower on SROM than on methadone (visual analogue scale: 3.3 ± 2.4 vs. 2.5 ± 2.2 ; brief craving questionnaire 2.9 ± 1.4 vs. 2.6 ± 1.2 for methadone and SROM respectively, p < 0.0001), and that cocainecraving were statistically similar between the two treatments (visual analogue scale: 1.6 ± 2.0 vs. $1.4 \pm$ 1.9; brief craving questionnaire 2.1 ± 1.2 vs. 2.1 ± 1.2 for methadone and SROM respectively, p = 0.54).²² Finally, a fourth study reported on a 24-week extension phase, where all subjects in the initial cross-over trial either continued or were placed back on SROM.²³ This report again found that SROM was associated with fewer cravings for heroin (visual analogue scale: 2.06 ± 2.33 vs. 2.70 ± 2.63 ; brief craving questionnaire 2.25 ± 1.30 vs. 2.50 ± 1.43 at the end and start of extension phase respectively, p < 0.01) and

statistically similar self-reported drug use (Heroin: 0.08 ± 0.18 vs. 0.11 ± 0.21 ; Cocaine: 0.05 ± 0.17 vs. 0.06 ± 0.18 ; benzodiazepine: 0.15 ± 0.34 vs. 0.19 ± 0.36 ; Alcohol: 0.22 ± 0.36 vs. 0.24 ± 0.38 at the end and start of extension phase respectively, p = 0.26-0.54); however, as no control group was present, data from the extension phase was not included in the analyses of this review.

Meta-analysis Results

Efficacy of SROM

As shown in Figures 2a-I and 2a-ii, a three-study meta-analysis, $^{17\ 26\ 27}$ that included data from 406 participants showed no difference in effectiveness between SROM and methadone in reducing opioid use (RR = 0.96; 95% CI: 0.61- 1.52, p=0.86, $I^2=50\%$). Because other measures of SROM efficacy (i.e., craving) were not reported across all studies or were assessed using different statistical methods, they were not amenable to investigation via meta-analysis. However, two studies indicated that SROM reduces cravings for heroin more than methadone (P < 0.0001, measured using a visual analogue scale; P = 0.010, measured using the heroin craving questionnaire - brief), and that SROM produces no significant differences in self-reported use of illicit drugs. $^{17\ 22\ 27}$

Treatment retention

Acceptability of treatment was measured via participant dropout. Dropouts were assessed in four studies, $^{17\,25-27}$ with 471 participants [note: unpublished data were sought and obtained from two studies]. 17 Retention was assessed for the entire duration of the trials. As shown in Figures 2b-iii and 2b-iv, the results of the meta-analysis suggest that the mean difference in dropouts was not statistically significant between participants in the SROM vs. methadone (RR = 0.98; 95%CI 0.94 - 1.02, p = 0.34), while low (18%) heterogeneity between studies was observed.

Sensitivity analysis

As one included study was published as a thesis and conference abstract, and contained a small sample

size (n = 24), a sensitivity analysis was run wherein this study's data was excluded. This exclusion did not change the results (Figures 2a-ii and 2b-iv). It was not possible to convert all data reported on outcomes into meta-analysis due to variance in reported data. Because continuous outcomes, such as craving, were reported in less than two studies, a meta-analysis was not performed.

DISCUSSION

The results of the present systematic review and meta-analysis indicate that current evidence suggests that SROM may be generally equal to methadone in the treatment of OUD. Building on an earlier review, ¹⁶ and with additional data from more recent trials as well as unpublished data, we were able to pool data on two outcomes: opioid use and retention in treatment. Here, in the meta-analysis, we observed no significant differences between SROM and methadone in improving treatment retention and heroin use. While not amenable to meta-analysis, results from two studies indicated that SROM reduces cravings for heroin more than methadone. These findings are relevant to recent high-level recommendations suggesting the need to consider repurposing existing medications for the treatment of opioid use disorder.³²

Currently, SROM is available as an alternative to methadone in a range of European jurisdictions,³³ as well as in Canada.⁴ Our findings concur with the new Canadian National Guidelines on the treatment of OUD, which recommend SROM as a treatment option, and with the findings from earlier systematic reviews though none of them had sufficient data for the calculation of the pooled effects for treatment retention and heroin use.⁴ ¹⁵ ³⁵ In particular, our analyses considered new unpublished data that were not included in past reviews, as well as data from a new trial from Switzerland and Germany,¹⁷ thus confirming the apparent non-inferiority of SROM compared to

methadone. Although a number of gaps in our understanding of SROM persist (for instance, in the absence of mortality and detailed safety data), the current review underscores the clinical utility and potential for scaling up SROM as an agonist treatment for OUD, relevant beyond European and Canadian settings.

Limitations

The results reported in the present systematic review and meta-analysis are subject to the several limitations. First, the body of evidence regarding the efficacy of SROM in managing OUD is still relatively small. As such, additional research will help to illuminate the role that SROM can play in meeting the needs of specific patient subgroups. For instance, the relative ability of SROM to engage and retain patients with opioid use disorder in the context of the fentanyl epidemic. Second, the methodological quality of the included RCTs was low-to-moderate and the sample sizes were modest. In terms of comparing SROM to buprenorphine/naloxone, because of the latter's improved safety profile, 14 36 the recently published Canadian guideline recommends staging therapies with buprenorphine/naloxone recommended for first line therapy with methadone or SROM being offered to those unsuccessful with first line treatment.⁴ As such, head-to-head comparisons of buprenorphine to SROM may not be warranted. Third, some outcome measures were not uniformly reported across studies and, therefore, were difficult to combine in a metaanalysis. Heroin use was amenable to meta-analysis as it was reported in a consistent manner by three studies. 17 25 27 Fourth, the analysis used some outcome data from the period before cross-over occurred in trials. Therefore, these results are based off of short durations of six to 12 weeks. Additionally, while one abstract that met the eligibility criterion of being published in a scientific peer reviewed journal was included, the full results of the RCT were not published in a peer-reviewed journal; nevertheless, the RCT was included in a previous Cochrane systematic review.¹⁸ Finally, with respect to quality, we identified moderate heterogeneity and a risk of bias related to inconsistent blinding of participants and unclear blinding of outcomes across studies. Differences in study design and duration were also present. Given these multiple potential sources of possible bias, SROM should remain an area of future study, where future studies should address the sources of heterogeneity (such as outcome measurement design and study duration) and consider impact on overdose and mortality, as highlighted above.

CONCLUSIONS

The present meta-analysis demonstrates the consistent pattern in clinical trials evaluating the impact of SROM. Because most OUD patients do not access agonist therapies, ¹⁰ and since poor retention in methadone has been linked to heightened mortality and other health outcomes, ¹⁴ SROM may have a promising role in OUD treatment, especially given methadone's known side effect profile, the likely attractiveness of SROM to some patients and the apparent reduction in craving when on SROM in comparison to methadone. ⁸ ²⁶ Unless future trials report contradictory findings, the public health crisis presented by illicitly manufactured opioids, ² and the known limitations of existing agonist therapies, ¹⁴ ³⁵ these data should inform future investigations of SROM as a therapeutic tool among people undergoing treatment for OUD.

Acknowledgments:

We thank Ahmed Adam for assistance with research.

Contributorship statement

JK and EW conceived the idea for and designed the study. JK and LG conducted the research and wrote the first draft of the manuscript. GS, CR, EMS, NF contributed to the study design, interpretation of the findings and preparation of the manuscript. All authors reviewed and approved the final version of the manuscript. Ahmed Adam screened the titles, fulltexts and assessed risk of bias in the included studies.

Competing interests

None

Funding

The study was supported by the US National Institutes of Health (R25DA037756). This research was undertaken, in part, thanks to funding from the Canada Research Chairs program through a Tier 1 Canada Research Chair in Inner City Medicine that supports Dr. Evan Wood. A European Commission grant (701698) supported Dr. Jan Klimas. The study was also supported by the Canadian Institutes of Health Research through the Canadian Research Initiative on Substance Misuse (SMN–139148) - and a Foundation Grant to Dr. Evan Wood. We thank Ahmed Adam for help with searching and screening. Dr. M. Eugenia Socías is supported by Michael Smith Foundation for Health Research (MSFHR) and Canadian Institutes of Health Research (CIHR) fellowship awards. Dr. Nadia Fairbairn is supported by a Michael Smith Foundation for Health Research/St. Paul's Foundation Scholar Award.

Data sharing statement

The data are extracted from published papers that are available via the individual journal websites.

BMJ Open Page 18 of 30

Table 1: Characteristics of included studies

Study/					Risk Rating			
Country	Design	Participants	Interventions	Outcomes	A B C D E			
Clark 2002 Australia	Cross-over, Randomized controlled trial, Open-label duration: 12 weeks	N=11 Mean age: 36.5 years Use of heroin: once per week Heroin use disorder and were on methadone	(1) Morphine Flexible starting dose; increased by 50 mg per day following transfer, never exceeded 800 mg/day (2) Methadone Flexible starting dose; reduced by 12 mg per day following transfer	Retention Severity of opiate withdrawal symptoms Heroin or other substance use Severity of dependence Mental health/social functioning				
Eder 2005 Austria	Cross-over, Randomized double blind, double-dummy duration: 14 weeks	N=64 Mean age: 28 years Male: 75% Opioid use disorder (excluded patients already receiving maintenance therapy)	(1) Morphine Starting dose 200 mg/day increased to 800 mg/day by week 1. (2) Methadone Starting dose 40 mg/day increased to 100mg/day by week 1.	Retention Use of illicit substances based on urinalysis Extent of drug cravings Withdrawal symptoms General well being Safety was assessed on the basis of adverse events and clinical and physical examination QoL measured by the Lancashire Quality of Life Profile	• • • •			
Giacomuzzi 2006 Austria	Randomized controlled trial Open-label duration: 24 weeks	N=120 Mean age: 27 years; Male: 57% Opioid use disorder and were on methadone	(1) Morphine Maintenance dose dependent on severity of withdrawal symptoms (2) Methadone Maintenance dose dependent on severity of withdrawal symptoms (3) Buprenorphine Maintenance dose dependent on severity of withdrawal symptoms	Retention (from personal correspondence) QoL measured by the Lancashire Quality of Life Profile Withdrawal symptoms measured by the Opioid Withdrawal Scale	• • • •			
Beck 2014 Switzerland and Germany	Cross-over Randomized controlled trial, Open-label, Duration: 22 weeks	N=276 Mean age: 38.1 Male: 81.5% Opioid dependence and were on methadone use disorder	(1) Methadone flexible dosing. Cross over at 11 weeks to morphine (2) Morphine flexible dosing. Cross over at 11 weeks to methadone	Retention (24 weeks) Proportion of positive urine samples per patient (12 weeks) Per treatment for co-consumption of heroin Craving heroin Craving cocaine Self-reported drug use Mental health problems (SCL-27) Positive urine samples Adverse events	• • • • •			

Risk Rating Legend:

A: Random sequence generation (selection bias); B: Allocation concealment (selection bias); C: Blinding of participants and personnel (performance bias); D: Blinding of outcome assessment (detection bias); E: Incomplete outcome data (attrition bias); Amber Circle: Unclear

REFERENCES

- Han B, Compton WM, Jones CM, et al. Nonmedical Prescription Opioid Use and Use Disorders Among Adults Aged 18 Through 64 Years in the United States, 2003-2013. *JAMA* 2015;314(14):1468-78. doi: 10.1001/jama.2015.11859 [published Online First: 2015/10/16]
- NIDA. Overdose Death Rates: National Institute on Drug Abuse; September 2017
 [Available from: https://www.drugabuse.gov/related-topics/trends-statistics/overdose-death-rates accessed May 23, 2018.
- 3. (WHO); WHO. Guidelines for the psychosocially assisted pharmacological treatment of opioid dependence. Geneva, Switzerland, 2009.
- 4. Bruneau J, Ahamad K, Goyer M-È, et al. Management of opioid use disorders: a national clinical practice guideline. *Canadian Medical Association Journal* 2018;190(9):E247-E57. doi: 10.1503/cmaj.170958
- 5. (ASAM); ASoAM. The national practice guideline for the use of medications in the treatment of addiction involving opioid use, 2015.
- 6. Mattick RP, Breen C, Kimber J, et al. Methadone maintenance therapy versus no opioid replacement therapy for opioid dependence. *Cochrane database of systematic reviews (Online)* 2009(3):CD002209. doi:

10.1002/14651858.CD002209.pub2 [published Online First: 2009/07/10]

- 7. Mattick RP, Breen C, Kimber J, et al. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. *Cochrane database of systematic reviews (Online)* 2014;2:CD002207. doi: 10.1002/14651858.CD002207.pub4 [published Online First: 2014/02/07]
- 8. Socías M, Wood E. Evaluating slow-release oral morphine to narrow the treatment gap for opioid use disorders. *Annals of Internal Medicine* 2018;168(2):141-42. doi: 10.7326/M17-2373
- 9. Darke S, Zador D. Fatal heroin 'overdose': a review. *Addiction* 1996;91(12):1765-72. [published Online First: 1996/12/01]
- 10. Volkow ND, Frieden TR, Hyde PS, et al. Medication-assisted therapies--tackling the opioid-overdose epidemic. *The New England journal of medicine* 2014;370(22):2063-6. doi: 10.1056/NEJMp1402780 [published Online First: 2014/04/25]
- 11. Farre M, Mas A, Torrens M, et al. Retention rate and illicit opioid use during methadone maintenance interventions: a meta-analysis. *Drug Alcohol Depend* 2002;65(3):283-90. [published Online First: 2002/02/14]
- 12. White AP. The promise, problems and limitations of methadone: a clinical perspective. *J Clin Forensic Med* 1994;1(2):97-104. [published Online First: 1994/09/01]

- 13. Kheradmand A, Banazadeh N, Abedi H. Physical effects of methadone maintenance treatment from the standpoint of clients. *Addict Health* 2010;2(3-4):66-73. [published Online First: 2010/07/01]
- 14. Sordo L, Barrio G, Bravo MJ, et al. Mortality risk during and after opioid substitution treatment: systematic review and meta-analysis of cohort studies. *BMJ* 2017;357 doi: 10.1136/bmj.j1550
- 15. Jegu J, Gallini A, Soler P, et al. Slow-release oral morphine for opioid maintenance treatment: a systematic review. *Br J Clin Pharmacol* 2011;71(6):832-43. doi: 10.1111/j.1365-2125.2011.03923.x [published Online First: 2011/01/27]
- 16. Ferri M, Minozzi S, Bo A, et al. Slow-release oral morphine as maintenance therapy for opioid dependence. *Cochrane Database of Systematic Reviews* 2013(6) doi: 10.1002/14651858.CD009879.pub2
- 17. Beck T, Haasen C, Verthein U, et al. Maintenance treatment for opioid dependence with slow-release oral morphine: a randomized cross-over, non-inferiority study versus methadone. *Addiction* 2014;109(4):617-26. doi: 10.1111/add.12440 [published Online First: 2013/12/07]
- 18. Ferri M, Davoli M, Perucci CA. Heroin maintenance for chronic heroin-dependent individuals. *Cochrane database of systematic reviews (Online)* 2011(12):CD003410. doi: 10.1002/14651858.CD003410.pub4 [published Online First: 2011/12/14]

- 19. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ* 2011;343:d5928. doi: 10.1136/bmj.d5928
- 20. Substance-Related and Addictive Disorders. American Psychiatry Association:

 American Psychiatric Publishing., 2013.
- 21. Compton WM, Dawson DA, Goldstein RB, et al. Crosswalk between DSM-IV dependence and DSM-5 substance use disorders for opioids, cannabis, cocaine and alcohol. *Drug and alcohol dependence* 2013;132(1):387-90.
- 22. Falcato L, Beck T, Reimer J, et al. Self-reported cravings for heroin and cocaine during maintenance treatment with slow-release oral morphine compared with methadone: a randomized, crossover clinical trial. *J Clin Psychopharmacol* 2015;35(2):150-7. doi: 10.1097/JCP.0000000000000288 [published Online First: 2015/02/14]
- 23. Hammig R, Kohler W, Bonorden-Kleij K, et al. Safety and tolerability of slow-release oral morphine versus methadone in the treatment of opioid dependence. *J Subst Abuse Treat* 2014;47(4):275-81. doi: 10.1016/j.jsat.2014.05.012 [published Online First: 2014/07/30]
- 24. Winklbaur B, Jagsch R, Ebner N, et al. Quality of life in patients receiving opioid maintenance therapy. A comparative study of slow-release morphine versus

- methadone treatment. *Eur Addict Res* 2008;14(2):99-105. doi: 10.1159/000113724 [published Online First: 2008/03/13]
- 25. Eder H, Jagsch R, Kraigher D, et al. Comparative study of the effectiveness of slow-release morphine and methadone for opioid maintenance therapy. *Addiction* 2005;100(8):1101-9. doi: 10.1111/j.1360-0443.2005.001128.x [published Online First: 2005/07/27]
- 26. Giacomuzzi S, Kemmler G, Ertl M, et al. Opioid addicts at admission vs. slow-release oral morphine, methadone, and sublingual buprenorphine maintenance treatment participants. *Subst Use Misuse* 2006;41(2):223-44. doi: 10.1080/10826080500391845 [published Online First: 2006/01/06]
- 27. Clark N KK, Lintzeris N, Ritter A, Whelan G. A randomised trial of once-daily slow-release oral morphine versus methadone for heroin dependence. Drug and Alcohol Dependence, 2002:Suppl 1:S33.
- 28. Verthein U, Beck T, Haasen C, et al. Mental symptoms and drug use in maintenance treatment with slow-release oral morphine compared to methadone: Results of a randomized crossover study. *European Addiction Research* 2015;21(2):97-104.
- 29. Clark NC. Expanding the Options for the Treatment of Heroin Dependence with Oral Supervised Opioid Substitution Therapy: LAAM, Buprenorphine and Slow Release Oral Morphine as Alternatives to Methadone. University of Melbourne, Department of Medicine, St Vincent's Hospital, 2006.

- 30. Weingardt KR, Cucciare MA, Bellotti C, et al. A randomized trial comparing two models of web-based training in cognitive-behavioral therapy for substance abuse counselors. *J Subst Abuse Treat* 2009;37(3):219-27. doi: 10.1016/j.jsat.2009.01.002 [published Online First: 2009/04/03]
- 31. Verthein U, Beck T, Haasen C, et al. Mental symptoms and drug use in maintenance treatment with slow-release oral morphine compared to methadone: results of a randomized crossover study. *Eur Addict Res* 2015;21(2):97-104. doi: 10.1159/000368572 [published Online First: 2014/11/28]
- 32. Volkow ND, Collins FS. The Role of Science in Addressing the Opioid Crisis. *New England Journal of Medicine* 2017;377(4):391-94. doi: 10.1056/NEJMsr1706626
- 33. Cooper TE, Chen J, Wiffen PJ, et al. Morphine for chronic neuropathic pain in adults.

 Cochrane database of systematic reviews (Online) 2017;5:CD011669. doi: 10.1002/14651858.CD011669.pub2 [published Online First: 2017/05/23]
- 34. EMCDDA. Year of introduction of methadone maintenance treatment, high-dosage buprenorphine treatment, heroin-assisted treatment, slow-realease morphine and Suboxone Lisbon: European Monitoring Centre for Drugs and Drug Addiction; 2009 [Available from: http://www.emcdda.europa.eu/stats09/hsrtab1 accessed April 13th 2018.

- 35. Sharma A, Kelly SM, Mitchell SG, et al. Update on Barriers to Pharmacotherapy for Opioid Use Disorders. *Curr Psychiatry Rep* 2017;19(6):35. doi: 10.1007/s11920-017-0783-9 [published Online First: 2017/05/21]
- ed Onlines ay M. Is methad.

 a):1352-3. doi: 10.1136/bi. 36. Luty J, O'Gara C, Sessay M. Is methadone too dangerous for opiate addiction? BMJ 2005;331(7529):1352-3. doi: 10.1136/bmj.331.7529.1352 [published Online First:

Identification

Eligibility

Figure 1. Flowchart of studies

i) Heroin use measured as the number of positive urine drug tests per participant:

	SRO	М	methad	lone		Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Random, 95	% CI	
Beck 2014	34	157	27	157	41.7%	1.26 [0.80, 1.98]		-		
Clark 2006	5	61	4	62	11.1%	1.27 [0.36, 4.51]		- -	_	
Giacomuzzi 2006	31	120	44	120	47.2%	0.70 [0.48, 1.03]		-		
Total (95% CI)		338		339	100.0%	0.96 [0.61, 1.52]		•		
Total events	70		75							
Heterogeneity: Tau ² =	= 0.08; CI	$hi^2 = 3$.96, df =	2 (P = 0)	$(0.14); I^2 =$	50%	0.01 0	1 1	10	100
Test for overall effect	Z = 0.13	8 (P = 0)).86)					.ı ıvours SROM Favou	rs methador	

ii) Heroin use measured as the number of positive urine drug tests per participant, with high-risk study excluded:

l /										
18		SRO	М	methac	lone		Risk Ratio		Risk Ratio	
19 .	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Random, 95% CI	
20	Beck 2014	34	157	24	157	48.0%	1.42 [0.88, 2.27]		+	
1	Clark 2006	5	61	4	62		Not estimable			
22	Giacomuzzi 2006	31	120	44	120	52.0%	0.70 [0.48, 1.03]		-	
3	Total (95% CI)		277		277	100.0%	0.98 [0.50, 1.96]		•	
4	Total events	65		68						
:5	Heterogeneity: Tau ² =	0.20; Cł	$ni^2 = 5.$.08, df =	1 (P = 0)	$(0.02); I^2 =$	= 80%	0.01	0.1 1 10	100
26	Test for overall effect	Z = 0.04	1 (P = 0)).97)				0.01	Favours SROM Favours methador	

Figure 2b. Forest plot of the effects of slow release oral morphine (SROM) on retention in treatment among persons with opioid use disorders in randomized controlled trials; CI: confidence interval; ITT population.

iii) Retention in treatment at the end of the trial (or first period in case of cross-over trials):

	SRO	М	methad	done		Risk Ratio		Risk	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Rand	om, 95% CI		
Beck 2014	226	264	233	260	33.1%	0.96 [0.90, 1.02]			l		
Clark 2006	9	11	10	10	1.8%	0.83 [0.60, 1.14]			-		
Eder 2005	56	61	55	59	15.8%	0.98 [0.89, 1.09]		•	ı		
Giacomuzzi 2006	40	40	40	40	49.3%	1.00 [0.95, 1.05]					
Total (95% CI)		376		369	100.0%	0.98 [0.94, 1.02]		(
Total events	331		338								
Heterogeneity: Tau ² =	= 0.00; CI	$ni^2 = 3$.66, df =	3 (P = 0)	$(0.30); I^2 =$	= 18%	0.01	01	1		100
Test for overall effect	z = 0.9	5 (P = 0)	0.34)				0.01	0.1 Favours SROM	l 1º Favours met	•	100 ne

49 iv) Retention in treatment at the end of the trial (or first period in case of cross-over trials), with high-risk study excluded:

	SRO	М	methad	lone		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Beck 2014	226	264	233	260	32.6%	0.96 [0.90, 1.02]	•
Clark 2006	9	11	10	10		Not estimable	
Eder 2005	56	61	55	59	14.2%	0.98 [0.89, 1.09]	†
Giacomuzzi 2006	40	40	40	40	53.2%	1.00 [0.95, 1.05]	•
Total (95% CI)		365		359	100.0%	0.98 [0.94, 1.02]	
Total events	322		328				
Heterogeneity: Tau ² =	= 0.00; टी	ဂူး <u>p</u> e <u>န</u>	r2r≠,vieΨ	ี่ 2√β⁄≟ใ	sttp://br	ijရာနွn.bmj.com/site/about/gu 0.01	idelines.xhtml 10 100 100
Test for overall effect	Z = 0.85	5 (P = 0)).40)			0.01	Favours SROM Favours methadone

Slow Release Oral Morphine versus Methadone for the Treatment of Opioid Use Disorder: A Systematic Review and Meta-Analysis

Appendix. MEDLINE Search Strategy:

	Database(s): Ovid MEDLINE(R) Epub Ahead of Print, In-Process & Other Non-Indexed						
	Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to May 1st, 2018						
	Search Strategy: Run May 1st						
#	Searches	Results					
1	exp Opioid-Related Disorders/	22650					
2	(opiat\$ or opioid\$ or heroin\$ or narcot\$ or methadone or	120510					
	buprenorphine).ab,ti.						
3	1 or 2	125772					
4	(withdraw\$ or abstinen\$ or abstain\$ or abuse\$ or abusing or dependen\$ or	1820666					
	addict\$ or overdos\$ or 'over-dose' or intoxicat\$).ab,ti.						
5	3 and 4	45660					
6	exp MORPHINE/	36715					
7	morphine.ab,ti.	46588					
8	6 or 7	53469					
9	randomized controlled trial.pt.	459781					
10	controlled clinical trial.pt.	92372					
11	randomized.ab,ti.	441959					
12	drug therapy.sh.	29544					
13	randomly.ab,ti.	290465					
14	trial.ab,ti.	500960					
15	groups.ab,ti.	1815207					
16	9 or 10 or 11 or 12 or 13 or 14 or 15	2650720					
17	5 and 8 and 16	1299					
18	limit 17 to humans	613					
19	limit 18 to yr="2013 - 2018"	143					

Page 29 of 30

BMJ Open

47

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #			
TITLE						
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1			
ABSTRACT						
Structured summary	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.					
INTRODUCTION						
Rationale	3	Describe the rationale for the review in the context of what is already known.	4-5			
Objectives	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).					
METHODS						
Protocol and registration	d registration 5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.					
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6			
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5			
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.				
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6			
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7			
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.				
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7			
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7			
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis. http://bmjopen.bmj.com/site/about/guidelines.xhtml	7			

PRISMA 2009 Checklist

		Page 1 of 2				
Section/topic	#	Checklist item	Reported on page #			
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).				
Additional analyses	16	escribe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating anich were pre-specified.				
RESULTS						
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8			
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	17			
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	17			
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Figure 2			
3 Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Figure 2			
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).				
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).				
DISCUSSION						
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	13			
2 Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	14			
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	15			
FUNDING						
8 Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	16			

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 42 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

BMJ Open

Slow Release Oral Morphine versus Methadone for the Treatment of Opioid Use Disorder: A Systematic Review and Meta-Analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-025799.R3
Article Type:	Research
Date Submitted by the Author:	06-Feb-2019
Complete List of Authors:	Klimas, Jan; BC Centre on Substance Use; University of British Columbia, Department of Medicine Gorfinkel, Lauren; Columbia University Giacomuzzi, Salvatore; Universitätsklinik Innsbruck-Ambulanz für Abhängigkeitserkrankungen Ruckes, Christian; University Medical Center Mainz, Interdisciplinary Center Clinical Trials Socías, M.; BC Centre on Substance Use Fairbairn, Nadia; BC Centre on Substance Use; University of British Columbia, Department of Medicine Wood, Evan; BC Centre on Substance Use; University of British Columbia, Department of Medicine
Primary Subject Heading :	Addiction
Secondary Subject Heading:	Mental health
Keywords:	Opioid use disorder, Substance misuse < PSYCHIATRY, Substance use treatment, Oral morphine, meta-analysis

Slow Release Oral Morphine versus Methadone for the Treatment of Opioid Use Disorder: A Systematic Review and Meta-Analysis

Klimas, Jan^{1,3}, Gorfinkel, Lauren¹, Giacomuzzi, Salvatore⁵, Ruckes, Christian⁴, Socías, M. Eugenia^{1,2}, Fairbairn, Nadia^{1,2}, Wood, Evan^{1,2}

- British Columbia Centre for Substance Use, 400-1045 Howe Street, Vancouver, BC, CANADA, V6Z 1Y6
- Department of Medicine, University of British Columbia, St. Paul's Hospital, 608-1081 Burrard 2. Street, Vancouver, BC, CANADA, V6Z 1Y6
- School of Medicine, University College Dublin, Health Sciences Centre, Belfield, Dublin 4, 3. Ireland
- University Medical Center Mainz, Interdisciplinary Center Clinical Trials (IZKS), 4. Langenbeckstraße 1 · D-55131 Mainz, Germany
- Universitätsklinik Innsbruck-Ambulanz für Abhängigkeitserkrankungen, Anichstraße 35, 5. 6020 Innsbruck, Austria

JK and LG contributed equally to this paper.

Jan Klimas, PhD, MSc Send correspondence to:

> B.C. Centre on Substance Use University on British Columbia

400-1045 Howe Street, Vancouver, B.C., V6Z 1Y6

Canada

Email: jan.klimas@bccsu.ubc.ca **Tel:** (778) 945-7616

Running head: SROM for Opioid Use Disorder

Word Count: 3886

Tables: 1 Figures: 3

Revised: 5 Feb. 19

ABSTRACT

Objective To assess the efficacy of Slow release oral morphine (SROM) as a treatment for opioid use disorder.

Design Systematic review and meta-analysis of randomized controlled trials (RCT).

Data sources Three electronic databases were searched through May 1st, 2018: the Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE. We also searched the following electronic registers for ongoing trials: ClinicalTrials.gov, World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP), Current Controlled Trials, and the EU Clinical Trials Register.

Eligibility criteria for selecting studies We included RCTs of any duration, assessing the effect of SROM on measures of treatment retention, heroin use and craving in adults who met the diagnostic criteria for opioid use disorder.

Data extraction and synthesis Two independent reviewers extracted data and assessed risk of bias. Data were pooled using the random-effects model and expressed as Risk Ratios (RR) or mean differences (MDs) with 95% CIs. Heterogeneity was assessed (chi-squared statistic) and quantified (I² statistic) and a sensitivity analysis was undertaken to assess the impact of particular high-risk trials.

Results Among 1315 records screened and four studies reviewed, four unique randomized trials met inclusion criteria (n = 471), and compared SROM with methadone. In the meta-analysis, we observed no significant differences between SROM and methadone in improving treatment retention (risk ratio [RR] = 0.98; 95% Confidence Interval [CI]: 0.94 - 1.02, p = 0.34), and heroin use (RR = 0.96; 95% CI: 0.61- 1.52, p = 0.86). Craving data was not amenable to meta-analysis. Available data implied no differences in adverse events, heroin, cocaine, or benzodiazepine use.

Conclusions Meta-analysis of existing randomized trials suggests SROM may be generally equal to methadone in retaining patients in treatment and reducing heroin use as methadone while potentially resulting in less craving. The methodological quality of the included RCTs was low-to-moderate.

Word Count: 300

Keywords: opioid use disorder, substance use treatment, oral morphine, meta-analysis

Review registration number: PROSPERO [CRD42018090782]

Strengths and limitations of this study

• The first meta-analysis of slow release oral morphine.

- We included new studies that increase the validity of the study.
- We included previously unpublished data obtained from primary trials.
- A meta-analysis of craving and adverse events was not possible due to inconsistent reporting of outcome measures across trials

INTRODUCTION

Overdose is the dominant cause of untimely death among people with opioid use disorder (OUD), and in 2017, opioid overdose was declared a national public health emergency in the U.S. Approximately two million Americans have a diagnosed opioid use disorder,¹ and deaths due to opioid overdoses have nearly doubled since 2006, exceeding 46,000 in 2016.² In response, the past decade has witnessed an expansion of pharmaceutical interventions for OUD, including the opioid agonist therapies methadone and buprenorphine/naloxone. Opioid agonist therapy (OAT) is currently the first-line treatment for OUD recommended by the World Health Organization (WHO) and a number of federal health guidelines.³⁻⁵

While methadone and buprenorphine/naloxone are proven effective,^{6,7} they have a known limited ability to attract and retain patients in treatment. For instance, past studies have demonstrated that most individuals who overdose are not on agonist treatment at the time of death, and that, overall, agonist therapies remain sorely underutilised with only a fraction of eligible patients in U.S. accessing these therapies.⁸⁻¹⁰ While overall low rates of methadone- and buprenorphine/naloxone-use are partially due to poor access and limited service delivery,¹⁰ the balance of medication benefits and side-effects (e.g., sweating, weight gain), and other limitations of these therapies (e.g., QTc interval prolongation, sleep disturbance, need for daily visits and supervised urine collection in some settings), also result in low rates of patient retention once individuals initiate therapy.¹¹⁻¹³ The issues of poor uptake and retention on OAT are particularly urgent in the context of elevated

mortality among those not on OAT and the reported dramatic rise in mortality following OAT interruption, ¹⁴ as well as increasing overdose rates as a result of the emergence of highly toxic fentanyl analogues in the illicit drug markets of many settings.

In light of increasing recognition that a range of additional forms of opioid agonist therapy are necessary for some persons with complex OUD, interest in slow release oral morphine (SROM) as an OUD treatment agent has steadily grown.⁸ ¹⁵ A 2013 review by the Cochrane Collaboration reviewed the literature for SROM as treatment for OUD. However, the review was ultimately unable to draw definite conclusions regarding effectiveness, identifying only three high quality clinical trials. 16 However, some unpublished data were not included in this review, and since the time of its publication, a number of new studies investigating SROM have emerged, including a large international randomized controlled trial from Switzerland and Germany. 17 In light of the known limitations of methadone, buprenorphine/naloxone and medical heroin,18 these new data on the efficacy of SROM, as well as the need to identify viable OAT options that may be more attractive to patients in the context of the current opioid-related public health emergency, the present systematic review and meta-analysis was conducted to assess the efficacy of slow-release oral morphine as a treatment for opioid use disorder as measured by treatment retention, heroin use, and opioid craving.

METHODS

Data sources and searches

In this report, we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Three electronic databases were searched to obtain relevant trials published in the past five years since the date of search of the Cochrane Collaboration review (up to May 2018): the Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE. These databases were searched by combining selected MeSH terms and free-text terms related to OUD and SROM (see MEDLINE search strategy in Appendix). We also searched the following electronic registers for ongoing trials: ClinicalTrials.gov (www.clinicaltrials.gov), World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (http://apps.who.int/trialsearch/), Current Controlled Trials (www.controlled-trials.com/), EU Clinical Trials Register (www.clinicaltrialsregister.eu), the Italian Medicines Agency (www.agenziafarmaco.gov.it/en), and Trials (www.trialsjournal.com). References of all relevant papers were reviewed to identify further studies of relevance. Authors of potentially relevant studies were contacted for further unpublished data.

Study Selection

All English-language, randomized controlled trials (RCT) were eligible for inclusion. Studies were included if they met the following criteria: 1) studies were published in a scientific peer-reviewed journal (one RCT was published as conference abstract and a corresponding M.D. thesis was provided by authors²⁰); 2) they employed RCT methods (with no requirement for blinding); 3) participants met diagnostic criteria for OUD as defined in the DSM-IV or DSM-V manuals; 4) treatment was defined as SROM with or without an accompanying psychosocial intervention; and 5) control conditions were defined as medication-only, regardless of other concurrent treatment; and 6) outcomes assessed included treatment

retention, efficacy (i.e., any measure of change in heroin use) and opioid craving.

Outcome Measures

The following outcomes were assessed: 1) Treatment retention, measured using dropout rates; 2) Efficacy, defined as the number of urine drug tests positive for illicit substances (incl. metabolites 6-Monoacetylmorphine [6-MAM] and 6-acetylcodeine [6-A-cod]) during the longest follow-up period in each study (or final weeks of pre-switch phase in case of cross-over trials); 3) Craving reduction, assessed through subjective reduction of scores on opioid-craving scales specific to each study. These outcomes were often assessed multiple times throughout the study period and measured across varied time intervals ranging from 1-24 weeks, depending on study length. Other, less common outcomes, including Quality of Life measures, satisfaction, physical complaints, and mental health were also reported. The level of statistical significance to assess differences between treatment and control groups was set *a priori* at p < 0.05.

It is noteworthy that with the new terminology changes to the Diagnostic Statistical Manual (DSM-V), opioid abuse and dependence have been combined into opioid use disorder, which can be labeled as mild, moderate, or severe. Although imprecise, opioid abuse can equate to moderate or severe OUD, while opioid dependence is similar to the mild subtype.²¹ ²²

Data extraction

All citations identified by search were independently screened based on title and abstract by two reviewers (LG, AA). Each potentially relevant study was then reviewed in full text and assessed for all inclusion criteria. Any disagreements were resolved by discussion among reviewers (LG, AA) and additional investigators (JK, EW). Relevant data from eligible articles (i.e., socio-demographics, type of interventions, outcomes, etc.) were then extracted.

Quality Assessment

Study quality was assessed according to the criteria indicated in the Cochrane Handbook for Systematic Reviews of Interventions.¹⁹ Each study was assessed for risk of bias in random sequence generation and allocation concealment (i.e., selection bias). Blinding of participants and personnel (i.e., performance bias) and of outcome assessment (that is always possible, i.e., detection bias; objective and subjective outcomes were combined) were measured; however, since blinding was considered unlikely to affect study outcome in this context,¹⁶ open-label studies were included. Incomplete outcome data (i.e., attrition bias) was recorded for each eligible study. Each category of bias was assigned a rating of low, high or unclear risk using protocols from the Cochrane Handbook. There was no deviation from the quality assessment criteria.

Data Synthesis and Analysis

For the meta-analysis, dichotomous outcome measures (treatment retention, continuous abstinence) were analysed by calculating the risk ratio (RR) for each trial, with uncertainty in each result expressed via 95% confidence intervals (CIs). Continuous outcomes, such as craving, were analysed by calculating the mean difference (MD) between experimental and control groups.

Information on missing data was collected where possible from study authors. If study authors were unable to supply this information, missing data were obtained or calculated from values in the primary studies according to suggested procedures in the Cochrane Handbook for Systematic Reviews of Interventions.¹⁹

Given the expected heterogeneity of results among studies due to differences in population and intervention type, we employed a random-effects meta-analytic model. The I-squared (I²) statistic was employed to test the presence of heterogeneity between trials, and a sensitivity analysis was undertaken to assess the impact of particular high-risk trials.

Patient and public involvement: patients and public were not involved.

RESULTS

We considered all scientific articles and identified 1315 potentially eligible studies published since the date of search in the previous Cochrane Collaboration review. After deduplication, 1001 records remained for screening based on title and abstract. Of those, 13 records were considered potentially eligible and were screened based on full-text. A total of eight reports from four distinct studies met all inclusion criteria (Figure 1). Pour reports were excluded due to not meeting inclusion criteria, and one was excluded because the study protocol paper did not report outcome data. Because some trials were the subject of multiple reports, only four unique studies (n = 471) were eligible for quantitative synthesis. We considered data from all available high-quality trials as well as previously unpublished data from trial authors. One study did not report data of interest for this review other than treatment retention.

All participants in the included studies met the DSM-IV or V diagnostic criteria for OUD; mean age 33.1 years; of the three studies that reported on gender, ¹⁷ ²⁶ ²⁷ 24.4% were female. The mean duration of trials was 18 weeks (range 11 to 24 weeks). The mean dose of SROM provided to participants was 506.8 mg/day, and the mean dose of methadone was 67.2 mg/day. All four studies were conducted in an outpatient setting, and assessed SROM *vs.* methadone, with only one study by Giacomuzzi et al.²⁷ explicitly stating psychosocial support. This study also assessed buprenorphine in comparison with SROM and methadone.²⁷

Quality assessments for each study are presented in Table 1. Three out of four studies were found to be at low risk for selection bias – the fourth study's selection bias was agreed to be unclear, due to an unspecified randomization technique.²⁷ There was mixed-risk of bias relating to blinding of participants and outcome assessments; however, as noted by Ferri et al., objective outcomes -such as retention and urine drug screens- are unlikely to be impacted by a lack of blinding.¹⁶ Three of the four included RCTs were therefore open-label.¹⁷ ²⁷ ²⁸ All four studies were found to be at low risk for attrition bias. Additionally,

differences in our risk of bias assessment and the previous Cochrane review were also identified.¹⁶ For the trial by Giacomuzzi et al.,²⁷ we assessed blinding of outcome assessment to be of high risk while the previous review assigned unclear risk. Blinding of outcome assessment was not possible because the treating physician could terminate patients if three consecutive urine tests were found positive for 6-MAMmam (data from Dr Giacomuzzi).

Treatment retention was assessed via the dropout rate in all studies. Unpublished data regarding treatment retention was obtained from the authors of one study.²⁷ With respect to measures of opioid use, the number of participants with urine drug tests positive for illicit substances was reported in two studies.¹⁷ Unpublished data on positive urine tests was obtained from one study.²⁷ Measures of craving using various rating scales were used in three studies,¹⁷ ²⁶ ²⁸ though one did not report the necessary outcome data for meta-analysis to be performed.²⁶

Systematic Review Results

A 2013 Cochrane review by Ferri et al. described three trials included in the present analysis. ¹⁶ Clark et al., ²⁸ and Eder et al., ²⁶ both performed crossover, randomized controlled trials, wherein participants with OUD were randomized to take either SROM or methadone for the first half of the trial period, then subsequently switched to the other treatment for the second half of the trial period. According to the published conference abstract and M.D. thesis, Clark et al., ²⁰ conducted a 12-week open-label crossover study that required patients to be taking methadone prior to enrolling (n=9). The authors found SROM to have lower retention than methadone; however, no significant differences were found in regards to heroin use (6-Monoacetylmorphine [6-MAM]) in the last four weeks of treatment, use of other drugs over the study period, dollars spent on heroin in the final week of treatment, mental health and social functioning (as measured by the BASIS-32 Behavior and Symptom Identification Scale), self-reported days of heroin

use, or heroin cravings. SROM was found to yield significantly lower on subjective opiate withdrawal scale (SOWS) scores (by 1.1 on the SOWS scale [95% Confidence Interval 0.6 to 1.7] p < 0.001).

Eder et al. conducted a 14-week double-blind crossover study that required participants not to be on any maintenance treatment prior to enrolling in the trial (n=55). No significant differences were found between SROM and methadone on retention rates (103 [94%] patients completed the study) or illicit druguse (consumption of cocaine was significantly reduced to 23.3% [p = 0.0083] by day 21; additional consumption of benzodiazepines remained almost unchanged throughout the study period at approximately 40% (highest [44.7%] on day 10; lowest [32.0%] on day 20); additional consumption of amphetamines was very low, with only two positive urine specimens on day 3). However, SROM was associated with significantly fewer physical complaints (falling from a mean score of 21.7 at baseline to 12.5 at day 21 among patients treated with SROM, p < 0.05), less craving for heroin, cocaine and alcohol (data from Visual Analogue Scale presented as charts only, p < 0.05), lower depression scores (falling from a mean score of 17.84 at baseline to 10.51 at day 21 among patients treated with SROM, p < 0.001), and lower anxiety scores (data from the State Trait Anxiety Inventory presented as charts only p < 0.01).

Giacomuzzi et al.,²⁷ conducted a 24-week, open-label, randomized controlled trial, wherein participants who had OUD and who were previously on methadone (n=120) were randomized to take either SROM, buprenorphine, or to continue methadone treatment. These participants were then compared to an equal number of patients being newly treated for OUD, and thus taking no OUD pharmacotherapy (n=120). Therefore, a denominator of N=240 is indicated for this study throughout the manuscript. Overall, Giacomuzzi et al. found SROM to be associated with significantly lower consumption of opioids (unpublished data: methadone 36.7%, buprenorphine 19.2%, SROM 25.8%, p < 0.001) and cocaine (unpublished data: methadone 3.3%, buprenorphine 6%, SROM 3.3%, p < 0.001); however, scores on the Lancashire Quality of Life Profile, such as finances (methadone 4.4, buprenorphine 4.2, SROM 2.6, p < 0.001)

0.001), family (methadone 5.8, buprenorphine 5.1, SROM 3.4, p < 0.05), and overall satisfaction (methadone 5.3, buprenorphine 4.9, SROM 4.1, p < 0.001), were significantly lower than for methadone or buprenorphine. Analyses of physical complaints on each treatment yielded mixed results.

Beck et al., ¹⁷ conducted a 22-week, randomized, open-label, cross-over study of patients maintained on methadone in Switzerland and Germany (n=157), disseminated via four study reports. First, a noninferiority study found no significant differences between SROM and methadone in treatment retention (period 1: 88.7% vs. 91.1%; period 2: 82.1% vs. 88.0% for SROM vs. methadone, period 1: p =0.50, period 2: p = 0.19) or incidence of adverse events (81% SROM vs. 79% methadone, p = 0.62). The proportion of heroin-positive urine drug screens (6-Monoacetylmorphine [6-MAM] and 6-acetylcodeine [6-A-cod]) was found to be significantly higher on SROM $(0.20 \pm 0.26 \text{ SROM vs. } 0.15 \pm 0.23 \text{ methadone}, p$ < 0.001); however, this difference fell within a pre-specified inferiority margin of 10%, leading the authors to confirm the non-inferiority of SROM compared to methadone. SROM was also found to have significant dose-dependent effects on the number of positive urine drug screens, with higher doses yielding fewer positive screens (Pearson's correlation coefficient: -0.1941 for positive 6-MAM and -0.1709 for positive 6-A-cod, p < 0.05). A second study similarly confirmed the non-inferiority of SROM to methadone;³⁰ SROM was associated with higher treatment satisfaction (SROM: 7.6 ± 1.8 vs. methadone: 6.0 ± 2.2 , p <0.001), and fewer adverse mental symptoms (SROM: 0.61 ± 0.56 vs. methadone: 0.68 ± 0.60 , p < 0.01). No significant (p = 0.48-0.99) differences were found between number of self-reported days of heroin-(SROM: 6.4 ± 11.7 vs. methadone: 6.4 ± 11.3), cocaine-(SROM: 2.4 ± 6.0 vs. methadone: 2.2 ± 11.3) 6.2), benzodiazepine-, (SROM: 8.2 ± 17.4 vs. methadone: 7.4 ± 15.8) and alcohol-use (SROM: 14.5 ± 21.7 vs. methadone: 14.5 ± 20.8) between SROM and methadone. A third study reported that heroincraving scores (as measured by visual analogue scale and brief craving questionnaire) were significantly lower on SROM than on methadone (visual analogue scale: 3.3 ± 2.4 vs. 2.5 ± 2.2 ; brief craving

questionnaire 2.9 ± 1.4 vs. 2.6 ± 1.2 for methadone and SROM respectively, p < 0.0001), and that cocaine-craving were statistically similar between the two treatments (visual analogue scale: 1.6 ± 2.0 vs. 1.4 ± 1.9 ; brief craving questionnaire 2.1 ± 1.2 vs. 2.1 ± 1.2 for methadone and SROM respectively, p = 0.54). Finally, a fourth study reported on a 24-week extension phase, where all subjects in the initial cross-over trial either continued or were placed back on SROM. This report again found that SROM was associated with fewer cravings for heroin (visual analogue scale: 2.06 ± 2.33 vs. 2.70 ± 2.63 ; brief craving questionnaire 2.25 ± 1.30 vs. 2.50 ± 1.43 at the end and start of extension phase respectively, p < 0.01) and statistically similar self-reported drug use (Heroin: 0.08 ± 0.18 vs. 0.11 ± 0.21 ; Cocaine: 0.05 ± 0.17 vs. 0.06 ± 0.18 ; benzodiazepine: 0.15 ± 0.34 vs. 0.19 ± 0.36 ; Alcohol: 0.22 ± 0.36 vs. 0.24 ± 0.38 at the end and start of extension phase respectively, p = 0.26-0.54); however, as no control group was present, data from the extension phase was not included in the analyses of this review.

Meta-analysis Results

Efficacy of SROM

As shown in Figures 2a-I and 2a-ii, a three-study meta-analysis, $^{17\,27\,28}$ that included data from 406 participants showed no difference in effectiveness between SROM and methadone in reducing opioid use (RR = 0.96; 95% CI: 0.61- 1.52, p = 0.86, $I^2 = 50\%$). Because other measures of SROM efficacy (i.e., craving) were not reported across all studies or were assessed using different statistical methods, they were not amenable to investigation via meta-analysis. However, two studies indicated that SROM reduces cravings for heroin more than methadone (P < 0.0001, measured using a visual analogue scale; P = 0.010, measured using the heroin craving questionnaire - brief), and that SROM produces no significant differences in self-reported use of illicit drugs. $^{17\,23\,28}$

CT.

Treatment retention

Acceptability of treatment was measured via participant dropout. Dropouts were assessed in four

studies, $^{17\,26-28}$ with 471 participants [note: unpublished data were sought and obtained from two studies]. 17 Retention was assessed for the entire duration of the trials. As shown in Figures 2b-iii and 2b-iv, the results of the meta-analysis suggest that the mean difference in dropouts was not statistically significant between participants in the SROM vs. methadone (RR = 0.98; 95%CI 0.94 - 1.02, p = 0.34), while low (18%) heterogeneity between studies was observed.

Sensitivity analysis

As one included study was published as a thesis and conference abstract, and contained a small sample size (n = 24), a sensitivity analysis was run wherein this study's data was excluded. This exclusion did not change the results (Figures 2a-ii and 2b-iv). It was not possible to convert all data reported on outcomes into meta-analysis due to variance in reported data. Because continuous outcomes, such as craving, were reported in less than two studies, a meta-analysis was not performed.

DISCUSSION

The results of the present systematic review and meta-analysis indicate that current evidence suggests that SROM may be generally equal to methadone in the treatment of OUD. Building on an earlier review, ¹⁶ and with additional data from more recent trials as well as unpublished data, we were able to pool data on two outcomes: opioid use and retention in treatment. Here, in the meta-analysis, we observed no significant differences between SROM and methadone in improving treatment retention and heroin use. While not amenable to meta-analysis, results from two studies indicated that SROM reduces cravings for heroin more than methadone. These findings are relevant to recent high-level recommendations suggesting the need to consider repurposing existing medications for the treatment of opioid use disorder.³¹

Currently, SROM is available as an alternative to methadone in a range of European jurisdictions,³² as well as in Canada.⁴ Our findings concur with the new Canadian National Guidelines on the treatment of OUD, which recommend SROM as a treatment option, and with the findings from earlier systematic reviews though none of them had sufficient data for the calculation of the pooled effects for treatment retention and heroin use.⁴ ¹⁵ ¹⁶ In particular, our analyses considered new unpublished data that were not included in past reviews, as well as data from a new trial from Switzerland and Germany,¹⁷ thus confirming the apparent non-inferiority of SROM compared to methadone. Although a number of gaps in our understanding of SROM persist (for instance, in the absence of mortality and detailed safety data), the current review underscores the clinical utility and potential for scaling up SROM as an agonist treatment for OUD, relevant beyond European and Canadian settings.

Limitations

The results reported in the present systematic review and meta-analysis are subject to the several limitations. First, the body of evidence regarding the efficacy of SROM in managing OUD is still relatively small. As such, additional research will help to illuminate the role that SROM can play in meeting the needs of specific patient subgroups. For instance, the relative ability of SROM to engage and retain patients with opioid use disorder in the context of the fentanyl epidemic. Second, the methodological quality of the included RCTs was low-to-moderate and the sample sizes were modest. In terms of comparing SROM to buprenorphine/naloxone, because of the latter's improved safety profile, 14 34 the recently published Canadian guideline recommends staging therapies with buprenorphine/naloxone recommended for first line therapy with methadone or SROM being offered to those unsuccessful with first line treatment. 4 As such,

head-to-head comparisons of buprenorphine to SROM may not be warranted. Third, some outcome measures were not uniformly reported across studies and, therefore, were difficult to combine in a meta-analysis. Heroin use was amenable to meta-analysis as it was reported in a consistent manner by three studies. 17 26 28 Fourth, the analysis used some outcome data from the period before cross-over occurred in trials. Therefore, these results are based off of short durations of six to 12 weeks. Additionally, while one included RCT was only published as an abstract in a scientific peer reviewed journal, 20 the full results of the RCT were not published in a peer-reviewed journal; nevertheless, the RCT was included in a previous Cochrane systematic review. 16 Finally, with respect to quality, we identified moderate heterogeneity and a risk of bias related to inconsistent blinding of participants and unclear blinding of outcomes across studies. Differences in study design and duration were also present. Given these multiple potential sources of possible bias, SROM should remain an area of future study, where future studies should address the sources of heterogeneity (such as outcome measurement design and study duration) and consider impact on overdose and mortality, as highlighted above.

CONCLUSIONS

The present meta-analysis demonstrates the consistent pattern in clinical trials evaluating the impact of SROM. Because most OUD patients do not access agonist therapies,¹⁰ and since poor retention in methadone has been linked to heightened mortality and other health outcomes,¹⁴ SROM may have a promising role in OUD treatment, especially given methadone's known side effect profile, the likely attractiveness of SROM to some patients and the apparent reduction in craving when on SROM in comparison to methadone.⁸ ¹⁷ ²⁸ Unless future trials report contradictory findings, the public health crisis presented by illicitly manufactured opioids,² and the known limitations of existing agonist therapies,¹⁴ ³⁵

these data should inform future investigations of SROM as a therapeutic tool among people undergoing treatment for OUD.

Acknowledgments:

We thank Ahmed Adam for assistance with research.

Contributorship statement

JK and EW conceived the idea for and designed the study. JK and LG conducted the research and wrote the first draft of the manuscript. GS, CR, EMS, NF contributed to the study design, interpretation of the findings and preparation of the manuscript. All authors reviewed and approved the final version of the manuscript.

Competing interests

None

Funding

The study was supported by the US National Institutes of Health (R25DA037756). This research was undertaken, in part, thanks to funding from the Canada Research Chairs program through a Tier 1 Canada Research Chair in Inner City Medicine that supports Dr. Evan Wood. A European Commission grant (701698) supported Dr. Jan Klimas. The study was also supported by the Canadian Institutes of Health Research through the Canadian Research Initiative on Substance Misuse (SMN–139148) - and a Foundation Grant to Dr. Evan Wood. We thank Ahmed Adam for help with searching and screening. Dr. M. Eugenia Socías is supported by Michael Smith Foundation for Health Research (MSFHR) and Canadian Institutes of Health Research (CIHR) fellowship awards. Dr. Nadia Fairbairn is supported by a Michael Smith Foundation for Health Research/St. Paul's Foundation Scholar Award.

Data sharing statement

The data are extracted from published papers that are available via the individual journal websites.

Table 1:	Characteristics	of included	studies

Study/					Risk Rating						
Country	Design	Participants	Interventions	Outcomes	A B C D E						
Clark 2002 Australia	Cross-over, Randomized controlled trial, Open-label duration: 12 weeks	N=11 Mean age: 36.5 years Use of heroin: once per week Heroin use disorder and were on methadone	(1) Morphine Flexible starting dose; increased by 50 mg per day following transfer, never exceeded 800 mg/day (2) Methadone Flexible starting dose; reduced by 12 mg per day following transfer	Retention Severity of opiate withdrawal symptoms Heroin or other substance use Severity of dependence Mental health/social functioning							
Eder 2005 Austria	Cross-over, Randomized double blind, double-dummy duration: 14 weeks	N=64 Mean age: 28 years Male: 75% Opioid use disorder (excluded patients already receiving maintenance therapy)	(1) Morphine Starting dose 200 mg/day increased to 800 mg/day by week 1. (2) Methadone Starting dose 40 mg/day increased to 100mg/day by week 1.	Retention Use of illicit substances based on urinalysis Extent of drug cravings Withdrawal symptoms General well being Safety was assessed on the basis of adverse events and clinical and physical examination QoL measured by the Lancashire Quality of Life Profile	• • • •						
Giacomuzzi 2006 Austria	Randomized controlled trial Open-label duration: 24 weeks	N=120 Mean age: 27 years; Male: 57% Opioid use disorder and were on methadone	(1) Morphine Maintenance dose dependent on severity of withdrawal symptoms (2) Methadone Maintenance dose dependent on severity of withdrawal symptoms (3) Buprenorphine Maintenance dose dependent on severity of withdrawal symptoms	Retention (from personal correspondence) QoL measured by the Lancashire Quality of Life Profile Withdrawal symptoms measured by the Opioid Withdrawal Scale	• • • •						
Beck 2014 Switzerland and Germany	Cross-over Randomized controlled trial, Open-label, Duration: 22 weeks	N=276 Mean age: 38.1 Male: 81.5% Opioid dependence and were on methadone use disorder	(1) Methadone flexible dosing. Cross over at 11 weeks to morphine (2) Morphine flexible dosing. Cross over at 11 weeks to methadone	Retention (24 weeks) Proportion of positive urine samples per patient (12 weeks) Per treatment for co-consumption of heroin Craving heroin Craving cocaine Self-reported drug use Mental health problems (SCL-27) Positive urine samples Adverse events	• • • •						

Risk Rating Legend:

A: Random sequence generation (selection bias); B: Allocation concealment (selection bias); C: Blinding of participants and personnel (performance bias); D: Blinding of outcome assessment (detection bias); E: Incomplete outcome data (attrition bias); Amber Circle: Unclear

REFERENCES

- Han B, Compton WM, Jones CM, et al. Nonmedical Prescription Opioid Use and Use Disorders Among Adults Aged 18 Through 64 Years in the United States, 2003-2013. *JAMA* 2015;314(14):1468-78. doi: 10.1001/jama.2015.11859 [published Online First: 2015/10/16]
- 2. NIDA. Overdose Death Rates: National Institute on Drug Abuse; September 2017 [Available from: https://www.drugabuse.gov/related-topics/trends-statistics/overdose-death-rates accessed May 23, 2018.
- (WHO); WHO. Guidelines for the psychosocially assisted pharmacological treatment of opioid dependence. Geneva, Switzerland, 2009.
- 4. Bruneau J, Ahamad K, Goyer M-È, et al. Management of opioid use disorders: a national clinical practice guideline. *Canadian Medical Association Journal* 2018;190(9):E247-E57. doi: 10.1503/cmaj.170958
- 5. (ASAM); ASoAM. The national practice guideline for the use of medications in the treatment of addiction involving opioid use, 2015.

- 6. Mattick RP, Breen C, Kimber J, et al. Methadone maintenance therapy versus no opioid replacement therapy for opioid dependence. *Cochrane database of systematic reviews (Online)* 2009(3):CD002209. doi:
 - 10.1002/14651858.CD002209.pub2 [published Online First: 2009/07/10]
- 7. Mattick RP, Breen C, Kimber J, et al. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. *Cochrane database of systematic reviews (Online)* 2014;2:CD002207. doi: 10.1002/14651858.CD002207.pub4 [published Online First: 2014/02/07]
- 8. Socías M, Wood E. Evaluating slow-release oral morphine to narrow the treatment gap for opioid use disorders. *Annals of Internal Medicine* 2018;168(2):141-42.
- 9. Darke S, Zador D. Fatal heroin 'overdose': a review. *Addiction* 1996;91(12):1765-72. [published Online First: 1996/12/01]
- 10. Volkow ND, Frieden TR, Hyde PS, et al. Medication-assisted therapies--tackling the opioid-overdose epidemic. *The New England journal of medicine*

2014;370(22):2063-6. doi: 10.1056/NEJMp1402780 [published Online First: 2014/04/25]

- 11. Farre M, Mas A, Torrens M, et al. Retention rate and illicit opioid use during methadone maintenance interventions: a meta-analysis. *Drug Alcohol Depend* 2002;65(3):283-90. [published Online First: 2002/02/14]
- 12. White AP. The promise, problems and limitations of methadone: a clinical perspective. *J Clin Forensic Med* 1994;1(2):97-104. [published Online First: 1994/09/01]
- 13. Kheradmand A, Banazadeh N, Abedi H. Physical effects of methadone maintenance treatment from the standpoint of clients. *Addict Health* 2010;2(3-4):66-73. [published Online First: 2010/07/01]
- 14. Sordo L, Barrio G, Bravo MJ, et al. Mortality risk during and after opioid substitution treatment: systematic review and meta-analysis of cohort studies. *BMJ* 2017;357 doi: 10.1136/bmj.j1550

- 15. Jegu J, Gallini A, Soler P, et al. Slow-release oral morphine for opioid maintenance treatment: a systematic review. *Br J Clin Pharmacol* 2011;71(6):832-43. doi: 10.1111/j.1365-2125.2011.03923.x [published Online First: 2011/01/27]
- 16. Ferri M, Minozzi S, Bo A, et al. Slow-release oral morphine as maintenance therapy for opioid dependence. *Cochrane Database of Systematic Reviews* 2013(6) doi: 10.1002/14651858.CD009879.pub2
- 17. Beck T, Haasen C, Verthein U, et al. Maintenance treatment for opioid dependence with slow-release oral morphine: a randomized cross-over, non-inferiority study versus methadone. *Addiction* 2014;109(4):617-26. doi: 10.1111/add.12440 [published Online First: 2013/12/07]
- Ferri M, Davoli M, Perucci CA. Heroin maintenance for chronic heroin-dependent individuals. *Cochrane database of systematic reviews (Online)* 2011(12):CD003410. doi: 10.1002/14651858.CD003410.pub4 [published Online

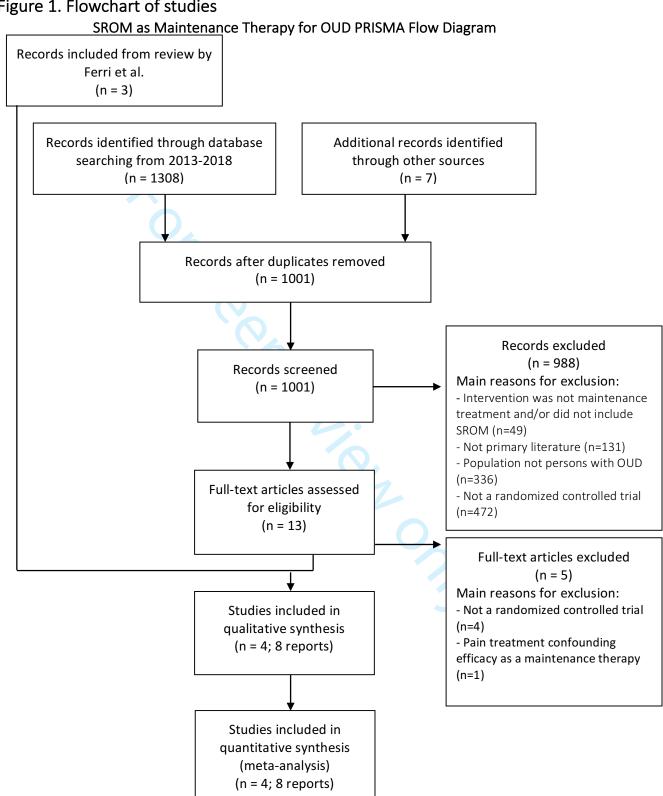
First: 2011/12/14]

- 19. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ* 2011;343:d5928. doi: 10.1136/bmj.d5928
- 20. Clark NC. Expanding the Options for the Treatment of Heroin Dependence with Oral Supervised Opioid Substitution Therapy: LAAM, Buprenorphine and Slow Release Oral Morphine as Alternatives to Methadone. University of Melbourne, Department of Medicine, St Vincent's Hospital, 2006.
- 21. Substance-Related and Addictive Disorders. American Psychiatry Association:
 American Psychiatric Publishing., 2013.
- 22. Compton WM, Dawson DA, Goldstein RB, et al. Crosswalk between DSM-IV dependence and DSM-5 substance use disorders for opioids, cannabis, cocaine and alcohol. *Drug and alcohol dependence* 2013;132(1):387-90.
- 23. Falcato L, Beck T, Reimer J, et al. Self-reported cravings for heroin and cocaine during maintenance treatment with slow-release oral morphine compared with methadone: a randomized, crossover clinical trial. *J Clin Psychopharmacol*

2015;35(2):150-7. doi: 10.1097/JCP.000000000000288 [published Online First: 2015/02/14]

- 24. Hammig R, Kohler W, Bonorden-Kleij K, et al. Safety and tolerability of slow-release oral morphine versus methadone in the treatment of opioid dependence. *J Subst Abuse Treat* 2014;47(4):275-81. doi: 10.1016/j.jsat.2014.05.012 [published Online First: 2014/07/30]
- 25. Winklbaur B, Jagsch R, Ebner N, et al. Quality of life in patients receiving opioid maintenance therapy. A comparative study of slow-release morphine versus methadone treatment. *Eur Addict Res* 2008;14(2):99-105. doi: 10.1159/000113724 [published Online First: 2008/03/13]
- 26. Eder H, Jagsch R, Kraigher D, et al. Comparative study of the effectiveness of slow-release morphine and methadone for opioid maintenance therapy. *Addiction*2005;100(8):1101-9. doi: 10.1111/j.1360-0443.2005.001128.x [published Online First: 2005/07/27]
- 27. Giacomuzzi S, Kemmler G, Ertl M, et al. Opioid addicts at admission vs. slowrelease oral morphine, methadone, and sublingual buprenorphine maintenance

treatment participants. Subst Use Misuse 2006;41(2):223-44. doi:


10.1080/10826080500391845 [published Online First: 2006/01/06]

- 28. Clark N KK, Lintzeris N, Ritter A, Whelan G. A randomised trial of once-daily slow-release oral morphine versus methadone for heroin dependence. Drug and Alcohol Dependence, 2002:Suppl 1:S33.
- 29. Verthein U, Beck T, Haasen C, et al. Mental symptoms and drug use in maintenance treatment with slow-release oral morphine compared to methadone:
 Results of a randomized crossover study. *European Addiction Research*2015;21(2):97-104.
- 30. Verthein U, Beck T, Haasen C, et al. Mental symptoms and drug use in maintenance treatment with slow-release oral morphine compared to methadone: results of a randomized crossover study. *Eur Addict Res* 2015;21(2):97-104. doi: 10.1159/000368572 [published Online First: 2014/11/28]
- 31. Volkow ND, Collins FS. The Role of Science in Addressing the Opioid Crisis. *New England Journal of Medicine* 2017;377(4):391-94. doi: 10.1056/NEJMsr1706626

- 32. Cooper TE, Chen J, Wiffen PJ, et al. Morphine for chronic neuropathic pain in adults. *Cochrane database of systematic reviews (Online)* 2017;5:CD011669. doi: 10.1002/14651858.CD011669.pub2 [published Online First: 2017/05/23]
- 33. EMCDDA. Year of introduction of methadone maintenance treatment, high-dosage buprenorphine treatment, heroin-assisted treatment, slow-realease morphine and Suboxone Lisbon: European Monitoring Centre for Drugs and Drug Addiction; 2009 [Available from: http://www.emcdda.europa.eu/stats09/hsrtab1 accessed April 13th 2018.
- 34. Luty J, O'Gara C, Sessay M. Is methadone too dangerous for opiate addiction? *BMJ* 2005;331(7529):1352-3. doi: 10.1136/bmj.331.7529.1352 [published Online First: 2005/12/13]
- 35. Sharma A, Kelly SM, Mitchell SG, et al. Update on Barriers to Pharmacotherapy for Opioid Use Disorders. *Curr Psychiatry Rep* 2017;19(6):35. doi: 10.1007/s11920-017-0783-9 [published Online First: 2017/05/21]

Identification

Figure 1. Flowchart of studies

i) Heroin use measured as the number of positive urine drug tests per participant:

	SROM	metha	done		Risk Ratio	Risk Ratio
Study or Subgroup	Events Tot	al Events	Total	Weight N	M-H, Random, 95% CI	M-H, Random, 95% CI
Beck 2014	34 1	57 27	157	41.7%	1.26 [0.80, 1.98]	
Clark 2006	5	51 4	62	11.1%	1.27 [0.36, 4.51]	- • - -
Giacomuzzi 2006	31 1	20 44	120	47.2%	0.70 [0.48, 1.03]	-
Total (95% CI)	3	38	339	100.0%	0.96 [0.61, 1.52]	•
Total events	70	75				
Heterogeneity: Tau ² =	= 0.08; Chi ² =	3.96, df =	2 (P = 0)	0.14); $I^2 = 5$	50%	0.01 0.1 1 10 100
Test for overall effect	Z = 0.18 (P)	= 0.86)				Favours SROM Favours methadone

ii) Heroin use measured as the number of positive urine drug tests per participant, with high-risk study excluded:

	SROM	methadone		Risk Ratio	Risk Ratio
Study or Subgroup	Events Tota	l Events Total	Weight M-	-H, Random, 95% CI	M-H, Random, 95% CI
Beck 2014	34 157	7 24 157	48.0%	1.42 [0.88, 2.27]	+
Clark 2006	5 63	4 62		Not estimable	
Giacomuzzi 2006	31 120	44 120	52.0%	0.70 [0.48, 1.03]	-
Total (95% CI)	277	277	100.0%	0.98 [0.50, 1.96]	•
Total events	65	68			
Heterogeneity: Tau ² = Test for overall effect			0.02); $I^2 = 80$	0%	0.01 0.1 1 10 100 Favours SROM Favours methadone

Figure 2b. Forest plot of the effects of slow release oral morphine (SROM) on retention in treatment among persons with opioid use disorders in randomized controlled trials; CI: confidence interval; ITT population.

iii) Retention in treatment at the end of the trial (or first period in case of cross-over trials):

	SRO	М	methad	done		Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Rand	lom, 95% CI	
Beck 2014	226	264	233	260	33.1%	0.96 [0.90, 1.02]				
Clark 2006	9	11	10	10	1.8%	0.83 [0.60, 1.14]		_	+	
Eder 2005	56	61	55	59	15.8%	0.98 [0.89, 1.09]			+	
Giacomuzzi 2006	40	40	40	40	49.3%	1.00 [0.95, 1.05]			•	
Total (95% CI)		376		369	100.0%	0.98 [0.94, 1.02]				
Total events	331		338							
Heterogeneity: Tau ² =	= 0.00; CI	$ni^2 = 3$.66, df =	3 (P = 0)	0.30); $I^2 =$	= 18%	0.01	0 1	1 10	100
Test for overall effect	z = 0.9	5 (P = 0)).34)				0.01	0.1 Favours SROM	Favours metha	100 adone

iv) Retention in treatment at the end of the trial (or first period in case of cross-over trials), with high-risk study excluded:

	SRO	M	methac	lone		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M–H, Random, 95% CI	
Beck 2014	226	264	233	260	32.6%	0.96 [0.90, 1.02]	•	
Clark 2006	9	11	10	10		Not estimable		
Eder 2005	56	61	55	59	14.2%	0.98 [0.89, 1.09]	†	
Giacomuzzi 2006	40	40	40	40	53.2%	1.00 [0.95, 1.05]	•	
Total (95% CI)		365		359	100.0%	0.98 [0.94, 1.02]		
Total events	322		328					
Heterogeneity: Tau ² =	= 0.00; & 1	or <u>d</u> es	r ₂ r ₂ r ₂ vde≌	2ηþ/≟ ƙ	yttp://br	ajqp@n.bmj.com/site/about/gu 0.01	idelines.xhtml	7
Test for overall effect						0.01	Favours SROM Favours methadone	10

Slow Release Oral Morphine versus Methadone for the Treatment of Opioid Use Disorder: A Systematic Review and Meta-Analysis

Appendix. MEDLINE Search Strategy:

	abase(s): Ovid MEDLINE(R) Epub Ahead of Print, In-Process & Other No.	
	tions, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to May 1st, och Strategy: Run May 1st	2018
#	Searches	Results
1	exp Opioid-Related Disorders/	22650
2	(opiat\$ or opioid\$ or heroin\$ or narcot\$ or methadone or buprenorphine).ab,ti.	120510
3	1 or 2	125772
4	(withdraw\$ or abstinen\$ or abstain\$ or abuse\$ or abusing or dependen\$ or addict\$ or overdos\$ or 'over-dose' or intoxicat\$).ab,ti.	1820666
5	3 and 4	45660
6	exp MORPHINE/	36715
7	morphine.ab,ti.	46588
8	6 or 7	53469
9	randomized controlled trial.pt.	459781
10	controlled clinical trial.pt.	92372
11	randomized.ab,ti.	441959
12	drug therapy.sh.	29544
13	randomly.ab,ti.	290465
14	trial.ab,ti.	500960
15	groups.ab,ti.	1815207
16	9 or 10 or 11 or 12 or 13 or 14 or 15	2650720
17	5 and 8 and 16	1299
18	limit 17 to humans	613
19	limit 18 to yr="2013 - 2018"	143

Page 31 of 32 BMJ Open

47

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT	<u> </u>		
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4-5
8 Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	2
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7
2 Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis. http://bmjopen.bmj.com/site/about/guidelines.xhtml	7

PRISMA 2009 Checklist

		Page 1 of 2	
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	17
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	17
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Figure 2
3 Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Figure 2
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	13
2 Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	14
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	15
FUNDING			
8 Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	16

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 42 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.